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Compiler-Directed Soft Error Detection and Recovery to Avoid DUE
and SDC via Tail-DMR
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This article presents Clover, a compiler-directed soft error detection and recovery scheme for lightweight soft
error resilience. The compiler carefully generates soft-error-tolerant code based on idempotent processing
without explicit checkpoints. During program execution, Clover relies on a small number of acoustic wave
detectors deployed in the processor to identify soft errors by sensing the wave made by a particle strike.
To cope with DUEs (detected unrecoverable errors) caused by the sensing latency of error detection, Clover
leverages a novel selective instruction duplication technique called tail-DMR (dual modular redundancy)
that provides a region-level error containment. Once a soft error is detected by either the sensors or the
tail-DMR, Clover takes care of the error as in the case of exception handling. To recover from the error,
Clover simply redirects program control to the beginning of the code region where the error is detected.
The experimental results demonstrate that the average runtime overhead is only 26%, which is a 75%
reduction compared to that of the state-of-the-art soft error resilience technique. In addition, this article
evaluates an alternative technique called tail-wait, comparing it to Clover. According to the evaluation with
the different processor configurations and the various error detection latencies, Clover turns out to be a
superior technique, achieving 1.06 to 3.49× speedup over the tail-wait.
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1. INTRODUCTION

Resilience against soft errors is one of the key research challenges for current and
future computing systems. Soft errors have been the cause of a significant number of
failures in real-world systems, ranging from embedded systems to large-scale high-
performance computing (HPC) systems [Luo et al. 2014; Li et al. 2010; Saggese et al.
2005; Constantinescu 2003; Haque and Pande 2010; Mukherjee et al. 2005]. Unfortu-
nately, due to technology scaling, electronic circuits are likely to be more susceptible
to radiation-induced soft errors (also known as transient faults). They are typically
caused by cosmic rays and alpha particles from packaging material. Soft errors may
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lead to application crashes or, even worse, silent data corruptions (SDCs), which are
not caught by the error detection logic but may cause the program to produce incorrect
output. Another type of results are detected unrecoverable errors (DUEs) that often
directly impact the reliability of the computer systems. To achieve soft error resilience,
it is essential to have both the detection and the correction schemes for the soft errors.

In the dark silicon era, soft errors are becoming an increasingly important concern
for computer system reliability. Ever-growing power density due to the limited supply
voltage scaling is leading toward the advent of near-threshold computing that can im-
prove energy efficiency by an order of magnitude, but at the expense of near-threshold
voltage and lower frequency [Wang and Skadron 2013; Taylor 2012]. However, the near-
threshold voltage and the process variation make it harder to predict the response of
the circuits to a particle strike, thus making them much more susceptible to the soft
errors. According to Shafique et al. [2014], near-threshold voltage operation may cause
up to a 30× higher soft error rate than nominal voltage operation. Similar trends
have been observed by other researchers as well [Henkel et al. 2013; Kaul et al. 2012].
Consequently, soft error resilience is essential not just for guaranteeing program cor-
rectness, but also for realizing the full potential of near-threshold voltage computing
to maximize energy efficiency, which is particularly important for energy-constrained
embedded systems.

These trends have motivated researchers to devise effective resilience mechanisms
to mitigate the side effects of the soft errors. Unfortunately, existing techniques often
suffer from high performance overhead [Reis et al. 2005b, 2007; Lyons and Vanderkulk
1962] or require costly hardware support and resource consumption (e.g., occupying en-
tire cores or leveraging special microarchitecture) [Carretero et al. 2009; Racunas et al.
2007; Austin 1999; Meixner et al. 2007]. Despite increased hardware, performance, and
power costs, these techniques may not eliminate both the SDCs and the DUEs or the
need for expensive checkpointing. To address these issues, this article presents Clover,
a compiler-directed lightweight resilience scheme that can detect and correct the soft
errors without the need for checkpointing and high performance overhead.

Clover leverages recent advances on a sensor-based soft error detection technique. It
detects a soft error by sensing the acoustic wave generated by a particle strike rather
than the consequence (e.g., program crash), thereby causing no direct performance
penalty [Upasani et al. 2014a, 2014b]. For soft error recovery, Clover combines this soft
error detection technique with idempotent processing [de Kruijf et al. 2012; de Kruijf
and Sankaralingam 2013; Feng et al. 2011]. The compiler partitions and transforms the
entire program into different idempotent code regions, the re-execution of which does
not change the output of the regions. Such side-effect-free re-execution enables Clover to
correct the errors occurring in a region by simply jumping back to its beginning without
explicit checkpoints, provided they are detected within the same region. However,
naively combining the sensor-based soft error detection and the idempotent processing
does not automatically guarantee correct program execution.

Curse of DUE. The crux of the problem is that the sensor-based soft error detection
incurs a certain detection latency. It can be minimized at the expense of adding more
sensors (i.e., chip area overhead). Therefore, in practice, there would be nonnegligible
error detection latency. Unfortunately, this makes it possible for a soft error to be
detected across idempotent regions, which leads to DUE. For example, an error
occurring in one idempotent region ends up being detected in the next idempotent
region. Thus, simply re-executing the idempotent region will not correct those errors
that have occurred in the previous region but were detected in this idempotent region
whose inputs (live-in) may have been corrupted by the errors. Worse, the idempotent
regions generally have a small region size (see Section 4.1), leading to more DUEs as
more errors cannot be detected within the region by the sensors.
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To overcome this challenge, Clover intelligently augments these techniques with the
instruction-level dual modular redundancy (DMR) where instructions are duplicated,
verified, and intertwined with the original instructions. In this approach (referred to
DMR hereafter), the compiler inserts checks to determine if the original instructions
and their duplicated copies have the same computed values at certain synchronization
points in the combined code for error detection [Reis et al. 2005b]. In general, this
approach can achieve zero detection latency since the checks instantly identify the
soft errors. However, such an advantage comes with significant overhead in terms of
performance and power, due to the increased instruction count.

Tail-DMR. To achieve low overhead, Clover attempts to minimize the use of DMR
by exploiting sensor-based soft error detection. The idea is that as long as the error is
detected in the same idempotent region, its re-execution can correct the error. In light
of this, this article proposes tail-DMR, where the compiler delineates a boundary in
each region to break it into two parts: head and tail. The first part (head) relies on soft
error detection via the sensors, while the second part (tail) relies on the DMR to detect
the errors, that is, tail-DMR. This article calls such a boundary tail-DMR frontier. In
particular, the compiler determines the frontier so that the DMR-enabled part (i.e., tail)
has to be longer than the worst-case sensor-based error detection latency. This ensures
that all the errors are detected in the same region, enabling re-execution of idempotent
regions to guarantee correct execution. Since the detection latency is typically small as
shown in Section 2, the length of the DMR-enabled part can also be small, and hence
execution of the DMR-enabled part will incur only low overhead; Section 4 investigates
the tradeoff between the sensor area overhead and performance penalty caused by the
DMR execution. Consequently, Clover can transparently provide soft error resilience
without significant resource consumption and performance degradation.

Following are the contributions of this work:

—This article proposes a novel technique to detect and recover the soft errors with
low performance overhead. This is the first technique to exploit the advantages of
idempotent processing, dual-modular redundancy, and sensor-based support for de-
tecting the soft errors, toward achieving this goal. We show that Clover intelligently
combines these techniques and offsets the drawback of each technique to provide a
low-cost and low-overhead mechanism against the soft errors.

—This article explores and quantifies the tradeoffs in exploiting sensor-based support
for soft error detection, instruction-level DMR, and idempotent processing. We show
that these tradeoffs yield a practical design point for Clover to be applied in real-
world scenarios.

—Clover can detect and recover from the soft errors without significant performance
degradation. Clover incurs an average performance overhead of 26% for a range of
Mediabench applications, which is a 75% reduction compared to that of the state-
of-the-art approach. Moreover, unlike prior work, Clover does not increase code size
significantly, which is particularly important for embedded systems.

—Clover’s tail-DMR turns out to be superior to a new alternative to it called tail-wait
that waits at the end of each region for the time of the worst-case error detection
latency. For example, the tail-DMR achieves 1.06 to 3.49× speedup over the tail-wait.

2. BACKGROUND

Sensor-Based Soft Error Detection. Recently, researchers have proposed a new approach
that detects the actual particle strike rather than its consequence (i.e., the program
crash, hang, or incorrect output) [Upasani et al. 2014a, 2014b]. For example, Upasani
et al. [2014a] deploy a set of acoustic wave detectors with cantilevers on silicon and
propose techniques to precisely detect the particle strike without requiring redundant
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Fig. 1. Soft error detection latencies varying the number of sensors under the configurations of ARM
cortex-A9 out-of-order processors where the core part takes a quarter of total die size.

microarchitectural structure. Clover relies on this kind of sensor-based soft error de-
tection scheme.

The error detection latency determines how long the tail part of idempotent regions
(tail-DMR) should be to guarantee that its execution time is greater than the detection
latency. Thus, the length of the DMR-enabled part is subject to the error detection
latency; that is, a lower soft error detection latency allows a shorter DMR-enabled part
(lower performance overhead) but at the expense of more sensors on the chip (higher
area overhead).

Error Detection Latency Exploration. To this end, this article investigates possible
detection latencies on various processor configurations to find an appropriate detection
latency with an acceptable area overhead. Figure 1 shows different detection latencies
for ARM cortex-A9 out-of-order processors. Leveraging data presented by Upasani et al.
[2014a], the detection latency was calculated for a 25% core area ratio to the total die
size.1 Given a total die size (4.6mm2) across different clock frequencies (0.5–2.5GHz), we
vary the number of sensors to understand how the resulting detection latency changes.
In the curves of Figure 1, we show several interesting points to represent how many
sensors can be deployed within different area overhead budgets, that is, 1% , 2%, 5%,
10%, and 20%. We make two major observations:

—A short error detection latency can be achieved without increasing the area overhead
significantly; for example, a detection latency of five cycles can be achieved only by
increasing the die size by 1% with a 0.5GHz frequency.

—As expected, lower clock frequency translates to shorter error detection latency;
that is, if NTV-like voltage scaling, which inevitably decreases the clock frequency,
is used to improve energy efficiency, the resulting error detection latency will be
much shorter. This exactly fits the philosophy of Clover, since it mainly targets

1The core part area excludes L1 and L2 caches.
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NTV-enabled embedded systems that are particularly vulnerable to the soft errors
due to the aggressive voltage scaling with NTV operation.

Based on the exploration, this article makes the assumption that the sensor-based
soft error detection can achieve the worst-case detection latency of five cycles; that is,
this is the default configuration of Clover. According to the recent work of Upasani
et al. [2014b], it is possible to achieve much lower area overhead with a more careful
placement of sensors on the chip. Section 4 later evaluates Clover across the different
worst-case detection latencies varying the performance of the underlying processor,
that is, the pipeline commit-width.

Idempotent Processing for Soft Error Recovery. An idempotent region can be freely re-
executed to generate the same output. Therefore, soft error recovery can be achieved by
simply jumping back to the beginning of the faulty region and re-executing the region.

Idempotent processing partitions and transforms the entire control flow graph (CFG)
of a program into different idempotent regions. That is, the entire program is protected
by Clover. Each region contains a single entry basic block and zero or more exiting basic
blocks where the entry block dominates all other blocks. Then, all those regions are
transformed or instrumented to be idempotent. A region of code is idempotent if and
only if its inputs (e.g., the values that are live-in to the region) are not overwritten (i.e.,
no antidependence on the inputs) during the execution of the region. Thus, the inputs
to the entry of the region will remain the same within the region, making idempotent
regions harmless to be re-executed many times. If some inputs are overwritten within
the region, their values do not remain the same as they were at the region entry.
Therefore, this makes the re-execution of the region unsafe, that is, ending up changing
the expected output produced by the region. Consequently, it is a requirement for the
idempotent execution that the inputs to the regions should never be overwritten during
the execution of the region.

With that in mind, researchers propose different techniques for preserving the input
as it is at the entry of the region. de Kruijf et al. [2012] and de Kruijf and Sankaralingam
[2013] leverage their region partition algorithm to place region boundaries to break the
memory-level antidependence and utilize register renaming to eliminate the register
antidependence (i.e., a new pseudo-register is allocated to break the dependence) on
the inputs to the region. This enables the idempotence of the regions in an elegant
manner without an explicit checkpoint but at the expense of increasing the register
pressure. Once the soft errors are detected in the idempotent region, it can be simply
re-executed to recover from the errors.

On the other hand, Feng et al. [2011] take a different approach to get around the
antidependence without a significant increase of the register pressure. They first iden-
tify all the nonidempotent regions and selectively protect some of them by explicitly
checkpointing at the region entry those inputs that are overwritten within the region;
that is, all the regions are not protectable. For every protected region, a recovery block
is generated to restore the checkpointed values from memory on a fault. Thus, the
resulting code size increase might not be acceptable for embedded systems. Finally, the
actual recovery process requires a rollback runtime that consults the recovery block.

For complete soft error recovery, Clover extends the technique of De Kruijf et al.
because of its simplicity (i.e., lack of explicit checkpoint and rollback), complete coverage
(i.e., partition the entire program into different idempotent regions), and insignificant
code size increase.

Fault Model. The fault model of Clover exactly follows that of idempotent processing.
First, memory, caches, and register files are protected against the soft errors, for exam-
ple, using error-correcting codes (ECC). Many commodity-embedded processors have
already integrated ECC protection to these components [ARM 2015]. Second, execution
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of the program is guaranteed to follow its static control flow paths; we assume a low-
cost, low-latency solution such as Khudia and Mahlke [2013]. Third, instructions must
write to the correct register destinations. Fourth, stores in the region have to be safely
buffered as with branch misprediction until the region is verified. For this purpose, a
gated store buffer is often leveraged [Liu et al. 2016a, 2016b; Liu and Jung 2016]. Fi-
nally, the address generation unit is protected for stores to write in the correct locations.
Those five components are widely assumed in the literature on software-based error
recovery [Reis et al. 2005b; de Kruijf et al. 2012; de Kruijf and Sankaralingam 2013],
and there have been many solutions to realize them [Meixner et al. 2007; Reis et al.
2005a, 2005b; Khudia and Mahlke 2013]. All other microarchitectural units remain
unchanged and can be protected by Clover. The takeaway is that Clover can protect
the processor core including random logic state, which is hard to detect, and correct
the soft errors at low cost.

3. CLOVER APPROACH

The goal of Clover is to provide a low-cost hardware/software cooperative technique for
soft error resilience. Given a reasonable amount of sensors and the resulting detection
latency, Clover exploits a novel selective instruction duplication technique called tail-
DMR to eliminate DUEs caused by the sensing latency of error detection. For soft error
recovery, Clover leverages idempotent processing. Once an error is detected, Clover
recovers from it by re-executing the region where it is detected. This error recovery
process is performed as in the case of an exception raised by either the sensors or tail-
DMR, the exception handler of which simply redirects program control to the beginning
of the region.

Achieving Complete Soft Error Recovery. Although the merits of the sensor-based soft
error detection scheme and idempotence-based recovery scheme look complementary
to each other, simply combining them together cannot always achieve correct soft error
recovery. As we illustrate next, the soft errors may still corrupt the architectural state
of the processor core, and these schemes cannot recover such soft errors correctly. We
also show in Section 4 that such a naive combination of both the schemes ends up
leaving a considerable portion of dynamic instructions susceptible to the soft errors.

To illustrate this, Figure 2 describes the idempotence-based recovery scheme and
highlights its limitation in the presence of the sensor-based soft error detection scheme
and its worst-case detection latency (WCDL). Figure 2(a) shows the original program
execution timeline. Here, vertical bars indicate idempotent region boundaries during
program execution; thus, there are three regions (i.e., r1, r2, r3) on each timeline.
Figure 2(b) represents an ideal case where the idempotent region can recover correctly
from a soft error. At time t1, an energetic particle strikes the processor and corrupts the
architectural state. After the time of WCDL, the detection scheme causes an exception
for the system to initiate the recovery process. Due to the idempotence of the region,
the system can recover from the soft error by simply jumping back to the most recent
region boundary, that is, the beginning of the current region (i.e., r1) where the error
is detected. Note that the region r1 is restarted at time t2 on the timeline.

In contrast, Figure 2(c) demonstrates how the WCDL can make an error go uncor-
rected even in the presence of the idempotence-based recovery scheme. Suppose an
energetic particle strikes the processor at time t1. After as much time has passed as
the WCDL (i.e., at t3), the detection scheme causes an exception for the soft error.
However, the system jumps back to the most recent region boundary (i.e., r2) instead of
r1 due to the worst-case detection latency. Hence, the error escapes from the former re-
gion, thereby corrupting the architectural states of the processor and possibly causing
a program crash/hang/silent data corruption. This is referred to as the DUE.
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Fig. 2. Problem of idempotent processing in the presence of the sensor-based soft error detection scheme
and its worst-case detection latency (WCDL), and our tail-DMR solution.

3.1. Tail-DMR

To overcome this challenge, this article proposes utilizing a reasonable amount of
sensors (thereby reducing the chip area overhead) and selectively duplicating those
instructions that are under a risk of DUE in the tail of an idempotent region (thereby
reducing the runtime overhead while maintaining the correct error recovery in all
cases). This article refers to this selective instruction duplication as tail-DMR. For
a given small number of sensors and the resulting detection latency, the compiler
delineates a boundary in each region to break it into two parts, head and tail; the
sensor-based detector identifies the errors that occurred in the head of the region,
while the DMR identifies those that occurred in the tail. We call such a boundary the
tail-DMR frontier. Figure 2(d) shows the program execution timeline after delineating
the tail-DMR frontiers, where f1 and f2 represent the tail-DMR frontiers of r1 and r2,
respectively. The shaded zones in the figure are protected by the tail-DMR for soft error
detection. Figure 2(e) describes how the proposed tail-DMR prevents the DUEs. While
an error can take place outside the shaded zone at time t1, it can be detected still
within the current region after WCDL (i.e., at time t3). Hence, the recovery scheme
can safely redirect the program control to the beginning of the region (i.e., r1), thereby
ensuring correct recovery from the error.

On the other hand, when an error occurs within the tail of a region (i.e., at time
t5 of Figure 2(e)), the DMR immediately detects the error, and the re-execution of
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region r1 can correctly recover from the error. After the time of WCDL (i.e., at t6), the
error is detected once more by the sensor, causing an exception. Thus, the program
control is redirected to the beginning of the most recent region r1 again. Note that
this does not harm the program correctness due to the side-effect-free nature of the
idempotent region. Moreover, since a soft error occurs once in a while, the overhead
of such redundant recovery will not have a negative impact on the performance (see
Section 4.1).

3.1.1. Tail-DMR Frontier for a Region-Level Error Containment. To guarantee that each soft
error that occurred in each region must be detected within the same region, Clover
carefully determines the tail-DMR frontier so that the execution time of the DMR-
enabled part (i.e., tail of the region) is longer than the length (time) of the WCDL. This
is required to prevent the errors from escaping the region where they occur without
being detected. As a result, along with such a region-level error containment, Clover’s
idempotence-based recovery scheme can always correctly recover from them by re-
executing the region. Again, if the errors occurring in past regions remain uncorrected
in the current region, re-executing it cannot achieve the recovery. However, we show
that the design of Clover never allows such a case:

THEOREM 3.1. Given a tail-DMR frontier that makes the execution time of the DMR-
enabled part longer than the time of WCDL, all the errors occurring in each region are
detected in the same region.

PROOF. We provide the proof by contradiction. Suppose the argument is false; that
is, for an error occurring in the current region Rc, the error is not detected in the
current region Rc. Since a region is divided into two parts by the tail-DMR, there are
two possibilities for the assumption:

—The error took place in the tail of Rc. This directly contradicts the assumption, since
the DMR detects all the errors that occur in the tail of the region. That is, if the error
occurs in the DMR-enabled part (i.e., tail) of Rc, the error must be detected by Rc.
This is a contradiction to the assumption.

—The error took place in the head of Rc. According to the tail-DMR frontier, the DMR-
enabled part of (i.e., tail) Rc takes longer than the time of WCDL. Therefore, the
error is to be identified by the sensor-based detector before the tail of Rc finishes.
That is, it is impossible for the error to escape from Rc. This is another contradiction
to the assumption.

Therefore, Theorem 3.1 must be true.

THEOREM 3.2. Given idempotent processing, all the errors that take place in each
idempotent region are corrected before the region finishes.

PROOF. We omit the proof due to the page limitation. It can be trivially proved by
induction using Theorem 3.1.

Intuitively, Theorem 3.1 means that all the errors occurring in a region should be
detected before the region finishes, while Theorem 3.2 provides a strong guarantee that
when program control enters a new region, all the errors that previously occurred must
have already been correctly recovered. Thus, no error can escape from the region where
they take place without being detected and corrected. Clover exploits these theorems
as a basis for the idempotent processing to successfully recover from all the errors
occurring in each region by re-executing it.

In particular, if a region is so small that all its instructions should be protected by
DMR (i.e., the tail-DMR frontier is set to the beginning of the region), the sensor may
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Fig. 3. Clover compiler workflow.

detect an error occurring in the region after it is finished. However, at this moment, the
error must have already been corrected based on Theorem 3.2. Therefore, re-executing
the most recent region (not the region where the error occurred) does not break the
program correctness due to the side-effect-free nature of the idempotent region.

Consequently, the tail-DMR enables idempotent processing to correctly recover from
all the errors detected in an arbitrary region by simply jumping back to the beginning
of the most recent region boundary, that is, the beginning of the current region where
the error is detected. The takeaway is that Clover can eliminate DUEs.

3.1.2. Clover Compiler Overview. Clover performs detailed compiler analyses to protect
an entire idempotent code region against the soft errors. Clover introduces additional
compiler back-end passes to generate soft-error-tolerant code. Figure 3 shows the com-
pilation workflow of Clover.

Once the compiler front end translates source code into LLVM intermediate rep-
resentation (IR), Clover applies traditional compiler optimizations on the IR. Then,
the optimized IR goes through idempotent region formation passes, which partition
and transform the entire program into idempotent regions so that the regions become
re-executable without any side effects. Note that Clover applies De Kruijf ’s region
partition algorithm [de Kruijf et al. 2012] to partition and generate the idempotent
regions. At the end of this stage, the LLVM IR is lowered to the machine-specific IR;
that is, instruction selection has already been done.

Then, the compiler computes the tail-DMR frontier of an idempotent region and
performs the tail-DMR to selectively duplicate necessary instructions and insert com-
pulsory checking instructions for complete error recovery of the region with no DUE.
Finally, the compiler performs register allocation and runs the rest of the back-end
passes to emit an executable. This section focuses on elaborating the tail-DMR frontier
generation pass.

3.1.3. Safe Approximation of WCDL with Instruction Counting. The tail-DMR frontier pass is
designed to recognize those instructions that are vulnerable to DUEs in the tail of an
idempotent region. As mentioned in Theorem 3.1, it is essential that the frontier must
be properly set for the execution time of the DMR-enabled part to be longer than the
time of WCDL cycles. However, static analysis cannot exactly model the execution time
of the instructions.

To get around this problem, Clover conservatively represents the time in terms
of the number of instructions to be executed. The time of WCDL is conservatively
approximated as the product of the WCDL and the commit-width of the processor’s
pipeline,2 which is called ThresholdWCDL; if the WCDL is five cycles and the commit-
width is 2, the tail-DMR forms the DMR-enabled part with only 10 instructions. Thus,

2Such approximation is safe as the commit-width is the ideal IPC number for a processor. The number of
instructions being committed in each cycle can never exceed the ideal IPC number. Further optimization
such as best-case execution time (BCET) analysis can be applied to reduce the number of instructions to
be duplicated. For example, SIMD instructions may need more than one cycle to be executed. However,
this is out of the scope of this article, and we leave it as future work along with a profile-guided region
multiversioning [Zhou et al. 2014] based on adaptive execution techniques [Jung et al. 2005; Lee et al. 2010;
Jung et al. 2009].

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 2, Article 32, Publication date: December 2016.



32:10 Q. Liu et al.

Clover can match the time of WCDL by simply counting instructions starting from the
end of an idempotent region.

Note that the instruction counting should be applied to the resulting instructions
of the DMR, not to the original instructions. That is, during the backward traversal
of a region, Clover should increase the count not just for the original instruction but
also for the duplication and the check instructions to be inserted for DMR, as if the
region has already been transformed by the next tail code duplication pass shown in
Figure 3. For this purpose, the tail-DMR frontier pass leverages a cost model of DMR
that categorizes the instructions of each region as presented later. Note that the unit
of Clover’s cost model is in terms of instruction as we approximate the time with the
number of instructions discussed earlier.

Synchronization Instructions. Instructions in this category require immediate veri-
fication [Reis et al. 2005b]. Originally, store and control flow instructions fell into this
category. They require equivalence verification to detect the soft errors; for example,
for store instructions, the compiler inserts check instructions to compare the value
of the original operands of the store instruction with their duplicated counterpart. If
any mismatch is detected, tail-DMR raises an alarm to invoke the recovery process. In
particular, the tail-DMR considers a region boundary as a new synchronization point.
This is necessary to prevent the errors occurring in the tail of a region from escaping to
the following regions. That is, any live-out registers, which are defined in the tail of the
region, are required to have check instructions before the region boundary. We define a
synchronization instruction set as these three types of instructions and denote the set
and the cost of the instructions as SYN and Csyn, respectively. The value of Csyn is one
instruction; thus, it does not include the cost of check instructions, which are modeled
separately.

Duplication Instructions. These instructions are supposed to be duplicated by the
compiler, thus generating one additional instruction in the region. Note that these
instructions are only in the tail of the region. Unlike traditional DMR approaches,
Clover duplicates all the instructions from the tail-DMR frontier to the end of the
region. Again, all the synchronization instructions will not be duplicated. The cost of the
duplication instructions is denoted as Cdup. In general, the cost is two instructions: one
for the original instruction and the other for the duplication instruction. In particular,
the Cdup of PHI instructions is zero, since the compiler eliminates them in the step of
static-single-assignment (SSA) deconstruction for register allocation.

Safe Instructions. These instructions are in the head of the region, preceding the tail-
DMR frontier. In particular, they are not vulnerable to DUEs as long as the tail-DMR
is correctly applied. Every error occurring in these instructions will be detected within
the region (i.e., before it finishes). Thus, safe instructions are never duplicated; that is,
there is no cost associated with them.

Check Instructions. These instructions are supposed to be inserted to verify the
operands and the live-out value of the instructions or the region boundaries. These
instructions are basically comparisons to check the equivalence of the values in the
original instruction and the duplicated one; Section 3.1.4 illustrates the insertion of
check instructions in more detail. The cost of check instructions is denoted as Cck. We
define a check instruction set as those instructions whose defined register needs to be
verified at synchronization points, and denote the set and the cost of check instructions
as CK and Cck, respectively. Note that the Cck depends on underlying architecture.
For example, the Cck would be two instructions for the ARMv7-A instruction set: one
instruction for the compare instruction that updates the condition register, and the
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other one for the branch instruction that transfers the control flow based on the result
of the condition register.

The next section presents the detailed algorithm of the tail-DMR frontier computa-
tion leveraging the cost model.

3.1.4. Region-Based Vulnerability Analysis: Computing the Tail-DMR Frontier on SSA. Clover
iterates the instructions of an idempotent region backward from its end by traversing
the control data flow graph (CDFG). For counting the instructions to match the time
of WCDL for each path, Clover consults the cost model of each visited instruction to
appropriately increase the count (i.e., path cost) depending on how the tail-DMR treats
the instruction as discussed earlier. If the count reaches a threshold that represents the
time of WCDL (i.e., ThresholdWCDL), then Clover adds the last visited instruction to the
tail-DMR frontier of the region. Before discussing the details, we define the following
terms and notations that are used throughout this section.

—VR: Vulnerable register set includes the registers whose value may corrupt the
architectural state if it is not verified.

—CK: Check instruction set denotes the instructions whose definition register needs
to be verified with checking instructions during the tail-DMR duplication.

—TF: A set of instructions that belong to tail-DMR frontier.
—PATHI: A set of visited instructions along one path during the reverse depth-first-

search traversal.
—Cpath: Accumulated cost of the visited instructions on the current path. If the cost

reaches ThresholdWCDL, then the last-visited instruction is added to the tail-DMR
frontier.

—KILL: A function that maps each defined register to a set of instructions that kill the
register.

Algorithm 1 describes how to compute the tail-DMR frontier. Starting from each
region boundary in the CDFG, Clover traverses all the paths in a reverse depth-first-
search (RDFS) order (lines 26–41). Each path is first initialized and keeps track of its
own set of visited instructions (PATHI), vulnerable registers (VR), and path cost (Cpath)
during the RDFS traversal (lines 28–30).

For each visited instruction in the path, Clover updates PATHI, VR, and Cpath, corre-
spondingly (lines 32–34). To update PATHI, Clover simply inserts the visited instruc-
tion I into PATHI. Keeping track of visited instructions is beneficial for analyzing the
liveness of a register in static-single-assignment (SSA) form, which will be used in
computing the VR set. Then, to update the VR, Clover leverages the heuristic shown
in lines 1 to 11. If the visited instruction is a synchronization instruction, Clover adds
all its use registers to the VR set since the value in those use registers may corrupt the
architectural state if it is not verified. For example, if the operands of a store instruc-
tion are corrupted, the store may store values to some other memory location, which
may break the idempotent property. In the next pass (i.e., the tail code duplication in
Figure 3), necessary check instructions are therefore inserted into the original CDFG
for verifying these registers.

In particular, Clover does not need to protect those registers that are live-in at the
tail-DMR frontier. As discussed in the proof of Theorem 3.1, all the errors occurring be-
fore the tail-DMR frontier should be dealt with by the sensor-based soft error detection
within the region; that is, its re-execution can correctly recover from the errors. This
allows Clover to safely assume that all the live-in registers at the tail-DMR frontier
are resilient against the soft errors. To this end, the next code duplication pass does
not insert check instructions for such live-in registers even if they belong to the VR set.
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ALGORITHM 1: Region-Based Vulnerability Analysis
Inputs: CDFG, SYN, R (i.e., a set of idempotent regions)
Outputs: TF, CK

1: function UPDATEVULREGSET(VR, I, PATHI)
2: // DefR is a register defined by I
3: // KILL[DefR] is the set of instructions that kill DefR.
4:
5: if I ∈ SYN then
6: VR ← VR + I′s use registers
7: else if KILL[DefR]

⋂
PATHI = ∅ then

8: VR ← VR+DefR
9: end if
10: Return VR

11: end function
12:
13: function CALCULATECOST(C, I)
14: if I ∈ SYN then
15: C ← C + Csyn
16: else
17: C ← C + Cdup
18: end if
19: if DefR ∈ VR then // DefR is the register defined by I
20: C ← C + Cck
21: CK ← CK + I
22: end if
23: Return C
24: end function
25:
26: for each region boundary R ∈ R in CDFG do
27: for each path P in reverse-DFS order from R do
28: PATHI ← ∅
29: VR ← ∅
30: Cpath ← 0
31: for each Instruction I ∈ P do
32: PATHI ← PATHI + I
33: VR ← UPDATEVULREGSET(VR, I, PATHI)
34: Cpath ← CALCULATECOST(Cpath, I)
35: if Cpath ≥ ThresholdWCDL ∨ I ∈ R then
36: TF ← TF + I
37: Terminate path P
38: end if
39: end for
40: end for
41: end for

Recall that Clover considers the region boundary as a synchronization point. That
is, every live-out register at the end of the region must be verified by the region if the
live-out register is defined after the tail-DMR frontier. Line 7 in Algorithm 1 shows
how Clover can easily compute such a live-out register on the SSA form. Suppose
KILL[DefR] is the set of instructions that kill the definition register DefR. Then, the
intersection of KILL[DefR] and PATHI represents whether DefR is killed before the
region ends. If the intersection is empty (i.e., the DefR is not killed, which means it is
live-out across the end of the region), the DefR is added to VR for verification.

After the VR is updated, Clover calculates the path cost (i.e., Cpath) based on the VR

set and the instruction type of the current visiting instruction. Clover accumulates the

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 2, Article 32, Publication date: December 2016.



Compiler-Directed Lightweight Soft Error Resilience: Avoiding DUE and SDC via Tail-DMR 32:13

Fig. 4. Tail DMR-frontier and code duplication example: (a) an example control data flow graph with tail-
DMR frontiers and (b) code duplication performed by Clover.

cost of visited instructions, which is determined differently depending on whether the
instruction is a synchronization instruction or it is a duplication instruction (lines 14–
18). In addition, if the register defined by the visiting instruction I belongs to the
VR set, a check instruction cost (Cck) is added to Cpath (lines 19–22). Accordingly, the
instruction I is added into the CK set to inform the next code duplication pass of where
check instruction needs to be placed.

In lines 35 to 38, Clover terminates one path if Cpath reaches the ThresholdWCDL (i.e.,
the time of WCDL is matched). Thus, Clover adds the last-visited instruction to the
tail-DMR frontier (line 36). Currently, the default values of the WCDL and the commit-
width are 5 and 2, respectively; that is, the ThresholdWCDL = 10. In addition, Clover also
terminates the path cost calculation process when another idempotent region boundary
is encountered (i.e., the region is too short). In this case, Clover simply considers the
boundary instruction as the frontier, and thus all the instructions of such a short region
are protected by DMR.

Example. Figure 4 demonstrates an example of identifying the tail-DMR frontiers
and performing code duplication to the program with tail-DMR frontiers. Figure 4(a)
shows an example a control data flow graph. Clover recognizes the tail-DMR frontiers
on a path-sensitive basis, which means Clover will iterate all the paths beyond the
end of the region. Starting from the region boundary (one of the synchronization
instructions), Clover traverses the paths in a reverse depth-first-search order. It accu-
mulates the cost of each path based on Algorithm 1 and categorizes the instructions
(Section 3.1.3) until it meets the threshold or other region boundaries. As we can see,
the instructions between the tail-DMR frontiers and region boundary are categorized
as duplication instructions except for the synchronization instructions. After that,
Clover performs code duplication to the duplication instructions and inserts check
instructions right before the synchronization instruction as needed (Figure 4(b)). In
this way, Clover protects the tail part of the region with DMR.

3.1.5. Discussion and Limitation.

SDC. Even if an energetic particle strike is the major source of soft errors, they can
also be induced by other sources, for example, random noise such as inductive/capacitive
crosstalk and power supply noise. Since these sources are not covered by the sensor-
based soft error detection, Clover might generate silent data corruption (SDC).
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Fig. 5. Example of tail-wait: (a) the original program and (b) the tail-wait approach.

Multiple Soft Errors Occurring in One Region. They can be easily handled by Clover.
As stated in Section 3.1, all the errors that happen in the same region are guaranteed
to be detected and corrected by Clover.

Multithreaded Applications. Although we do not evaluate Clover in the context of
multithreaded applications, Clover is capable of handling multithreaded programs.
Both DMR [Reis et al. 2005b] and idempotent processing [de Kruijf et al. 2012; de
Kruijf and Sankaralingam 2013; Feng et al. 2011] have well addressed the problems
with multithreaded programs. In addition, there are no conflicts if we extend both DMR
and idempotent processing to support multithreaded applications. Therefore, Clover
can be easily extended to support multithreaded programs.

Exception Handling. Soft error may lead to exception events such as divide by zero
or segmentation fault. We advocate postponing the exception handling service by wait-
ing for WCDL cycles until all potential errors have been detected as with prior work
[Upasani et al. 2014a]. In this way, Clover can achieve the region-level error contain-
ment even in the presence of such exceptions.

3.2. Tail-Wait

Tail-wait is a straightforward alternative to Clover. In order to avoid DUEs in the tail
region, the system can just wait for WCDL cycles at the end of each region to detect any
potential errors as shown in Figure 5. In fact, it is possible for tail-wait to outperform
Clover in some situations. This is because Clover’s way of estimating the WCDL time is
very conservative, that is, assuming the ideal processor performance to determine the
tail-DMR frontier for the region-level error containment. For example, even if the SIMD
instruction may take more than one cycle to execute, Clover calculates the execution
time as one over the commit width of the underlying processor. The rest of this section
presents the analysis of the situations where Clover (tail-DMR) outperforms tail-wait
in theory and vice versa.

First, Clover’s performance overhead can be represented as additional cycles due to
the instruction duplication, using Equation (1),

OverheadClover = WCDL × commit width
2 × IPC

, (1)

where IPC (Instructions Per Cycles) is the actual performance number delivered by the
processor. The equation assumes that half of the WCDL × commit width instructions
are those that are additionally inserted for Clover to duplicate the original instructions.
Here, Clover’s IPC is assumed to be the same as tail-wait’s for ease of presentation.
Note that this rather underestimates the performance of Clover as the DMR is known
to increase the IPC significantly [Reis et al. 2005b]; that is, Clover’s IPC is likely to be
higher than tail-wait’s.

As the tail-wait’s performance overhead is just WCDL for each region, we can derive
Equation (2) from Equation (1) to analyze the situation where Clover outperforms
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tail-wait:
WCDL × commit width

2 × IPC
≤ WCDL. (2)

Therefore, we have

commit width
2

≤ IPC. (3)

From Equation (3), we can draw the conclusion that if the IPC number of Clover is
greater than or equal to half of the commit-width of the underlying processor, Clover
can always perform better than tail-wait. For example, when the commit-width is 2,
Clover can outperform tail-wait provided Clover’s IPC is greater than 1. In contrast,
if the processor suffers from many long latency instructions within a short amount of
time, such that the IPC drops down below 1, then tail-wait can be a better choice over
Clover.

Note that if the region size is smaller than WCDL × commit width, Clover can be
superior over tail-wait, even though the IPC is less than half of the commit-width,
violating the inequality in Equation (3). As an extreme example, when a region consists
of only a few instructions, Clover duplicates them all since its execution time is too short
to match the WCDL. On the contrary, after such a short region ends, tail-wait fully
waits for WCDL cycles that would be longer than the execution time of the additional
instructions inserted by Clover.

In Section 4.4, we empirically evaluate the tail-DMR compared to the tail-wait to
support our analyses on their performance overhead varying WCDL and underlying
processor configurations.

4. EVALUATION

We implement the compiler passes of Clover on top of LLVM Compiler Infrastructure
[Lattner and Adve 2004]. The idempotent region formation algorithm is also integrated
in LLVM. We perform the experiments with 17 applications from Mediabench [Lee
et al. 1997] and MIbench [Guthaus et al. 2001] benchmarks in different categories.
All the applications were compiled with standard -O3 optimization. We conduct our
simulations on Gem5 [Binkert et al. 2011] with system call emulation mode for a
modern two-issue out-of-order 0.5GHz processor whose L1 (two-way/two-cycle) and L2
(eight-way/20-cycles) LRU caches are 32KB and 2MB, respectively. The pipeline widths
are all 2 including commit-width, and the ROB and physical integer RF have 128 and
256 entries, respectively.

We first analyze the length of idempotent regions, since it is a critical factor that
affects the performance of Clover; in general, the longer the region is, the better the
performance. For example, in longer regions, the portion of the DMR-enabled part is
relatively small, whereas in short regions, the majority of their instructions have to be
duplicated by DMR. Then, we analyze the execution time overhead of Clover comparing
it to the state-of-the-art technique, that is, combination of idempotent processing and
full-DMR [de Kruijf et al. 2012]. Finally, we provide sensitivity analysis results to un-
derstand the tradeoff between the sensor area overhead and the resulting performance
of Clover.

4.1. Region Characteristics

Figure 6(a) shows a cumulative distribution of dynamically executed idempotent re-
gions of all the applications listed in Table I. The x-axis (in log scale) represents the
number of instructions in regions. We highlight unepic and adpcmdecode. As shown in
Figure 6(b), the majority of regions in unepic are composed of less than 10 instructions,
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Fig. 6. The distribution of the original idempotent code regions (dynamic).

Table I. Dynamic Region Characteristic with Five-Cycle WCDL

#Total #Total Aver. #Vulner. Vulner.
Application Insts (103) Regs (103) Leng. Insts (103) Insts Ratio
adpcmdecode 6,557 149 44 1,486 22.66%
adpcmencode 8,346 223 37 1,231 14.75%
epic 59,759 1,186 50 8,370 14.00%
unepic 9,898 941 10 6,847 69.17%
jpegdecode 4,382 280 15 2,252 51.39%
jpegencode 17,335 1,205 14 9,335 53.85%
mesatexgen 204,820 8,497 24 68,748 33.56%
pegwitencrypt 35,616 2,600 13 18,586 52.18%
g721decode 512,016 14,239 35 94,027 18.36%
g721encode 268,789 7,766 34 51,155 19.03%
gsmdecode 68,406 2,270 30 19,625 28.68%
gsmencode 110,750 3,350 33 27,756 25.06%
mpeg2decode 165,491 5,792 28 49,946 30.18%
mpeg2encode 1,320,760 17,867 73 143,323 10.85%
sha 120,338 1,121 107 9,530 7.91%
susanedges 78,967 2,190 36 15,526 19.66%
susancorners 27,265 455 59 2,823 10.35%
geomean 58,368 1,822 31 13,736 23.53%

and they occupy a considerable amount of the total execution time. The implication is
that the tail-DMR will cause significant performance overhead for unepic. In contrast,
adpcmdecode has many long regions as shown in Figure 6(c). That is, most of the re-
gions are long enough to hide the performance penalty caused by the tail-DMR, and
thus it will cause negligible performance overhead for adpcmdecode.

Table I further details the dynamic region characteristics of the benchmark applica-
tions. Columns 2 and 3 show the dynamic instruction count and the number of idem-
potent regions executed, respectively. Column 4 presents the average region length
(i.e., second column/third column). The geometric mean of the average region length
is 31. Such fine-grained recovery is beneficial because it guarantees the continuity of
program execution in the event of soft errors. The system just needs to roll back to
the beginning of the faulty region and re-execute the region, whose average length is
31, making the recovery overhead negligible to the users. In contrast, restarting the
program will disrupt the program continuity and affect the users. In the extreme case,
the sensor could raise an alarm every 1.3 minutes [Upasani et al. 2014a]; the program
can never finish if it takes more than 1.3 minutes. However, Clover just needs to pay
the negligible recovery overhead of re-executing 31 instructions per fault.

Columns 5 and 6 represent the total number of vulnerable instructions and the
ratio (i.e., fifth column/second column), respectively. Note that simply relying on the
naive combination of the idempotent processing and sensor-based detection scheme
leaves all the regions potentially vulnerable to DUEs. On average, a total of 23%

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 2, Article 32, Publication date: December 2016.



Compiler-Directed Lightweight Soft Error Resilience: Avoiding DUE and SDC via Tail-DMR 32:17

Fig. 7. Performance overhead of Clover vs. Full-DMR.

of dynamic instructions are vulnerable to the soft errors. This indicates that only a
small portion of instructions need to be protected by the tail-DMR. More precisely, the
portion is almost cut in half in that the number of instructions is doubled after the DMR
is performed; that is, not all the vulnerable instructions are protected by Clover. This is
because the tail-DMR inserts duplication and check instructions to the original region,
which allows some vulnerable instructions to be placed beyond the tail-DMR frontier.
Consequently, Clover can achieve much lower performance overhead compared to full
DMR.

4.2. Performance Overhead and Code Size

Figure 7 represents the runtime overhead of different soft error resilience schemes,
which is normalized to the baseline execution time with no resilience scheme. For each
application, the first bar corresponds to the runtime of the state-of-the-art scheme [de
Kruijf et al. 2012], where full-DMR is combined with idempotent processing, while
the second bar corresponds to the runtime of Clover. In the figure, each bar is bro-
ken into two parts; the bottom and the top represent the overhead of error detec-
tion and recovery, respectively. For example, the top parts of the first and the second
bars (i.e., Idem-W/-FullDMR and Idem-w/-TailDMR) represent the overhead due to
idempotence-based error recovery in the presence of full-DMR and Clover’s tail-DMR,
respectively. As shown in Figure 7, the idempotence-based recovery is not that signifi-
cant, that is, on average, 14% (Idem-w/-FullDMR) and 8% (Idem-w/-TailDMR). Thus,
most of the overhead is caused by the error detection schemes, that is, on average,
91% (FullDMR) and 18%(TailDMR). Overall, the full-DMR with idempotent process-
ing incurs 105% runtime overhead on average. In contrast, Clover incurs only 26%
runtime overhead on average, which is a 75% reduction, at the expense of only 1% chip
area overhead. Figure 7 also confirms that the length of regions is critical to Clover’s
performance overhead (i.e., second bar). The general trend is that the higher ratio of
vulnerable instructions shown in Table I translates to higher performance overhead.

Table II summarizes the code size increase of the full-DMR with idempotent pro-
cessing versus Clover. The number of additional static instructions inserted into the
original program is represented in column 2 (the full-DMR approach) and column 3
(Clover). Clover achieves on average a 46% static instruction reduction when compared
to the full-DMR approach as shown in column 4. With the importance of binary size
in embedded systems in mind, we also show the ratio of the binary size increase to
the original binary size for the full-DMR approach and Clover in column 5 and column
6, respectively. Overall, the average binary size increase of the full-DMR approach is
86%, whereas that of Clover is only 30%. Clover achieves on average a 53% binary size
reduction when compared to the full-DMR approach as shown in column 7.

4.3. Sensitivity Analysis

We investigate the factors that affect Clover in this section. As the overhead of Clover
mostly comes from the tail-DMR, the fraction of the tail of each region protected by DMR
will impact the resulting performance of Clover. The WCDL and pipeline width are two
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Table II. Code Size Comparison: Full-DMR Versus Tail-DMR
Gsmencode and Susancorners share the same binaries with Gsmdecode and Susanedges, respectively. There-
fore, they have the exact same data.

#Full #Tail Insts Full DMR Tail DMR Binary Size
DMR DMR Reduction Binary Size Binary Size Reduction

Application Insts Insts Ratio Increase Ratio Increase Ratio Ratio
adpcmdecode 408 146 64.21% 47.24% 1.34% 97.17%
adpcmencode 411 146 64.47% 47.24% 1.34% 97.17%
epic 9,314 5,443 41.56% 106.54% 58.96% 44.66%
unepic 7,179 5,210 27.42% 108.46% 69.70% 35.74%
jpegdecode 52,209 34,728 33.48% 124.79% 82.13% 34.19%
jpegencode 50,282 33,326 33.72% 130.77% 79.86% 38.93%
mesatexgen 183,345 104,805 42.83% 128.74% 68.18% 47.04%
pegwitencrypt 12,297 7,144 41.90% 96.63% 50.01% 48.24%
g721decode 2,524 1,393 44.80% 66.87% 34.81% 47.95%
g721encode 2,659 1,481 44.30% 68.02% 35.88% 47.26%
gsmdecode 10,687 5,490 48.62% 68.65% 31.20% 54.55%
gsmencode 10,687 5,490 48.62% 68.65% 31.20% 54.55%
mpeg2decode 15,884 9,580 39.68% 107.01% 58.29% 45.53%
mpeg2encode 23,680 11,528 51.31% 112.55% 49.24% 56.25%
sha 857 407 52.50% 61.02% 26.05% 57.30%
susanedges 7,187 2,522 64.90% 102.50% 33.03% 67.77%
susancorners 7,187 2,522 64.90% 102.50% 33.03% 67.77%
geomean 7,552 3,858 46.23% 86.60% 30.42% 53.02%

Fig. 8. Sensitivity to the WCDL where pipeline width is 2.

Fig. 9. Sensitivity to the WCDL where pipeline width is 3.

critical factors that determine the fraction of tail region with tail-DMR frontiers. As
shown in Figures 8 through 10, we perform sensitivity analysis by varying the pipeline
width and WCDL to see the impact of those two factors on the performance. Figures 8,
9, and 10 show the normalized runtime overhead with respect to the baseline without
instrumentation with different pipeline width from 2, 3, to 4, respectively. For each
configuration, we vary the WCDL from 5 to 10 to 20 to 30.

For all cases, the performance overhead of Clover generally increases (from 26%–
34% to 69%–75%) as the worst-case detection latency increases (from 5 to 30). The
results were expected because the number of instructions that need to be duplicated
for tail-DMR becomes larger with longer WCDL. Note that the sensor-based detection
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Fig. 10. Sensitivity to the WCDL where pipeline width is 4.

scheme can adjust its WCDL by varying the amount of sensors being deployed and their
placement on the processor core. However, as illustrated in Section 2, a larger amount
of sensors will result in higher area overhead. We observe that a few applications such
as susancorners and mpegencode deviate from this general trend. The abnormal L1
instruction cache access (including hits and misses) increases in these applications can
account for these aberrant cases. For example, we observe around a 20% increase of L1
instruction cache access cycles in susancorners when the detection latency is 20, which
in turn increases the performance overhead, making it an exception. We suspect that
DMR affects the code layout, triggering such abnormality.

When the detection latency becomes large enough (e.g., 20), the performance over-
head does not increase significantly as the detection latency keeps growing (from 20 to
30). The excessive number of small regions can account for such performance overhead
saturation phenomena. As shown in Figure 6(a), most of the applications have more
than 50% of total dynamic regions whose region size is fewer than 10 instructions. This
implies that when the detection latency becomes large enough, most of the regions
need to be fully protected by DMR because the sensor cannot detect the error within
the region in the worst case. Therefore, the performance overhead becomes saturated
when most of the region is fully protected by the DMR. However, Clover is still effec-
tive to reduce the performance overhead as large regions still dominate in the total
program execution time. For example, we assume a program composed of 100 regions
where 99 regions’ size is 10 and only one region’s size is 10,000. The program spends
more than 90% of the time in the large region. Therefore, Clover can effectively reduce
the performance overhead with tail-DMR compared to full DMR in those large regions.

On the other hand, we also observe that the performance overhead of Clover does
not degrade significantly when the pipeline width increases (from 2 to 4) even though
the number of vulnerable instructions increases as the pipeline width grows. Some-
times, the performance overhead even decreases as the pipeline width increases. Such
performance variants were generally expected. This is because as the pipeline width
increases, more instruction-level parallelism can be exposed to the processor, thus
increasing the IPC as the duplicated instructions generally do not depend on the orig-
inal instructions. Prior work (e.g., Swift [Reis et al. 2005b]) also observes the same
phenomenon.

4.4. Comparison with Tail-Wait

Tail-wait is a straightforward way to guarantee all the errors to be detected within
their regions. In this section, we compare the overhead of Clover with that of tail-wait.
We implemented the tail-wait by inserting nops to the end of each region. The number
of nops to be inserted is determined as the product of WCDL and pipeline width. We
normalize the performance overhead of tail-wait to the same baseline similar to the
previous section.

Figures 11 through 13 show that Clover is consistently better than tail-wait across
different configurations. We confirm that the IPC numbers in Clover are always greater
than half of the commit width (not shown in the graph), which supports our theoretical
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Fig. 11. Tail-wait across different WCDLs where pipeline width is 2.

Fig. 12. Tail-wait across different WCDLs where pipeline width is 3.

Fig. 13. Tail-wait across different WCDLs where pipeline width is 4.

performance analyses in Section 3.2. Interestingly, the performance overhead of tail-
wait degrades much more significantly with longer WCDL and/or wider pipeline width,
which shows the benefits of tail-DMR compared to the naive tail-wait strategy. The
large number of small regions can account for such trend as the performance overhead
of tail-wait is proportional to WCDL and pipeline width, while that of Clover will be
saturated as discussed in Section 4.3. In all, Clover achieves 1.06 to 3.49× speedup
over the tail-wait approach on average.

5. OTHER RELATED WORK

This section describes the prior works related to soft error detection, correction, and
recovery. We also explain how our proposal, Clover, advances the state of the art and
differs from previous approaches in this domain.

5.1. Soft Error Detection and Correction

Soft error detection relies on either hardware or software instruments to identify the
errors. Software-based detection schemes often refer to N-modular redundancy execu-
tion. SWIFT is one of the state-of-the-art single-threaded software detection schemes
[Reis et al. 2005b]. It checks the value of registers with their duplication counterpart
at certain synchronization points, that is, memory and control flow instructions.
Rotenberg [1999] takes advantage of simultaneous multithreading (SMT) to run a
trailing thread that verifies the leading thread. Although these methods achieve a
high fault coverage, they suffer from significant performance overhead or occupying
one more processor core.

With that in mind, researchers explore the program characteristics to find oppor-
tunities for reducing the performance overhead [Khudia and Mahlke 2014; Cong and
Gururaj 2011; Hari et al. 2012b; Sastry Hari et al. 2013; Li et al. 2008; Hari et al.
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2012a; Sahoo et al. 2008; Sastry Hari et al. 2009; Shafique et al. 2013; Khudia and
Mahlke 2014; Li et al. 2013]. They all exploit some heuristics or statistics to iden-
tify the instructions that are critical to the program output and selectively protect
these instructions with DMR. Hari et al. [2012b, 2013] also investigated approaches
where the outcome of the soft errors for specific applications could be predicted. Hari
et al. [2012a] also proposed novel program-level detectors to detect silent data cor-
ruptions and demonstrate that it reduces the overhead imposed by redundancy-based
techniques. Li et al. [2008] proposed online methods to estimate the architecture vul-
nerability factor to the soft errors for various microarchitecture factors. On the other
hand, SWAT uses program invariants to detect the hardware errors [Sahoo et al. 2008].
mSWAT, an extension of the SWAT framework, applies symptom-based detection and
diagnosis for faults in multicore architectures [Sastry Hari et al. 2009]. Epipe [Li et al.
2013] identifies the vulnerable instructions that lead to SDC and selectively protects
a subset of those vulnerable instructions considering the worst-case execution time
(WCET) constraints in the fault-free execution. Similarly, Rehman et al. [2016, 2014a,
2014b] explore the varying vulnerability property of different applications along with
different compilation versions to significantly reduce the application failures.

Khudia et al. leverage profile information to reduce the cost of duplication and
checking [Khudia et al. 2012; Khudia and Mahlke 2014]. They propose profile-based
instruction-level DMR to focus on those instructions that are likely to affect the im-
portant program output [Khudia et al. 2012]. Recently, Khudia and Mahlke [2014]
exploited the value-locality of instruction results during the profile run to achieve se-
lective DMR. Other techniques estimate the soft error vulnerability of instructions
executed in the underlying processor [Rehman et al. 2011] and use statistical models
to measure the probabilities of the error masking and the propagation in the processor
for enabling selective protection [Shafique et al. 2013]. However, all those approaches
achieve low performance overhead at the expense of reduced fault coverage. In contrast,
Clover selectively protects some of the instructions (i.e., only those instructions vulner-
able to DUEs) without sacrificing the fault coverage. Chen and Yang [2013] propose a
technique that identifies the minimum set of instruction results being compared and
checkpointed for the error resilience to reduce the performance overhead while achiev-
ing full coverage. However, the resulting runtime overhead reduction is not stated in
their paper.

Hardware-based detection schemes introduce redundant hardware to verify the exe-
cution in the processor. DIVA [Austin 1999] relies on a simple in-order core to verify the
program execution, while Argus [Meixner et al. 2007] leverages invariant checking to
ensure correctness. However, these approaches often introduce an excessive hardware
complexity increase, which is not acceptable in embedded systems. ReStore [Wang and
Patel 2006] advocates utilizing symptoms of the soft errors to detect them without
significant overhead. Shoestring [Feng et al. 2010] enhances ReStore by selectively du-
plicating some vulnerable instructions with simple heuristics. However, both ReStore
and Shoestring incur long detection latency, which may result in DUEs. Similar to
the recent work of Khudia and Mahlke [2014] and Racunas et al. [2007] proposes to
make use of the value-locality to detect the soft errors. However, the issues of false
positives/negatives [Jung et al. 2014; Lee et al. 2014; Jung 2013] in the locality-based
approaches prevent us from adopting their methods.

Several recent works have proposed reducing the ECC performance and power over-
head and increasing the correction capabilities, such as Bamboo ECC [Kim et al. 2015],
FreeFault [Kim and Erez 2015], and Virtualized ECC [Yoon and Erez 2010]. On the
other hand, proposals such as Containment domains argue for a new programming
construct for applications to express resilience requirements and tune error detection,
state preservation, and recovery schemes [Chung et al. 2013]. More recently, Upasani
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et al. [2012, 2013, 2014a, 2014b, 2016] proposed detecting the soft errors with a config-
urable amount of acoustic wave sensors. Their sensor-based detection scheme achieves
low soft error detection latency with reasonable hardware overhead. According to the
recent work of Upasani et al. [2014b], it is possible to detect all the soft errors in
an old ARM cortex-A5 core within one cycle by meticulously deploying only 17 sen-
sors on the core. However, their technique requires the core size and the frequency
to be extremely small, which is not realistic for modern processors. This article takes
advantage of such sensor-based detection scheme and selectively duplicates only the
instructions vulnerable to DUEs in the tail of an idempotent region for guaranteed soft
error recovery.

5.2. Soft Error Recovery

Checkpointing the whole program state (memory and registers) guarantees recovery
from the soft errors by allowing programs to roll back to the previous safe checkpoint
[Wang and Patel 2006; Feng et al. 2010; Upasani et al. 2014a]. However, full check-
pointing often comes with significant performance loss and high power consumption.
With that in mind, researchers propose techniques that can reduce the checkpointing
overhead, but they require costly hardware support and resource consumption. For
example, the recent work of Upasani et al. [2014a] keeps two copies of the register file
and the register allocation table (RAT) to achieve low performance overhead. Jeyapaul
et al. [2014] explore multicore CMP architecture to recover from soft errors with an
efficiently modified cache structure. However, they rely on only parity checking to se-
quential logic for detecting a soft error; that is, combinational logic is still vulnerable to
the soft errors and thus they may generate SDC. Flushing the pipeline to recover from
a soft error [Racunas et al. 2007; Upasani et al. 2014b] is another alternative. This
approach is expected to be very efficient in terms of runtime overhead. However, this
approach is often based on the assumption that detection can be done before the faulty
instruction is committed; that is, the error detection latency should be zero. Such low
detection latency inevitably requires high performance/hardware overhead as stated
in Section 5.1. In particular, Clover avoids such high overhead by integrating idempo-
tent processing that recovers from the soft errors by simply re-executing the region in
which they occur. That is, even if the soft errors have already corrupted architectural
states, Clover can recover from the errors, and the detection latency does not need to
be zero. However, idempotent processing requires the soft errors to be detected within
the same region as stated in Section 3. Clover overcomes such a challenge with a novel
tail-DMR technique in the presence of sensor-based soft error detectors.

The preliminary work of this article has been presented in Liu et al. [2015].

6. CONCLUSION

This work presents Clover, a compiler-directed soft error detection and recovery scheme.
This is a fundamentally new approach to achieving lightweight soft error resilience
with no DUEs. It can also achieve almost zero SDC as long as the soft errors come
from the energetic particle strike, which is the major source of soft errors. Clover is a
low-cost hardware/software cooperative scheme. On the hardware side, Clover relies
on a small number of acoustic wave detectors deployed in the processor to identify
the soft errors by sensing the wave made by the particle strike. On the software side,
Clover leverages a novel selective instruction duplication technique called tail-DMR
that offers a region-level error containment to cope with DUEs caused by the sensing
latency of the error detection. In addition, Clover generates soft-error-tolerant code
based on idempotent processing for soft error recovery. Once a soft error is detected,
Clover recovers from it by re-executing the idempotent region where it is detected. This
error recovery process is performed as in the case of an exception raised by either the
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sensor or the tail-DMR, the exception handler of which simply redirects program control
to the beginning of the region. In this way, Clover can achieve soft error resilience with
low runtime and negligible area overheads. The experimental results demonstrate that
the runtime overhead of Clover is only 26%, which is a 75% reduction compared to that
of the state-of-the-art soft error resilience technique (i.e., idempotent processing + full
DMR). Finally, this article evaluates the proposed tail-DMR technique compared to
a new alternative to it called tail-wait. Evaluating the techniques with the different
processor configurations and the various error detection latencies confirms that the
tail-DMR is a superior technique, achieving a 1.06 to 3.49× speedup over the tail-wait.
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