
DEVFUZZ: Automatic Device Model-Guided Device Driver Fuzzing

Yilun Wu
Stony Brook University

Tong Zhang
Samsung Electronics

Changhee Jung
Purdue University

Dongyoon Lee
Stony Brook University

Abstract—The security of device drivers is critical for the entire
operating system’s reliability. Yet, it remains very challenging
to validate if a device driver can properly handle potentially
malicious input from a hardware device. Unfortunately, exist-
ing symbolic execution-based solutions often do not scale, while
fuzzing solutions require real devices or manual device models,
leaving many device drivers under-tested and insecure.

This paper presents DEVFUZZ, a new model-guided device
driver fuzzing framework that does not require a physical
device. DEVFUZZ uses symbolic execution to automatically
generate the probe model that can guide a fuzzer to properly
initialize a device driver under test. DEVFUZZ also leverages
both static and dynamic program analyses to construct MMIO,
PIO, and DMA device models to improve the effectiveness
of fuzzing further. DEVFUZZ successfully tested 191 device
drivers of various bus types (PCI, USB, RapidIO, I2C) from
different operating systems (Linux, FreeBSD, and Windows)
and detected 72 bugs, 41 of which have been patched and
merged into the mainstream.

1. Introduction
The security of device drivers is crucial for the entire
operating system (OS) security. Modern OSes often include
a large number of device drivers to provide compatibility
with various hardware devices: e.g., in Ubuntu Linux 20.04,
device drivers (under the driver directory) consist of 13M
lines of code occupying 64.8% of the entire Linux source
code. Such a large codebase undoubtedly makes device
drivers a large attack surface, and thus they have become
the major sources of OS security vulnerabilities. In fact, the
CVE reports of device drivers account for 27-54% of the
total Linux kernel CVE reports for the last 5 years.

As device drivers run in kernel space (in many OSes),
handling the input from peripheral devices to drivers without
proper sanitization has been the root cause of many real-
world system security issues. For instance, ThunderClap [1]
demonstrated how a malicious PCI device can read the sys-
tem memory including user-sensitive data and credentials.
The PS3 jailbreak [2] targeted a vulnerability in the PS3
hypervisor’s USB stack. The PS4 hack [3] enabled control
flow hijacking via a malicious PCIe device. The Xbox
DVD hack [4] exploited a vulnerable verification process
in the DVD driver. The iPhone hack [5] allowed malicious
attackers to compromise wireless chips and steal data.

Unfortunately, existing solutions provide limited support
for testing device drivers, leaving many drivers under-tested
and insecure. For instance, some prior solutions [6], [7], [8],

[9] rely on symbolic execution that renders input from a
device symbolic and enable device driver testing for closed-
source systems without a real device. However, symbolic
execution often does not scale to large software [10].

Alternatively, fuzzing [11] has shown to be more ef-
fective in testing real-world software in practice. However,
fuzzing device drivers remains critically challenging for two
reasons. First, it is hard for a fuzzer to pass a complex
dynamic probing phase. Many modern bus architectures
(e.g., PCI, USB) support hot plugging a device. An OS
scans a bus, recognizes a device, binds a corresponding
driver, and runs the device driver’s custom probing logic.
The device should follow certain probing protocols: e.g.,
providing Vendor and Product IDs, and configuring the de-
vice’s address in the system memory map. Dynamic probing
is considered successful if a kernel binds a device and a
matching driver, and the driver completes additional custom
probing logic. Unguided random inputs often fail in this
dynamic probing, leading to premature testing. Second,
even after successful probing (post-probing), it is difficult
to scalably explore the huge input space of various I/O
interfaces such as Memory-Mapped I/O (MMIO), Port I/O
(PIO), Direct Memory Access (DMA), and Interrupt (IRQ).

Unfortunately, prior fuzzing solutions insufficiently ad-
dress the above challenges. For probing, some [12], [13],
[14] require real devices to set up device drivers under
test, limiting testing for various device drivers. Others [15],
[16] require user-provided device models to test device
drivers without real devices. However, manually developing
device models are error-prone and not scalable. Besides,
they all share additional limitations: they are designed for
one particular OS, and support only limited bus types.

This paper presents DEVFUZZ, a new model-guided
device driver fuzzing solution. DEVFUZZ allows users to
test a device driver without an actual device. DEVFUZZ
supports testing a variety of device drivers of different bus
types (e.g., PCI, USB, RapidIO, I2C); with different I/O
interfaces (e.g., MMIO, PIO, DMA, and IRQ); and from
different OSes (e.g., Linux, FreeBSD, and Windows).

The key idea is to automatically generate three device
models to facilitate device driver fuzzing in the absence
of a physical device. DEVFUZZ first employs symbolic
execution to generate (1) Probe Model that allows a device
driver to satisfy the probing path constraints. Symbolic
probing execution is regarded to be successful—after some
explorations—if the driver is bounded to the device (model)
by the kernel. Furthermore, DEVFUZZ leverages static and

13246

2023 IEEE Symposium on Security and Privacy (SP)

© 2023, Yilun Wu. Under license to IEEE.
DOI 10.1109/SP46215.2023.00182

20
23

 IE
EE

 S
ym

po
si

um
 o

n
Se

cu
rit

y
an

d
Pr

iv
ac

y
(S

P)
 |

97
8-

1-
66

54
-9

33
6-

9/
23

/$
31

.0
0

©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
SP

46
21

5.
20

23
.1

01
79

29
3

Authorized licensed use limited to: Yonsei Univ. Downloaded on December 08,2023 at 22:06:19 UTC from IEEE Xplore. Restrictions apply.

dynamic program analyses of device drivers to construct (2)
MMIO/PIO Model and (3) DMA Model that embody MMIO,
PIO, DMA addresses and their value range constraints that
affect device driver’s control flows. They guide DEVFUZZ
to explore the device driver’s different program paths during
fuzzing. As the three models are intended to represent device
properties, the models generated from one OS could be
reused to test another OS’s device drivers.

DEVFUZZ combines the three models with a general-
purpose fuzzer AFL [17], and performs fuzzing by select-
ing an input from either device models or AFL with a
configurable probability (50% by default). The combination
allows DEVFUZZ to take advantage of both the models’
device awareness and the fuzzer’s feedback-directed ran-
dom mutation. Together, DEVFUZZ fuzzes the target device
driver during both the probing and post-probing phases. For
probing phase fuzzing, DEVFUZZ repeatedly plugs and un-
plugs the target device driver (module), triggers the probing
functions multiple times, and feeds a mixed input from the
Probe Model and AFL. For post-probing phase fuzzing,
DEVFUZZ first uses Probe Model (with no mutation) to
pass the probing logic and successfully bind the driver to
the device (model). Then, it continuously runs command-
line tools and test programs—that trigger the driver’s other
(non-probing) I/O functions—feeding a mixed input from
MMIO/PIO Model, DMA Model, and AFL.

We evaluated DEVFUZZ using device drivers of dif-
ferent bus types (PCI, USB, RapidIO, I2C) across three
OSes (Linux, FreeBSD, Windows). For Linux kernel 5.15,
DEVFUZZ managed to test 150 drivers (108 PCI, 31 USB,
1 RapidIO, and 10 I2C types). With symbolic execution,
DEVFUZZ successfully probed 112 devices and generated
their device models (75%). We offer detailed analysis on the
failed cases and the quality of the generated probe models.
DEVFUZZ detected 63 bugs, 39 of which have been patched
into the mainline Linux kernel. The proposed three device
models increase the code coverage for both probing-phase
and post-probing-phase fuzzing. The case study with 17 net-
work device drivers demonstrates that DEVFUZZ achieves
higher code coverage than PrIntFuzz [18] and Drifuzz [19].
Besides, DEVFUZZ’s models obtained similar code coverage
to manually designed models, e.g., QEMU’s virtual devices.

Finally, to demonstrate device model re-usability across
different OSes, we also tested 25 FreeBSD-12.2 PCI drivers
and 16 Windows-10 PCI drivers by reusing the device
models derived from Linux. For FreeBSD, DEVFUZZ suc-
cessfully probed 14 PCI devices (56%) and found eight
bugs. So far two patches have been merged. For Windows,
DEVFUZZ probed eight PCI devices (50%) and detected one
bug.

2. Background
2.1. Device and Driver Interactions
There are two forms of Input/Output (I/O) interfaces be-
tween devices and drivers: Memory-Mapped I/O (MMIO)
and Port I/O (PIO). Besides, they may share data using
Direct Memory Access (DMA). Devices can also notify
drivers via an asynchronous Interrupt Request (IRQ).

Physical Memory
Address Space

CPU

Hub

Flash(BIOS)
APIC

PCI Memory
Range

Usable
DRAM

…

DMA buf.

I/O
Address Space

…

PCI_DATA
PCI_ADDR

…

1 MMIO 2 PIO

3 (Reg) M
em

4
In

te
rr

up
t

PCI device

LD r1 Mem[X]
ST Mem[Y] r2

IN r1 Port[A]
OUT Port[B] r2

DMA

Driver

Figure 1: Four different I/O interfaces (orange arrows) be-
tween a device driver and a PCI device.

(1) MMIO: Devices are mapped to the “physical mem-
ory address space” for MMIO so that their device drivers
can access them using memory instructions (e.g., MOV)
and operate on their states using logical instructions (e.g.,
AND, OR, TEST). The Memory Management Unit (MMU)
hardware redirects any access destined to such an MMIO
region to the corresponding device. Figure 1 1 illustrates
that the PCI memory range—using Base Address Registers,
simply BARs (omitted in the figure)—is mapped to a part of
the physical memory address space, next to the BIOS flash
and Advanced Programmable Interrupt Controller (APIC)
regions. For instance, in Intel x86, the PCIEXBAR register
holds the base address of the PCI memory range.

(2) PIO: Peripheral devices can also be mapped to a
separate address space called “I/O address space”. Device
drivers use I/O instructions (e.g., IN, OUT, INS, OUTS)
with the ring 0 privilege to access the I/O address space.
These PIO accesses are handled by the I/O Controller Hub
(ICH). Figure 1 2 shows that PCI configuration registers
are mapped to I/O Addresses PCI DATA and PCI ADDR
(in addition to MMIO-mapped PCI memory range).

(3) DMA: Direct memory access (DMA) allows devices
to transfer a large chunk of data from/to main system
memory without involving a CPU. DMA may be supported
through a centralized DMA controller (e.g., Intel 8257 [20])
or by a custom non-standard DMA controller in a device
(called bus mastering). DMA is often initiated by performing
some MMIO/PIO writes. Figure 1 shows that a DMA buffer
is allocated in DRAM. Device drivers can access the DMA
buffer using regular memory operations (Figure 1 3).

(4) IRQ: A device itself can also signal a CPU (Fig-
ure 1 4) to inform about a certain event (e.g., transfer
completion, new data arrival) in form of an interrupt request
(IRQ), triggering the interrupt service routine of the device
driver. In general, IRQ is asserted and routed through IO-
APIC. Alternatively, PCI defines two in-band mechanisms
called Message Signalled Interrupts (MSI/MSI-X).
2.2. Device Enumeration and Probing
Device drivers recognize devices based on the pre-populated
(static) device information or detect them at run time.

(1) Static enumeration: Some device drivers simply
recognize devices using pre-defined information. For those
devices that are hardwired or whose locations do not change
in the system memory map, developers can easily identify

3247

Authorized licensed use limited to: Yonsei Univ. Downloaded on December 08,2023 at 22:06:19 UTC from IEEE Xplore. Restrictions apply.

device locations beforehand and embed the device informa-
tion such as memory addresses in the driver. While such
drivers are commonly found in embedded systems, general-
purpose operating systems (e.g., Linux and FreeBSD) and
boot loaders (U-Boot [21]) also support static device enu-
meration via a Device Tree Blob (DTB) file [22], which
statically describes the hardware configuration and topology.

(2) Dynamic probing: Many modern bus architectures
(e.g., PCI/PCIe, USB, ISA) allow users to plug in new
devices. An operating system is responsible for scanning
the bus, figuring out which device is connected to the
bus, and updating the bus topology at run time. Such a
dynamic probing process may involve complex logic such
as selecting a device at a specific address, reading device
Vendor and Product IDs, (re)configuring the device’s address
in the system memory map, performing device initialization,
enabling device IRQ, and so on.

For example, an operating system can start probing a PCI
device by (1) writing the “Bus”, “Device”, “Function” ID
to the PCI configuration register at PIO address PCI ADDR
and (2) then reading the response from the PCI data register
at PCI DATA as shown in Figure 1. If the device is present
on the bus, the PCI DATA register is set to a non-zero value.
Then, the operating system reads the device’s Vendor ID
(VID) and Product ID (PID), finds a device driver potentially
interested in the device, and calls the device driver’s probing
function. Finally, the probing function performs device-
specific configuration and initialization processes.

2.3. Device Driver Security Vulnerabilities
Improper handling of input from peripheral devices to device
drivers has led to real-world security incidents. Thunder-
Clap [1] demonstrated that the inadequate use of the Input-
Output Memory Management Units (IOMMUs) could allow
malicious DMA-enabled peripherals to extract private data
and hijack kernel control flow. The PS3 (IBM CELL BE
processor with IOMMU [27]) Jailbreak [2] exploits a vulner-
ability in the PS3 hypervisor’s USB stack. The PS4 (AMD
APU with IOMMU) hack [3] launches stack-based control
flow hijacking via a malicious PCIe device. The Xbox (IBM
PowerPC with IOMMU [28]) DVD hack [4] leverages the
vulnerable verification process in the DVD driver. Recently,
a vulnerability in Apple’s iPhone (ARM processor with
SMMU [29]) drivers [5] enables a malicious user to compro-
mise wireless chips and steal data. Unfortunately, things get
worse as these attacks do not require complex or expensive
hardware. For example, the initial version of PS3 jailbreak
hardware [2] was sold as a thumb drive employing a 5 US
dollar AVR microcontroller. The open-source version has
also been shown to run on even a simple calculator, i.e.,
Texas Instruments TI-84 [30]. The bar to acquire and deploy
such a hardware exploit is surprisingly low.

2.4. Threat Model
We presume that an attacker has physical access to a victim
machine to which a malicious device can be connected. The
malicious device may or may not be properly probed/recog-
nized by the victim driver (OS). The malicious device (an
attacker) may send arbitrary data to the victim device drivers

via MMIO, PIO, DMA, and IRQ interfaces, exploiting
software vulnerabilities (e.g., buffer overflows) in the driver
(OS). Our threat model is aligned with the above real-world
exploits (§2.3) and prior device driver testing works [14],
[15], [16], [19], [18], [26]. Side channels are not considered.

3. Related Work and Motivation
This section discusses existing device driver testing tools
and their limitations, motivating new solutions.

3.1. Symbolic Execution
One class of existing tools leverages symbolic execution.
SymDrive [6] is based on S2E [31] that uses QEMU [32]
for device emulation and KLEE [33] for symbolic execution.
SymDrive does not require an actual device because input
from a device can be marked as symbolic. However, it
requires manual annotation on each tested driver to specify
and “symbolize” device inputs. Moreover, SymDrive runs
very slowly and suffers from the well-known path explosion
problem. POTUS [7] targets USB devices specifically, is
built upon S2E, and uses a similar mechanism to mark
USB data as a symbolic value. Therefore, POTUS shares
the same drawback as SymDrive. DDT [8] is yet another
driver symbolic testing tool, but it does not support PCI
Express and USB devices. CABFuzz [9] leverages concolic
(a hybrid of concrete and symbolic) execution and focuses
on testing loop/array boundary conditions to reduce testing
scope. CABFuzz’s heuristic is limited to one kind of bug,
i.e., improper boundary checking. On the other hand, Dri-
fuzz [19] combines concolic execution with fuzzing, so it
supports testing device drivers without devices. However,
using concolic execution for fuzzing the post-probing phase
may be very expensive due to frequent MMIO and DMA
accesses, and IRQ requests.

3.2. Fuzzing
Various solutions have been developed for general kernel
fuzzing [34], [35], [36], [37], [38], [39]. However, there are
two unique challenges in fuzzing device drivers: (1) dynamic
probing and (2) various I/O interfaces. Table 1 summarizes
limited support from prior device driver fuzzing solutions.

Some solutions do not support dynamic probing. To be
fair, they do not need to. P2IM [23] and DICE [24] aim
to test (small) firmware of embedded systems and micro-
controllers in which the complete set of devices is statically
known and often hardwired into the system. Ex-vivo [25]
targets Android device drivers and relies on Linux kernel’s
(static) device tree—specific to mobile devices—to load the
drivers. These solutions are not readily applicable to general
OS (e.g., Linux, FreeBSD) drivers, especially for devices
that require dynamic probing such as PCI and USB.

Other solutions assume that a real device is available,
and thus cannot be applied to test a device driver without
a real device. With an actual device, device probing is
not an issue; there is no need for modeling or emulation.
Charm [12] allows users to run mobile device drivers on a
QEMU-based virtual machine on a workstation, facilitating
dynamic analyses including fuzzing. DIFUZE [13] is specif-
ically designed to fuzz the ioctl interfaces of Linux drivers.

3248

Authorized licensed use limited to: Yonsei Univ. Downloaded on December 08,2023 at 22:06:19 UTC from IEEE Xplore. Restrictions apply.

TABLE 1: Comparison to prior device driver fuzzing tools.

Target Dynamic Probing Supported Bus Types Fuzzing I/O Interfaces
Tool OS Support? How? PCI/PCIe USB I2C Others MMIO PIO DMA IRQ
P2IM [23] Firmware 7 7 7 3 3 3 3 7 3
DICE [24] Firmware 7 7 7 3 3 3 3 3 3
Ex-vivo [25] Android 7 3 3 3 3 7 7 7 7
Charm [12] Android 3 real device 3 3 3 3 3 3 7 3
DIFUZE [13] Android/Linux 3 real device 3 3 3 3 3 3 3 3
Periscope [14] Linux 3 real device 3 3 3 3 3 7 3 3
USBFuzz [15] Any OS 3 manual model 7 3 7 7 3 3 3 3
FuzzUSB [16] Linux 3 manual model 7 3 7 7 7 7 7 7
DrFuzz [26] Linux 3 static analysis + fuzzing 3 3 3 3 3 3 7 7
PrIntFuzz [18] Linux 3 static analysis + fuzzing 3 3 3 3 3 3 3 3
Drifuzz [19] Linux 3 concolic execution 3 3 7 7 3 3 3 3

DEVFUZZ Any OS 3 symbolic exec. 3 3 3 3 3 3 3 3

Periscope [14] modifies the page fault mechanism in Linux
to intercept and mutate data read by a device driver.

Even though some other recent works target testing
USB device drivers without actual USB devices, they still
require manually-designed device models instead. While
Syzkaller [34] is originally designed for fuzzing system
calls, it later supports USB driver testing. However, it re-
quires a stub USB device that forwards USB I/O to its
fuzzing logic. That is, Syzkaller cannot conduct the fuzzing
without the actual device. USBFuzz [15] and FuzzUSB [16]
are built upon QEMU and target USB devices. FuzzUSB
leverages more advanced static analysis to construct state
machine to guide the USB device fuzzing.

PrIntFuzz [18] and DrFuzz [26] use static-analysis-
guided fuzzing for dynamic probing. As it is ineffective to
blindly feed random input for probing, they employ static
analysis to identify critical fields and relevant ranges of
data to focus on. Such guided fuzzing increases the probing
success rate. Yet, both are not optimized for testing the post-
probing phase with various I/O interfaces.

Given all this, there is a compelling demand for practical
device driver testing tools, that are scalable, device-free,
model-driven, automated, and capable of testing represen-
tative bus types, to cover as many drivers as possible with
minimal user intervention. In §4, we propose DEVFUZZ
specifically designed with this motivation in mind.

3.3. Other Related Work
Some solutions focus on fuzzing performance issues: e.g.,
Agamotto [39] adds lightweight checkpoint support for
fuzzing efficiency. There are static program analysis tools
as well [40], [41], [42], [43].

Though it is not a device driver testing tool, it is also
worth noting that ProXRay [44] (a firmware analysis tool) is
related to DEVFUZZ in that both use symbolic execution to
learn protocol (probing) models. DEVFUZZ currently does
not perform actively-guided symbolic execution. However,
DEVFUZZ may adopt ProXRay’s approach that prioritizes
the exploration of paths that refer to protocol fields (or that
read PIO/MMIO registers in DEVFUZZ’s terms).

4. Design of DEVFUZZ
Figure 2 illustrates DEVFUZZ’s model-based device driver
fuzzing framework. DEVFUZZ first takes as input the Linux

kernel and a device driver to be tested, and symbolically ex-
ecutes the device probing logic. When successfully probed,
DEVFUZZ generates Probe Model (§4.1) based on the values
concretized during the symbolic execution. Then, DEVFUZZ
performs dynamic and static analyses on Linux and a target
device driver to generate MMIO/PIO Model (§4.2) and DMA
Model (§4.3). As the three models resemble real hardware
devices, DEVFUZZ can (re)use them for fuzz-testing any
OS’s device drivers (§4.4) and report bugs/crashes detected.
4.1. Probe Model Generation
DEVFUZZ leverages symbolic execution to complete a
device-specific probing phase and to construct Probe Model
with the concretized values. The resulting model enables the
target device to be properly probed (without a real device),
i.e., the device driver gets ready for post-probing fuzzing
(§4.4) where the probe model serves as a basis for structure-
aware fuzzing [13]. The probe model can also be used in
combination with a fuzzer (e.g., AFL) to fuzz the probing
phase itself.

Figure 3 illustrates DEVFUZZ’s probe model generation.
DEVFUZZ is built on S2E [31] that uses QEMU [32] for
device emulation and KLEE [33] for symbolic execution. In
particular, DEVFUZZ guides symbolic execution by direct-
ing the KLEE engine to stop exploring a program path and
to try alternative ones when the probing apparently fails
with an error message (e.g., <module> ... failed.).
Another thing that makes DEVFUZZ different from prior
symbolic execution based tools (e.g., SymDrive [6], PO-
TUS [7], DDT [8], CABFuzz [9]) is that DEVFUZZ does
not require guest OS or QEMU virtual device modification.
Rather, DEVFUZZ enables symbolic device probing without
manual annotation by piggybacking on the x86-specific
device probing protocol in which the PIO region is set up
at the pre-determined location first and the MMIO regions
are specified by PIO writes. During symbolic execution,
DEVFUZZ traps (intercepts) PIO writes to automatically
symbolize PIO/MMIO regions on demand.

Suppose we test a PCI device driver. DEVFUZZ first trig-
gers a bus scan operation to initiate device probing (step 1),
which we explain in detail later. DEVFUZZ then intercepts
the updates to those PIO regions that are pre-determined for
each bus type: e.g., for x86 architecture, 0xCF8 and 0xCFC
are reserved for PCI devices (step 2). From the intercepted

3249

Authorized licensed use limited to: Yonsei Univ. Downloaded on December 08,2023 at 22:06:19 UTC from IEEE Xplore. Restrictions apply.

$4.1 Probe Model Generation
via Symbolic Execution

Source
Codes

$4.2 MMIO/PIO Model Generation
via Static Analysis

$4.3 DMA Model Generation
via Dynamic/Static Analysis

MMIO/PIO
Model

DMA
Model

Probe
Model $4.4 Model-Guided Fuzzing

Bug
Reports

Any OS
Driver

Linux &
Driver

Figure 2: An overview of DEVFUZZ. DEVFUZZ employs symbolic execution and dynamic/static program analyses to
generate device models. DEVFUZZ uses the models to fuzz-test any OS’s device drivers and reports detected bugs/crashes.

PIO writes, DEVFUZZ identifies additional MMIO/PIO re-
gions that the device requests to allocate dynamically (step
3) and automatically marks those regions symbolic (step
4). Next, DEVFUZZ performs symbolic probing in which
the driver reads symbolic PIO/MMIO inputs (step 5).

Note that symbolic probing execution (step 5) is
considered successful (after some explorations) if a device
driver passes the probing path constraints so that the driver
can be successfully loaded and bound to the device (model)
by the kernel. We implemented a stub script that enables
S2E’s symbolic execution to determine a successful device
probing. The script enables kernel dynamic debugging and
checks if a driver is bound to a device by referring to the
kernel’s dmesg output. The script also consults /sys file
system to ensure that the driver holds a reference to the
device after probing. For example, suppose we emulate
a net2272 device at PCI address 0000:00:02.0. After
loading the net2272 driver, a successful probing is detected
when dmesg shows bus: ’pci’: really_probe:
bound device 0000:00:02.0 to driver net2272
with /sys/bus/pci/drivers/net2272/0000:00:02.0
created. This can also be confirmed by executing command
lspci -vvv, the output of which is supposed to show
00:02.0: Kernel driver in use: net2272.

When successfully probed, DEVFUZZ solves the path
constraints using an SMT solver, concretizes the symbolic
values, and generates a probe model (step 6). The probe
model contains the addresses and the register/memory val-
ues that are necessary for the device driver to succeed in
probing. For each register (i.e., an MMIO/PIO address),
DEVFUZZ generates a state machine that describes the value
of the register upon each read; in reality, two reads from
the same MMIO addresses (registers) may be not identical
due to arbitrary change made by the hardware device, and
therefore we model this behavior as a state machine with a
counter. After all the reads are completed for each register
during the probing phase, the state machine goes back to
the start position for the next probing (if requested) to be
successful.

DEVFUZZ triggers the initial bus scan (step 1)
in two different ways: (1) For both the devices con-
nected on the buses with dynamic probing (e.g., PIC/P-
CIe) and Linux guest OS, DEVFUZZ runs echo 1 >
/sys/bus/pci/rescan. (2) For other devices on the
buses that use static enumeration (e.g., I2C), DEVFUZZ
adds a PCI-to-I2C adapter and binds the I2C de-
vice to the I2C bus adapter address, e.g., bmi160

driver is bound to the I2C adapter’s address 0x11
using the following command: echo bmi160 0x11 >
/sys/bus/i2c/devices/i2c-1/new_device.

Example. Figure 4 shows how the probing code
of pcnet32 driver works. First, the probing function
pcnet32_probe_pci maps the PCI BAR 0 (line 4)
and obtains the MMIO base address. Then, it calls
pcnet32_probe1 to perform the actual initialization.
This function first reads from two registers to check
the access methods of the device (line 16), which de-
termines the number of words for each register. Here,
pcnet32_wio_read_csr, i.e., a wrapper of MMIO func-
tions, reads from address 0x10 and returns its value, while
pcnet32_wio_check reads from address 0x14 and returns
true if the value equals to 0x58; the code of the two methods
is not shown in the figure. Then, the driver reads from
address 0x10 two times to obtain a 32-bit chip version value
and performs a sanity check on it (lines 23-36). If either
of the above checks fails, the driver should terminate the
probing process and return an error. The implication of the
probing process is that the sanity checks are very strict and
therefore a random fuzzing is not likely to pass them.

To address the problem, DEVFUZZ generates the probe
model shown in Figure 6 (a). DEVFUZZ figures out that
the important registers are located at 0x10 and 0x14 (oth-
ers are omitted for simplicity). The “cnt” in the figure
denotes the number of reads for the same address. When
the driver invokes pcnet32_wio_read_csr reading from
address 0x10, the state machine for address 0x10 returns 0x4
to pass the first comparison check; see line 16 of Figure 4.
When the driver reads from 0x14 in pcnet32_wio_check,
the state machine for that address returns 0x58 to pass the
second check. In line 23, the driver invokes read_csr twice
reading from 0x10 for the second and third time. Taking that
into account, the state machine returns 0x3 and 0x243 which
makes the chip_version become 0x2430003. This allows

Trigger
bus scan

Probe
Model

Guest OS
1

Intercept
PIO writes

2

Identify
MMIO
regions

3 4

“Symbolic” probing5

Solve path
constraints

6
Symbolic
PIO/MMIO regions

Symbolize PIO/MMIO

No Dev.

Driver

S2E/KLEE

S2E/QEMU

Figure 3: DEVFUZZ uses symbolic execution to generate
the probe model.

3250

Authorized licensed use limited to: Yonsei Univ. Downloaded on December 08,2023 at 22:06:19 UTC from IEEE Xplore. Restrictions apply.

1 int pcnet32_probe_pci(struct pci_dev *pdev,
const struct pci_device_id *ent)↪→

2 {
3 ...
4 ioaddr = pci_resource_start(pdev, 0);
5 ...
6 err = pcnet32_probe1(ioaddr, 1, pdev);
7 return err;
8 }
9 int pcnet32_probe1(unsigned long ioaddr, int

shared, struct pci_dev *pdev)↪→
10 {
11 int chip_version;
12 const struct pcnet32_access *a = NULL;
13 int ret = -ENODEV;
14 struct net_device * dev;
15
16 if (pcnet32_wio_read_csr(ioaddr, 0) == 4 &&

pcnet32_wio_check(ioaddr)) {↪→
17 a = &pcnet32_wio;
18 } else {
19 ...
20 goto err_release_region;
21 }
22

23 chip_version = a->read_csr(ioaddr, 88) |
(a->read_csr(ioaddr, 89) << 16);;↪→

24 if ((chip_version & 0xfff) != 0x003) {
25 goto err_release_region;
26 }
27 chip_version = (chip_version >> 12) & 0xffff;
28 switch (chip_version) {
29 ...
30 case 0x2430:
31 ...
32 break;
33 ...
34 default:
35 goto err_release_region;
36 }
37 ...
38 dev->base_addr = ioaddr;
39 return 0;
40 err_release_region:
41 release_region(ioaddr, PCNET32_TOTAL_SIZE);
42 return ret;
43 }

Figure 4: Probing codes of pcnet32 device driver.

the check in line 24 to be passed. Finally, in line 27, the
chip_version is right-shifted 12 times resulting in 0x2430
which matches with the case in line 30.

Limitation. DEVFUZZ may not be able to generate a
probe model. The reason is that symbolic execution may
fail to complete the probing phase if the probing logic is
too complex to solve within some time budget, and/or if
it requires DMA/IRQ that are rare so DEVFUZZ’s (current)
symbolic execution does not support. However, note that for
those successfully probed, DEVFUZZ ensures that the device
driver can pass its probing logic with Probe Model and be
successfully loaded for testing; §6.3 provides analysis on
both symbolic probing evaluation results and the quality of
the generated probe models.
4.2. MMIO/PIO Model Generation

The above probe model ensures that a device driver
is ready for a fuzzer (e.g., AFL) to test the post-probing
phase (§4.4). All the MMIO and PIO regions (but not
DMA regions, §4.3) are identified and a fuzzer can feed
mutated input as needed. However, the possible value space
of the MMIO/PIO regions and the address range of the
region could be very large. This implies that blindly feeding
random data into such a large address space tends to be
ineffective in exploring different program paths.

To improve the effectiveness of the post-probing fuzzing,

1 static irqreturn_t pcnet32_interrupt(int irq,
void *dev_id)↪→

2 {
3 struct pcnet32_private *lp;
4 unsigned long ioaddr;
5 u16 csr0;
6 int boguscnt = max_interrupt_work;
7 ioaddr = dev->base_addr;
8 lp = netdev_priv(dev);
9

10 csr0 = lp->a->read_csr(ioaddr, CSR0);
11 while ((csr0 & 0x8f00) && --boguscnt >= 0) {
12 if (csr0 == 0xffff)
13 break;
14 lp->a->write_csr(ioaddr, CSR0, csr0 &

˜0x004f);↪→
15 if (csr0 & 0x4000)
16 dev->stats.tx_errors++;
17 if (csr0 & 0x1000) {
18 dev->stats.rx_errors++;
19 }
20 if (csr0 & 0x0800) {
21 ...
22 }
23 ...
24 csr0 = lp->a->read_csr(ioaddr, CSR0);
25 }
26 return IRQ_HANDLED;
27 }

Figure 5: MMIO value checking in pcnet32 driver

(c) DMA Model

(b) MMIO/PIO Model

Registers

MMIO Address Space

…

0x10

0x12

…

0x20

…

0x4 0x3

0x0 0x243

cnt=1 cnt=2

cnt=3
cnt>3cnt>30

0x58
cnt=1

(a) Probe Model

magic value ranges rel’ bits

0xffff - 0x8f00, ...

… … …

DMA reg.

…

…

0x2000

…

…

…

1st DMA buffer

2nd DMA buffers

magic range bits

0x0 > 0

… … …

…

…

Value Constraints

Value Constraints

Figure 6: The generated (a) Probe model, (b) MMIO/PIO
model, and (c) DMA model for pcnet32 device driver.

DEVFUZZ performs static value analysis and generates
MMIO/PIO Model, thereby guiding the fuzzing process.
The goal of the static value analysis is to obtain three
kinds of value constraints (for each base address/offset) that
determine the control flow of device driver code: (a) magic
values (e.g., 0xff for if (p==0xff)); (b) boundary values
(e.g., 0 and 10 for if (0<p<10)); and (c) relevant bits,
(e.g., 2nd and 3rd least significant bits for if (p&0x04 ||
p&0x08)). The derived constraints are later used in mutating

3251

Authorized licensed use limited to: Yonsei Univ. Downloaded on December 08,2023 at 22:06:19 UTC from IEEE Xplore. Restrictions apply.

MMIO register values for fuzzing. If multiple constraints
exist for an MMIO register, DEVFUZZ randomly applies
one for each different fuzzing run.

Since the above three value constraints are based on
heuristics we devised with manual code reviews of many
device drivers (e.g., Figure 5), DEVFUZZ does not claim
completeness—though the constraints work very well in
practice. It is important to note that DEVFUZZ’s model
purposely rules out the case where an MMIO register acts
like a simple storage, returning the most recently written
value in response to a read as usual. This is because, we are
not interested in mimicking the benign behavior of device
hardware, but in synthesizing potentially malicious hardware
activities that may arbitrarily change the register value after
being written, breaking a device driver’s assumption. Ac-
cording to our empirical analysis result (§6.5), the proposed
three value constraints help DEVFUZZ increase its code
coverage with a significant margin.

The proposed static value analysis consists of three com-
ponents: (1) base address analysis, (2) I/O wrapper function
analysis, and (3) condition predicate analysis. DEVFUZZ as
output produces the MMIO/PIO model, a mapping from a
base address, and an offset to value constraints.

(1) Base Address Analysis. For modularity and encap-
sulation, it is common practice in Linux to maintain a struct
(object) representing a device: e.g., struct net_device
for a network device. The first base address analysis ana-
lyzes device probing/initialization codes and identifies which
fields of a device struct hold base addresses so that later we
can create a mapping between base addresses and value con-
straints. To this end, DEVFUZZ performs data flow analysis
to keep track of where the return values of the Linux APIs
that map MMIO/PIO regions to DRAM (e.g., pci_iomap,
pci_resource_start) are stored.

(2) I/O Wrapper analysis. Linux provides MMIO/PIO
read/write functions such as ioread32, readl, writeb.
In practice, a device drive often creates its own custom
wrapper functions (with additional checks, etc.). The second
analysis aims to identify such custom I/O wrapper functions
that eventually call the low-level MMIO/PIO read/write
APIs with the same base address and offset parameters or
with another constant offset added. DEVFUZZ uses tradi-
tional call graphs and data flow analyses for this purpose.

(3) Condition Predicate Analysis. The last step per-
forms data- and control-flow dependence analysis from the
code reading a base address from a device struct (the result
of (1) base address analysis), to the code calling MMIO/PIO
wrappers (the result of (2) I/O wrapper analysis), and finally
to the code checking condition predicates. The base address
and offset are extracted from the arguments passed to the
MMIO/PIO read functions. The summary of dependent con-
dition predicates forms value constraints.

Though Linux source code analysis is used to construct
the MMIO/PIO model, it can be reused by other OSes as
the model represents a hardware device and it only models
possible values of the device input.

Example. Figure 5 shows an example of the pcnet32
driver that uses device MMIO input to determine its behav-

1 static int
2 pcnet32_probe1(unsigned long ioaddr, int shared,

struct pci_dev *pdev)↪→
3 {
4 struct pcnet32_private *lp;
5 ...
6 /* dma_alloc_coherent returns virtual DMA

buffer address */↪→
7 lp->init_block = dma_alloc_coherent(... ,

&lp->init_dma_addr, ...);↪→
8 ...
9 /* The physical DMA address is written to the

device */↪→
10 a->write_csr(ioaddr, 1, (lp->init_dma_addr &

0xffff));↪→
11 a->write_csr(ioaddr, 2, (lp->init_dma_addr >>

16));↪→
12 ...
13 return ret;
14 }
15
16
17 static int pcnet32_init_ring(struct net_device

*dev)↪→
18 {
19 struct pcnet32_private *lp = netdev_priv(dev);
20
21 for (int i = 0; i < lp->rx_ring_size; i++) {
22 ...
23 /* Allocate secondary DMA Buffers */
24 if (lp->rx_dma_addr[i] == 0) {
25 lp->rx_dma_addr[i] = dma_map_single(...);
26 ...
27 }
28 /* Write the secondary DMA address into L1

DMA buffer */↪→
29 lp->rx_ring[i].base =

cpu_to_le32(lp->rx_dma_addr[i]);↪→
30 ...
31 }
32 ...
33 return 0;
34 }

Figure 7: An example of setting up two-level DMA buffers
in pcnet32 driver.

iors (control flows). With (1) based address analysis (not
shown), we know that the driver holds a base address of the
MMIO region in dev->base_addr. In line 7, the driver
reads the base address from the field. The (2) I/O wrapper
analysis (not shown) tells that the function read_csr is a
wrapper function for MMIO reads. The result of the read
is stored in the variable csr0. The value is checked in
the while loop and the if statements. (3) condition pred-
icate analysis can identify two value constraints here: the
magic exit value 0xffff and a set of relevant bits (to fuzz).
Figure 6 (b) illustrates an example MMIO/PIO model that
includes value constraints for 0x20 (CSR0 register).

Limitation. The precision of DEVFUZZ’s MMIO/PIO
model is bounded by the precision of underlying static value
analysis. DEVFUZZ does not require the model to be precise.
Any imprecision would simply lead to more fuzzing/testing.

4.3. DMA Model Generation
DEVFUZZ supports fuzzing DMA regions that are not

only requested by the centralized DMA controller (e.g.,
Intel 8257 [20]) but also performed by bus mastering.
For example, a PCI device can serve as a bus master,
and a manufacturer can implement their own non-standard
DMA engine. Though supporting a DMA buffer requested
by the standard DMA controller is relatively simple, it is
challenging to reason about all the custom DMA buffers
precisely. To generate the DMA model, DEVFUZZ performs
hybrid dynamic/static program analyses: (1) DMA register

3252

Authorized licensed use limited to: Yonsei Univ. Downloaded on December 08,2023 at 22:06:19 UTC from IEEE Xplore. Restrictions apply.

analysis and (2) secondary DMA buffer analysis. Moreover,
DEVFUZZ performs static (3) DMA value constraints anal-
ysis, similar to that of the MMIO/DMA model (§4.2).

(1) DMA Register Analysis. The goal of the first DMA
register analysis is to figure out which registers (mapped in
MMIO regions) hold DMA buffer addresses. In Linux, the
DMA kernel API dma_alloc_coherent is used to allocate
and map a DMA region. Thus, in theory, it is possible to
design static analysis that keeps track of the return values of
dma_alloc_coherent function calls and the assignments
to MMIO regions. However, we noticed that the imprecision
of static analysis caused by alias analysis often hinders us
from reliably collecting DMA registers.

To address the problem, DEVFUZZ makes use of profil-
ing with a modified Linux kernel. We leverage the conven-
tion that in Linux and most OSes, a device driver informs the
device about the OS-allocated DMA addresses by writing
the addresses into the MMIO (or PIO) regions. Based on the
observation, we instrument Linux’s dma_alloc_coherent
function with a vmcall hypercall, which will be trapped by
QEMU, to collect the DMA addresses at runtime. We use the
probe model (§4.1) to pass the probing logic and allow the
driver to set up DMA buffers during a profile run. Then, we
let QEMU track all MMIO (and PIO) writes and compare
the store values with the collected DMA addresses. Any
register (MMIO offset) to which the DMA addresses are
stored is a DMA register. Though the analysis itself depends
on Linux, the locations of DMA registers are device-specific
properties that can be reused by other OSes.

(2) Secondary DMA Buffer Analysis. DEVFUZZ sup-
ports two-level chained DMA buffers in which the first-level
buffer holds the pointers to the secondary buffer that actually
keeps the data. These two-level DMA buffers are commonly
used in many device drivers. For instance, network drivers
often allocate a ring of DMA buffers as the first level and use
them to communicate the status of the associated secondary
DMA buffers that contain the actual payload. The problem
is that the addresses of the secondary DMA buffers are
not written to the devices (i.e., not to the MMIO regions).
Thus, we cannot identify secondary DMA buffers from the
aforementioned dynamic (1) DMA register analysis.

To address the issue, DEVFUZZ resorts to static analysis.
In Linux, the DMA kernel APIs dma_alloc_coherent
and dma_map_single are used to initialize the first- and
second-level DMA buffers, respectively. Based on the obser-
vation, DEVFUZZ identifies first-level DMA buffers based
on the struct types used with the dma_alloc_coherent
function. Then, DEVFUZZ performs data flow analysis from
the return value of the dma_map_single function to the
assignment to the first level DMA buffers. This allows
DEVFUZZ to obtain the offsets in the first-level buffers that
are used to keep the secondary DMA buffer addresses.

(3) DMA Value Constraints Analysis. Similar to the
MMIO/PIO model, DEVFUZZ performs static value anal-
ysis to analyze the constraints of the DMA contents/val-
ues. One difference is that for DMA, DEVFUZZ analyzes
dma_alloc_coherent and dma_map_single functions.

Example. Figure 7 shows how pcnet32 initializes its

Guest OS

AFL
QEMU

Driver

probing
& fuzzing

Trigger device I/O

MMIO/PIO
Regions

IRQMMIO/PIO
Model

DMA
Model

Probe
Model

DMA
Buffers

+
+ +

1

2 3
4

Model+AFL fuzzing

Figure 8: DEVFUZZ fuzzes MMIO, PIO, DMA data using
three device models and AFL; and generates IRQ using a
timer. DEVFUZZ tests both probing and post-probing phases.

two-level DMA buffers. As a part of probing/initializa-
tion function pcnet32_probe1, pcnet32 maps the first-
level DMA buffer using dma_alloc_coherent kernel API
(line 7). The DMA address is written to the device’s
MMIO region (lines 10-11). With dynamic (1) DMA reg-
ister analysis, DEVFUZZ can trap this MMIO writes to
reliably find this first-level DMA buffer address. Later, in
pcnet32_init_ring, pcnet32 creates the second-level
DMA buffers using dma_map_single kernel API (lines 25)
and then stores the address in the first-level DMA buffer
(line 29). The static (2) secondary DMA buffer analysis
tracks this data flow and obtains the offset. Figure 6 (c)
visualizes a simplified DMA model of pcnet32 in which
MMIO’s DMA register points to the first DMA buffer and
its members point to the second-level DMA buffers. The
static (3) value constraints analysis example is omitted.

Limitation. DEVFUZZ’s profiling-based DMA register
analysis may have false negatives as a profiling run does
not guarantee complete code coverage. If DEVFUZZ fails
to identify DMA registers, it cannot fuzz DMA buffers
and thus may miss any bugs triggered by malicious DMA
content. Moreover, DEVFUZZ’s secondary DMA buffer and
value constraints analyses share the limitations of underlying
static data flow and alias analysis.
4.4. Model-Guided Fuzzing
Figure 8 shows how DEVFUZZ performs model-guided
fuzzing, given the generated three probe, MMIO/PIO, and
DMA models. Note that the three models (e.g., Figure 6)
hold deterministic values for the MMIO, PIO, DMA regions
to pass the probing logic, or to explore diverse program
paths, etc. To enable (randomized) fuzzing, DEVFUZZ mu-
tates those regions by selecting either input from a model
or a generic fuzzer with a tunable probability (1 - 3). Fur-
thermore, DEVFUZZ uses a timer to trigger IRQs at a
regular interval (4). This allows DEVFUZZ to initiate a
device driver execution (e.g., an interrupt handler) that is
not possible only through command-line test cases.

Next we explain the differences between DEVFUZZ’s
(1) probing phase and (2) post-probing phase fuzzing. To
support fuzzing during probing, DEVFUZZ mutates MMIO/-
PIO regions by choosing either model’s or ALF’s input
(1). DEVFUZZ does not use MMIO/PIO or DMA models,
nor IRQ in this case. On the other hand, for post-probing
fuzzing, DEVFUZZ uses the probe model as is (without

3253

Authorized licensed use limited to: Yonsei Univ. Downloaded on December 08,2023 at 22:06:19 UTC from IEEE Xplore. Restrictions apply.

fuzzing) so that the device can be probed with no issue.
Then, DEVFUZZ uses MMIO/PIO and DMA along with
AFL (2 and 3). During fuzzing, to support two-level DMA
buffers (§4.3), DEVFUZZ intercepts MMIO/PIO writes to
the DMA register (provided by the DMA model) to obtain
the first-level DMA buffer addresses. Then DEVFUZZ scans
the first-level DMA buffers using the offsets (provided by
the DMA model) to extract the second-level DMA buffer
addresses. Last, DEVFUZZ enables IRQ generation (4).

By default, DEVFUZZ uses the AFL fuzzer and mixes
the model’s and AFL’s inputs at an equal (50-50) probabil-
ity. To provide AFL with coverage information, DEVFUZZ
enables Intel’s Process Trace (PT) [45] for the QEMU
process as soon as it is created. This allows DEVFUZZ to
collect coverage information during the booting phase as
well. Unlike kAFL[46], RedQueen[35], DEVFUZZ does not
require modification in host or guest OSes.
5. Implementation
DEVFUZZ is implemented (with 7100 LoC C++) based on
S2E 2.0 [31] for symbolic execution, QEMU v5.1 [32] for
hardware emulation, LLVM 13.0 for program analysis, and
AFL v2.57 [17] for feedback-directed fuzzing. The source
codes will be open-sourced and released on publication.

DEVFUZZ currently supports four bus types: PCI, USB,
RapidIO, and I2C. The three non-PCI buses are supported
via PCI-to-USB, PCI-to-RapidIO, and PCI-to-I2C (bridge)
adaptors, and thus symbolic probing starts from the same
PIO regions. When a new bus type is desired, users need to
add the adaptor similarly if there exists a PCI bridge adaptor
for that bus. Otherwise, users should manually specify the
bus’ own PIO region (similar to that of PCI) and add any
bus-specific device enumeration protocols.
6. Evaluation
In this section, we start by describing our evaluation method-
ology (§6.1) and report the experimental results. First, we
evaluate how well DEVFUZZ can find bugs in Linux device
drivers (§6.2). Second, we evaluate the effectiveness of
DEVFUZZ’s symbolic probing execution (§6.3). Third, we
compare DEVFUZZ with two prior works (§6.4). Fourth, we
report how much each model of DEVFUZZ improves fuzzing
code coverage and conduct a sensitivity study on model
use probability (§6.5). Fifth, we evaluate the quality of
DEVFUZZ’s models and compare them with expert-derived
(manual) models (§6.6).

Last, we evaluate how well DEVFUZZ can reuse Linux-
based models for fuzzing FreeBSD (§6.7) and Windows
(§6.8) device drivers.
6.1. Evaluation Methodology
We evaluated DEVFUZZ using device drivers of different
bus types (PCI, USB, RapidIO, I2C) and various OSes:
Linux Kernel v5.11, FreeBSD release 12.2, and Windows
10, running on S2E 2.0 [31] and QEMU v5.1 [32]. Our
testing machine has four Intel(R) Xeon(R) Gold 5218 CPUs
(2.30GHz, 16 cores each) and 128GB of DDR4 memory.
The host OS is Ubuntu 20.04.3 LTS with Linux v5.4.0. For
Linux, we randomly selected and tested 108 PCI, 31 USB,
1 RapidIO, and 10 I2C device drivers (150 drivers in total).

TABLE 2: Bugs detected and reported by DEVFUZZ.

Type Tested Probed Bugs Patched
Linux-PCI 108 83 54 35
Linux-USB 31 19 6 3
Linux-RapidIO 1 1 2 0
Linux-I2C 10 10 1 1
FreeBSD-PCI 25 14 8 2
Windows-PCI 16 8 1 0

For FreeBSD and Windows, we searched for the device
drivers in which we can find the equivalent ones in Linux.
We found 25 FreeBSD and 16 Windows PCI drivers in total.
We use the device models generated from Linux to test
the FreeBSD and Windows drivers. We manually analyzed
all the bug reports, wrote patches (whenever possible), and
submitted them for review.

Given device models, for probing phase fuzzing, we
repeatedly plug and unplug the target device driver (mod-
ule) and fuzz its probing functions. For post-probing
phase fuzzing, we need test cases to trigger device ac-
cesses. Besides timer-based IRQs, we used the follow-
ing tools to test device drivers from userspace. For net-
work devices (e.g., Ethernet, CAN, ATM, ISDN, RapidIO,
IEEE1394 FireWire), we used net-tools [47], can-utils [48],
RapidIO RRMAP [49], inarpd, sethdlc [50], and nosy-
dump [51]. For framebuffer devices, we used Xorg [52].
For drivers that create a device file under /dev/, we used
cat, dd [53], trinity [54], and ltp [55]. Following the best
practices for fuzzing evaluation [56], we run fuzzing exper-
iments 3 times for 24 hours each.
6.2. Finding Bugs in Linux Device Drivers
We first focus on our experiments with Linux device drivers.
Table 2 (Linux- rows) summarizes basic test results. Among
150 tested drivers (including all PCI, USB, RapidIO, and
I2C drivers), DEVFUZZ successfully probed 112 devices
(about 75%). Later in §6.3, we discuss the cases DEVFUZZ
fail to use symbolic execution to complete probing in detail.

Fuzzing performance. We measured the DEVFUZZ’s
fuzzing speed by inspecting the AFL’s stat files. DEVFUZZ
performs 1.15 executions per second on average, where each
execution contains about 100 MMIO/PIO accesses of the
devices. Note that given the models, DEVFUZZ performs
QEMU/KVM-based full-speed fuzzing without any sym-
bolic (or concolic) execution.

Detected bugs. In total, the proposed model-guided
fuzzing detected 63 bugs/crashes. At the time of this sub-
mission, we submitted 39 patches, all of which have been
merged into the mainline Linux kernel. We also received one
CVE assignment, CVE-2022-0487[57], for one USB bug.

Table 3 (IDs 1-63) reports the detailed information of
each detected bug: bus type, source file, function name, bug
description, if the bug is patched, and bug location. For
the bug location, “Probe” means the bug is detected in a
probing logic, “IRQ” in an interrupt handler, and “Others”
for other locations. For Linux, there were 27 Probe, 3 IRQ,
and 31 Others cases. The results demonstrate that DEVFUZZ
can effectively detect many bugs in Linux device drivers
of various bus types. In Appendix A and Appendix B,

3254

Authorized licensed use limited to: Yonsei Univ. Downloaded on December 08,2023 at 22:06:19 UTC from IEEE Xplore. Restrictions apply.

TABLE 3: Bugs Reported By DEVFUZZ.
Type-# File Function Description Patched? Loc.

1 Linux-PCI drivers/media/pci/bt8xx/bt878.c bt878_irq null pointer dereference Y IRQ
2 Linux-PCI drivers/misc/cardreader/alcor_pci.c alcor_pci_find_cap_offset null pointer dereference Y Probe
3 Linux-PCI drivers/gpu/drm/radeon/radeon_object.c radeon_bo_evict_vram null pointer dereference Y Probe
4 Linux-PCI drivers/crypto/qat/qat_c3xxxvf/adf_drv.c adf_iov_putmsg user memory access Y Probe
5 Linux-PCI drivers/crypto/qat/qat_common/adf_vf_isr.c adf_vf_isr_resource_alloc double irq free Y Probe
6 Linux-PCI drivers/usb/gadget/udc/amd5536udc_pci.c pci_write_config_word null pointer dereference Y Probe
7 Linux-PCI drivers/staging/comedi/drivers/das800.c das800_attach request irq format error, /proc/irq file not created Y Probe
8 Linux-PCI sound/pci/rme9652/rme9652.c snd_rme9652_free disable already disabled device Y Probe
9 Linux-PCI sound/pci/rme9652/hdspm.c snd_hdspm_free disable already disable device Y Probe
10 Linux-PCI sound/pci/rme9652/hdsp.c snd_hdsp_card_free disable already disabled device Y Probe
11 Linux-PCI drivers/staging/comedi/drivers/cb_pcidas64.c auto_attach request irq format error, /proc/irq file not created Y Probe
12 Linux-PCI drivers/staging/comedi/drivers/cb_pcidas.c cb_pcidas_auto_attach request irq format error, /proc/irq file not created Y Probe
13 Linux-PCI drivers/net/can/c_can/c_can.c c_can_pm_runtime_enable unbalanced power management reference counter Y Probe
14 Linux-PCI drivers/net/can/c_can/c_can_pci.c pci_iounmap use after free Y Other
15 Linux-PCI drivers/net/arcnet/com20020-pci.c com20020pci_probe null pointer dereference Y Probe
16 Linux-PCI drivers/isdn/hardware/mISDN/mISDNipac.c WriteISAC null pointer dereference Y Probe
17 Linux-PCI drivers/gpu/drm/drm_fb_helper.c drm_client_buffer_vunmap null pointer dereference Y Other
18 Linux-PCI drivers/atm/idt77105.c zatm_start/stop null pointer dereference Y Other
19 Linux-PCI drivers/atm/uPD98402.c zatm_start null pointer dereference Y Probe
20 Linux-PCI drivers/atm/lanai.c lanai_dev_open unable to handle kernel page fault Y Probe
21 Linux-PCI drivers/atm/eni.c suni_stop null pointer dereference Y Probe
22 Linux-PCI drivers/gpu/drm/ast/ast_drv.c driver_detach memory leak Y Other
23 Linux-PCI drivers/gpu/drm/qxl/qxl_display.c qxl_destroy_monitors_object user memory access Y Probe
24 Linux-PCI drivers/net/wan/lmc/lmc_main.c lmc_init_one format string issue Y Probe
25 Linux-PCI drivers/net/wan/lmc/lmc_main.c lmc_init_one null pointer dereference Y Probe
26 Linux-PCI drivers/nvme/host/hwmon.c nvme_hwmon_get_smart_log null pointer dereference Y Other
27 Linux-PCI drivers/nvme/host/pci.c nvme_timeout null pointer dereference Y Other
28 Linux-PCI drivers/nvme/host/pci.c nvme_reset_work IRQ double free Y Other
29 Linux-PCI drivers/atm/eni.c eni_ioctl null pointer dereference Y Other
30 Linux-PCI drivers/atm/firestream.c top_off_fp use after free Y Other
31 Linux-PCI drivers/atm/he.c he_service_rbrq null pointer dereference N Other
32 Linux-PCI drivers/atm/idt77252.c idt77252_interrupt null pointer dereference N Other
33 Linux-PCI drivers/atm/lanai.c atm_dev_deregister unable to handle page fault N Other
34 Linux-PCI drivers/atm/nicstar.c ns_init_card_error invalid opcode N Probe
35 Linux-PCI drivers/atm/zatm.c zatm_open rcu: INFO: rcu sched detected stalls on CPUs/tasks N Probe
36 Linux-PCI drivers/infiniband/hw/hfi1/pcie.c ioremap kernel panic - Fatal exception in interrupt N IRQ
37 Linux-PCI drivers/net/can/c_can/c_can.c c_can_start_xmit kernel panic - Fatal exception in interrupt N IRQ
38 Linux-PCI drivers/net/can/sja1000/sja1000.c can_put_echo_skb use after free N Other
39 Linux-PCI drivers/net/can/sja1000/sja1000.c sock_efree use after free N Other
40 Linux-PCI net/can/af_can.c sock_efree use after free N Other
41 Linux-PCI drivers/net/wan/lmc/lmc_main.c lmc_mii_readreg null pointer dereference N Other
42 Linux-PCI drivers/scsi/arcmsr/arcmsr_hba.c arcmsr_abort unable to handle page fault N Other
43 Linux-PCI drivers/net/ethernet/cadence/macb_pci.c macb_remove use after free Y Other
44 Linux-PCI sound/pci/vx222/vx222.c snd_vx222_create null pointer dereference Y Probe
45 Linux-PCI drivers/net/can/c_can/c_can_ethtool.c c_can_get_drvinfo unable to handle page fault Y Other
46 Linux-PCI drivers/scsi/dc395x.c dc395x_init_one null pointer dereference Y Probe
47 Linux-PCI drivers/net/ethernet/smsc/epic100.c epic_remove_one use after free Y Other
48 Linux-PCI drivers/net/ethernet/smsc/epic100.c epic_rx buffer overflow N Other
49 Linux-PCI drivers/net/ethernet/marvell/sky2.c sky2_mac_intr null pointer dereference N Other
50 Linux-PCI drivers/net/ethernet/realtek/r8169_main.c rtl_rx out of bound read N Other
51 Linux-PCI drivers/net/ethernet/realtek/8139cp.c cp_rx_poll skb over panic N Other
52 Linux-PCI drivers/net/vmxnet3/vmxnet3_drv.c vmxnet3_rq_rx_complete BUG ON statement N Other
53 Linux-PCI drivers/net/ethernet/intel/e1000/e1000_main.c e1000_clean_rx_irq skb over panic N Other
54 Linux-PCI drivers/net/ethernet/intel/e1000e/netdev.c e1000_clean_rx_irq skb over panic N Other
55 Linux-USB drivers/memstick/host/rtsx_usb_ms.c memstick_free_host use after free Y Other
56 Linux-USB drivers/memstick/host/rtsx_usb_ms.c rtsx_usb_ms_drv_remove use after free Y Other
57 Linux-USB drivers/net/wireless/marvell/mwifiex/main.c mwifiex_fw_dpc divide error N Probe
58 Linux-USB drivers/net/wireless/marvell/libertas/if_usb.c usb_tx_block URB submitted while active N Other
59 Linux-USB kernel/dma/swiotlb.c swiotlb_tbl_sync_single Attempt for buffer overflow. N Other
60 Linux-USB drivers/net/usb/hso.c hso_mux_serial_read kernel panic N Other
61 Linux-RapidIO drivers/rapidio/rio-scan.c rio_enum_mport kernel WARN and create /sys entry error N Probe
62 Linux-RapidIO drivers/rapidio/rio-scan.c rio_scan_alloc_net memory leak N Other
63 Linux-I2C drivers/iio/imu/bmi160/bmi160_core.c bmi160_chip_init Kernel WARN regulator not disabled Y Probe
64 FreeBSD-PCI sys/modules/drm2/i915kms.ko make_dev_sv kernel panic, duplicate /dev/agpgart N Probe
65 FreeBSD-PCI sys/modules/sound/driver/hda/snd_hda.c snd_hda crash and non-responsive console N Other
66 FreeBSD-PCI sys/dev/arcmsr/arcmsr.c arcmsr_drain_donequeue device can control data pointer N IRQ
67 FreeBSD-PCI sys/dev/stge/if_stge.c stge_detach null pointer dereference Y Other
68 FreeBSD-PCI sys/dev/twa/tw_cl_intr.c tw_cl_create_event stack overflow N Probe
69 FreeBSD-PCI sys/dev/my/if_my.c my_attach kernel panic N Probe
70 FreeBSD-PCI sys/dev/tl/if_tl.c tl_start panic during transmit. deadlock. N Other
71 FreeBSD-PCI sys/dev/axgbe/if_axgbe_pci.c axgbe_if_attach_pre resource leak Y Probe
72 Windows10-PCI AMDXgbe.sys - PAGE FAULT IN NONPAGED AREA N Other

TABLE 4: Symbolic Execution Time and Path Explored

Item Average Median 99th Percentile
Number of paths explored 1637 100 25282
Execution time (seconds) 419 42 12400

we discuss two detected bugs (IDs 1 and 48) in detail
to illustrate the benefits of the proposed MMIO/PIO/DMA
models and IRQ generation.

6.3. Symbolic Probing Execution
This section focuses on evaluating the probe model gen-
eration (symbolic execution) component of DEVFUZZ. As
reported earlier, we tested 150 Linux drivers and probed 112
(about 75%). Table 4 reports the average, median, and 99th
percentile of the number of paths explored and execution

time. Recall that DEVFUZZ directs symbolic execution to
stop exploring a program path once the probing fails on
that path, based on an error message (See §4.1). For those
successfully probed drivers, the result shows that most cases
were completed quickly, yet there were long tails. The 99th
percentile data shows that DEVFUZZ explored 25K paths for
more than 3 hours. We also confirmed that in all cases, the
generated probe model (after a successful symbolic probing)
enables the corresponding device driver to pass the dynamic
probing logic and can be successfully loaded for fuzzing.

On the other hand, Table 2 shows that DEVFUZZ fail
to probe 38 devices (26 PCI 12 USB devices). DEVFUZZ
successfully probed all the RapidIO and I2C devices. We
manually reviewed those 38 cases where DEVFUZZ could

3255

Authorized licensed use limited to: Yonsei Univ. Downloaded on December 08,2023 at 22:06:19 UTC from IEEE Xplore. Restrictions apply.

Figure 9: Code coverage comparison with network device
drivers: PrIntFuzz vs. Drifuzz vs. DevFuzz (this work).

not generate probe models. There were three root causes:
(1) Complex Probing Logic 25/38 (64%) cases fall un-

der this category. Though grouped together, under the hood
there are two slightly different reasons. First, DEVFUZZ can-
not generate a device probe model simply due to the com-
plex probing logic. For example, we observed DEVFUZZ
cannot generate results for realtek wireless driver and
e100 ethernet driver within an 8-hour symbolic execution
budget. The reason is that the probe function involves a
complex checksum check that symbolic execution can’t
solve. The second case is different. The driver requires other
resources not modeled by the current implementation of
DEVFUZZ. For instance, AMDGPU driver checks the VGA
BIOS content, and nVIDIA driver checks the ACPI table.
DEVFUZZ does not run symbolic execution for those device
memory regions.

(2) IRQ 10/38 (28%) drivers wait for the device to trig-
ger an IRQ during probing. DEVFUZZ’s symbolic probing
does not generate an IRQ. This issue may be addressed by
adding an IRQ detection and triggering mechanism in the
symbolic execution engine.

(3) DMA 3/38 (8%) cases require DMA, but DEVFUZZ
does not support DMA during symbolic execution. Simi-
lar to the above IRQ, the problem may be resolved with
additional DMA support in the symbolic execution engine.
6.4. Comparing DEVFUZZ with Prior Work
This section aims to compare DEVFUZZ with two prior de-
vice driver fuzzing solutions PrIntFuzz [18] and Drifuzz [19]
in terms of probing success rate and code coverage. For the
experiments, we randomly selected 17 network devices for
which we can use the common, relatively complex test case.
Figure 9 shows the code coverage results.
6.4.1. DEVFUZZ vs. PrIntFuzz
PrIntFuzz [18] uses static analysis to generate a sequence
of MMIO values to help pass the driver’s probing logic
and perform fault injection fuzzing for the probing code.
We found that PrIntFuzz could not probe 9 out of 17
network devices (e1000 and kvaser are not supported)
due to the unsoundness of its static analysis. On the other
hand, DevFuzz’s symbolic execution could probe all the 17
network devices at the cost of symbolic execution time.
When tested with all the 150 Linux device drivers, we found

that PrIntFuzz was able to probe 61 devices (40.6%), which
is smaller than DEVFUZZ’s symbolic probing (75%, See
§6.3). Note that PrIntFuzz also reports a 43.3% success
probing rate for network drivers in their paper.

Furthermore, PrIntFuzz is mainly designed for probing-
phase fuzzing and cannot generate a syscall template for
fuzzing the post-probing phase for many drivers. The reason
is that PrIntFuzz uses DIFUZE’s [13] static analysis to
identify syscall interfaces and relevant syscall parameters
for drivers, yet the static analysis fails to generate those test
cases for the post-probing phase. After probing, PrIntFuzz
blindly relies on syzkaller [34] to fuzz the syscall parame-
ters, MMIO spaces, and DMA buffers. As a result, PrIntFuzz
leads to the least code coverage (6.94% on geometric mean).
6.4.2. DEVFUZZ vs. Drifuzz
Drifuzz [19] relies on concolic execution. We tested Drifuzz
with 17 network devices by running golden seed generation
and 24-hour fuzzing. As Drifuzz only supports Ethernet and
USB devices, it does not support one CAN device kvaser
and fails to boot with the ne2k device. Drifuzz successfully
probed 12/17 devices. Unfortunately, Drifuzz does not report
the successful probing rate in their paper. The reason for
failure cases is that their concolic execution falls back to
“forced execution” to pass certain branch conditions. This
may lead to infeasible cases, resulting in probing failure.
Their search algorithm is based on simple heuristics and
cannot guarantee the input with the highest score pass the
probing conditions.

Drifuzz’s post-probing testing combines concolic exe-
cution and fuzzing. Its concolic execution may pass more
path constraints, compared with DevFuzz’s static analysis-
generated model for some cases, leading to higher code cov-
erages than DevFuzz (e.g., pcnet32, ksz884z in Figure 9).
However, the concolic execution makes fuzzing speed very
slow, compared to DevFuzz. We observed that DevFuzz
is 10x-20x faster. Moreover, Drifuzz leads to lower code
coverages than DevFuzz for the remaining device drivers
(16.8% vs 34.6% on geometric mean). One reason is that a
driver execution is inherently non-deterministic due to the
concurrency between driver functions and interrupt handlers.
As a result, the constraints solved from one execution often
were not able to be used in the next execution as two
executions diverge, reducing the effectiveness of a concolic
execution.

6.5. Effectiveness of DEVFUZZ Models
For fuzzing, DEVFUZZ mixes the model’s and AFL’s in-
puts (by default with 50-50% probability) with the goal to
leverage both the modeled constraints and feedback-directed
mutation. In this section, we first evaluate how much each
model of DEVFUZZ improves fuzzing code coverage (on
top of what AFL can offer) and then conduct a sensitivity
study on different model use probabilities.
6.5.1. Models’ Impacts on Code Coverage
We first evaluate how each DEVFUZZ model improves
fuzzing code coverage for the same set of 17 network
devices. For probing-phase fuzzing (not shown for space),
when pure AFL is used, the code coverage was 6.88% on

3256

Authorized licensed use limited to: Yonsei Univ. Downloaded on December 08,2023 at 22:06:19 UTC from IEEE Xplore. Restrictions apply.

Figure 10: Code coverage comparison: Pure AFL vs. Model-
based (adding one each) fuzzing.

Figure 11: Code coverage (geometric mean) with varying
model use probabilities.

Figure 12: Code coverage comparison: DevFuzz (auto-
generated models) vs. QemuFuzz (expert-derived models)

the geometric mean. When DEVFUZZ’s probe model is used
in combination (with the default 50% probability), the code
coverage was increased to 16.84%. Many drivers follow a
very strict probing protocol with special values and/or a
specific temporal order of values read from the device. Thus,
it is hard for a pure AFL to pass such complex probing logic.

Figure 10 shows the code coverage for post-probing
phase fuzzing. For this experiment, we incrementally add
DEVFUZZ’s IRQ, MMIO/PIO model, and DMA model atop
a pure AFL. The kvaser driver has no DMA support and
is relatively simple, and thus the MMIO/DMA models had
a minor impact. Overall, the figure shows that each model

TABLE 5: DEVFUZZ model completeness analysis, report-
ing the number of modeled registers over the number of
total registers (counted via manual code reviews)

Driver MMIO&PIO Regs DMA Regs Total
3c59x 8/9 1/1 9/10
ksz884x 4/5 1/1 5/6
pcnet32 3/5 3/3 6/8
skge 8/10 2/2 10/12
kvaser 7/7 0/0 7/7
ne2k 4/5 0/0 4/5
8139cp 6/6 2/2 8/8
tulip 6/7 1/1 7/8
vmxnet3 3/5 4/9 7/14
sundance 9/10 1/1 10/11

gradually increases the code coverage.
6.5.2. Sensitivity Study on Fuzzing Probability
DEVFUZZ selects either model-generated input or AFL-
generated one at some probability (by default 50%). We
studied how configurable probability affects code coverage.
Figure 11 shows the geometric mean of code coverages
across all the 17 tested drivers while varying the probability
from 0% (AFL only) to 100% (Model only). For both
probing and post-probing fuzzing, using some combination
of the two achieved higher code coverage than those using
only one technique. Based on the result, we set the default
probability to 50%. The main limitation of using AFL only
(0%) is that the fuzzing input space is too huge to explore
without any constraints. Using model only (100%) is not
effective either as it may give up the opportunity to explore
other paths such as error handling code paths.
6.6. Quality of DEVFUZZ Models
This section focuses on evaluating the completeness and
correctness of the generated models. As an oracle does not
exist, we propose two proxy evaluation methods: one based
on the number of modeled registers, and another based on
expert-derived manual models.
6.6.1. Model Completeness Analysis
We first evaluate the quality of DEVFUZZ’s models by
counting how many registers to which a device driver refers
are indeed (properly) included in DEVFUZZ’s automatically
generated models. Any missing register implies incomplete-
ness. Note that we count the total number of registers
from the device driver’s perspective as counting the number
of actual registers in hardware requires hardware firmware
analysis. We believe this is a good proxy to evaluate the
quality of DEVFUZZ’s models as the purpose of modeling
is to explore more program paths inside device drivers. As
the study requires manual code review, we performed the
analysis on 10 random drivers.

Table 5 summarizes the result of the modeled vs. total
MMIO, PIO, DMA registers analysis. In total, DEVFUZZ’s
models include 62-100% of registers that are read by a
device driver: i.e., there were some missing registers (false
negative models) due to the limitations in static analyses
discussed in §4.2. We did not encounter any false positive
registers (that appear in a model but are not accessed by
a device driver). Though DEVFUZZ does not guarantee

3257

Authorized licensed use limited to: Yonsei Univ. Downloaded on December 08,2023 at 22:06:19 UTC from IEEE Xplore. Restrictions apply.

completeness, our empirical study in §6.5 and §6.6.2
shows that DEVFUZZ models are good enough to effectively
improve the fuzzing code coverage.
6.6.2. Comparison to Expert-derived Models
Furthermore, we attempt to evaluate the quality of
DEVFUZZ’s models by comparing DEVFUZZ’s models with
“expert-derived” manual models. For this experiment, we
regard a QEMU’s virtual device as an oracle expert-derived
model. QEMU as a whole-system emulator includes a set of
virtual devices, designed and implemented by (third-party)
experts, intended to mimic actual hardware behaviors. Based
on this observation, we built QEMUFuzz that combines a
QEMU’s virtual device (as a model) with the AFL fuzzer.
Like DEVFUZZ, QEMUFuzz fuzzes a target device driver
by choosing input from either a QEMU virtual device or
the AFL fuzzer. This allows us to make an apple-to-apple
fuzzer-level comparison and evaluate the impacts of (pre-
cise) models on the end-to-end fuzzing code coverage.

Figure 12 shows the code coverage comparison between
DEVFUZZ and QEMUFuzz for 9 network drivers, whose
virtual devices are available in QEMU. As expected, QE-
MUFuzz’s virtual device (oracle) passes the dynamic prob-
ing and supports post-probing-phase fuzzing for all device
drivers. However, DEVFUZZ could not complete symbolic
probing for two drivers e1000e and e100, leading to low
code coverage. Upon investigation, the root cause was found
to be unmodeled resources during symbolic execution (simi-
lar to AMDGPU and nVIDIA cases in §6.3). On the other hand,
for the remaining 6 drivers, DEVFUZZ was able to probe
devices and achieve marginally smaller code coverages.

We found four bugs/crashes during this experiment.
There were two false negatives in e1000e and vmxnet3:
QEMUFuzz detected a bug but DEVFUZZ could not. The
e1000e case appears as DEVFUZZ could not succeed in
probing as mentioned earlier. The other case in vmxnet3
(that DEVFUZZ could probe) was due to missing DMA
registers (See Table 5). The other two bugs in 8139cp and
e1000 (which DEVFUZZ could probe) were found by both
fuzzers. The above two code coverage and false negative
experiments demonstrate that DEVFUZZ could generate de-
vice models that are reasonably good enough for fuzzing, yet
symbolic probing and static analysis could be a bottleneck.

6.7. Finding Bugs in FreeBSD Device Drivers
Next, we tested FreeBSD device drivers. The goal of this
experiment is to demonstrate that a device model learned
from one OS can be transferred to test device drivers of
other OSes. To this end, we first find out common devices
supported by both Linux and FreeBSD. We then use Linux-
based device models to fuzz-test FreeBSD device drivers.

It is worth noting that we found it not trivial to find
common device drivers. We used the device VID/PID
matching method to find the common devices supported
by both OSes. For Linux, we used modinfo com-
mand. For example, running modinfo arcmsr.ko returns
pci:v000017D3d00001110sv*sd*bc*sc*i*, which im-
plies that the device is a PCI device, the VID is 0x17d3, and
the PID is 0x1110. However, to the best of our knowledge,

TABLE 6: Test FreeBSD with DEVFUZZ

BSD Driver Linux Driver Model Size (LoC) Bug?
i915kms.ko i915.ko 69 Y
arcmsr.ko arcmsr.ko 280 Y
snd hda.ko snd intel8x0.ko 66 Y
iwlwifi.ko iwlwifi.ko 72 N
mga.ko mgag200.ko 53 N
if stge.ko dl2k.ko 55 Y
twa.ko 3w-9xxx.ko 87 Y
atapci.ko pata pdc202xx old.ko 155 Y
if tx.ko epic100.ko 109 N
isci.ko isci.ko 220 N
sge.ko sis190.ko 179 N
if tl.ko tlan.ko 64 Y
if axp.ko amd xgbe.ko 32 Y
age.ko atl1.ko 158 N

TABLE 7: Test Windows 10 with DEVFUZZ

Windows Driver Linux Driver Model Size (LoC) Bug?
storahci.sys acard ahci.ko 137 N
amdacpbus.sys acp3x.ko 64 N
AMDXgbe.sys amd xgbe.ko 32 Y
arcmsr.sys arcmsr.ko 280 N
L160x64.sys atl1.ko 159 N
L260x64.sys atl2.ko 133 N
usbehci.sys ich9 ehci.ko 62 N
nvme.sys nvme.ko 88 N

we were not able to find such an easy-to-use command-
line tool. Instead, we reviewed the driver codes and found
that FreeBSD PCI devices use pci_get_vendor(dev)
and pci_get_devid(dev) APIs to get the VID and PID,
respectively. We wrote a static analysis tool based on this
heuristic to extract supported PCI devices. Finally, we found
25 PCI devices that are supported by both Linux and
FreeBSD.

Among them, DEVFUZZ was able to probe 14 (56%)
device drivers. Table 6 lists all the probed FreeBSD drivers,
corresponding Linux drivers, model size, and whether a bug
is detected in the FreeBSD driver. DEVFUZZ deteceted 8
bugs in total; 2 have been patched. Table 2 lists the detailed
information. In , we describe one representative bug case.
6.8. Finding Bugs in Windows Device Drivers
We used a similar method to test 16 Windows device
drivers where 8 could be probed. Table 7 lists all the
probed/tested Windows drivers along with Linux drivers
from which device models were created. DEVFUZZ found
1 crash in Windows AMDXgbe driver during fuzz-testing.
Since Windows drivers are closed-source blobs, we did not
analyze the root cause.
7. Conclusion
This paper presents DEVFUZZ, a model-based, automatic,
device-less device driver fuzz testing tool. DEVFUZZ sup-
ports various device drivers and bus types including but not
limited to PCI, USB, RapidIO, and I2C. The hybrid use
of symbolic execution and static/dynamic program analyses
allows DEVFUZZ to automatically fuzz-test device drivers
without actual devices as well as to efficiently and effec-
tively detect many bugs in various operating systems such
as Linux, FreeBSD, and Windows.
References
[1] A. T. Markettos, C. Rothwell, B. F. Gutstein, A. Pearce, P. G. Neu-

mann, S. W. Moore, and R. N. M. Watson, “Thunderclap: Exploring

3258

Authorized licensed use limited to: Yonsei Univ. Downloaded on December 08,2023 at 22:06:19 UTC from IEEE Xplore. Restrictions apply.

vulnerabilities in operating system IOMMU protection via DMA
from untrustworthy peripherals,” in Proceedings of the Network and
Distributed Systems Security Symposium (NDSS), 2019.

[2] “Playstation 3 jailbreak,” https://en.wikipedia.org/wiki/PlayStation
3 Jailbreak.

[3] “The first ps4 kernel exploit: Adieu,” https://fail0verflow.com/blog/
2017/ps4-namedobj-exploit/.

[4] “Xbox exploits,” https://xboxdevwiki.net/Exploits#Savegames.

[5] “An ios zero-click radio proximity exploit odyssey,”
https://googleprojectzero.blogspot.com/2020/12/
an-ios-zero-click-radio-proximity.html.

[6] M. J. Renzelmann, A. Kadav, and M. M. Swift, “SymDrive: Testing
drivers without devices,” in 10th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 12), 2012, pp. 279–292.

[7] J. Patrick-Evans, L. Cavallaro, and J. Kinder, “POTUS: Probing
Off-The-Shelf USB drivers with symbolic fault injection,” in 11th
USENIX Workshop on Offensive Technologies (WOOT 17), 2017.

[8] V. Kuznetsov, V. Chipounov, and G. Candea, “Testing Closed-Source
binary device drivers with DDT,” in 2010 USENIX Annual Technical
Conference (USENIX ATC 10), 2010.

[9] S. Y. Kim, S. Lee, I. Yun, W. Xu, B. Lee, Y. Yun, and T. Kim,
“CAB-Fuzz: Practical concolic testing techniques for COTS operating
systems,” in 2017 USENIX Annual Technical Conference (USENIX
ATC 17), 2017, pp. 689–701.

[10] R. Baldoni, E. Coppa, D. C. D’elia, C. Demetrescu, and
I. Finocchi, “A survey of symbolic execution techniques,” ACM
Comput. Surv., vol. 51, no. 3, may 2018. [Online]. Available:
https://doi.org/10.1145/3182657

[11] V. J. Manès, H. Han, C. Han, S. K. Cha, M. Egele, E. J. Schwartz, and
M. Woo, “The art, science, and engineering of fuzzing: A survey,”
IEEE Transactions on Software Engineering, vol. 47, no. 11, pp.
2312–2331, 2021.

[12] S. M. S. Talebi, H. Tavakoli, H. Zhang, Z. Zhang, A. A. Sani, and
Z. Qian, “Charm: Facilitating dynamic analysis of device drivers
of mobile systems,” in 27th USENIX Security Symposium (USENIX
Security 18), 2018, pp. 291–307.

[13] J. Corina, A. Machiry, C. Salls, Y. Shoshitaishvili, S. Hao, C. Kruegel,
and G. Vigna, “Difuze: Interface aware fuzzing for kernel drivers,”
in Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, 2017, pp. 2123–2138.

[14] D. Song, F. Hetzelt, D. Das, C. Spensky, Y. Na, S. Volckaert, G. Vi-
gna, C. Kruegel, J.-P. Seifert, and M. Franz, “PeriScope: An effective
probing and fuzzing framework for the hardware-OS boundary,” in
Network and Distributed System Security Symposium (NDSS), 2019.

[15] H. Peng and M. Payer, “USBFuzz: A framework for fuzzing USB
drivers by device emulation,” in 29th USENIX Security Symposium
(USENIX Security 20), 2020, pp. 2559–2575.

[16] K. Kim, T. Kim, E. Warraich, B. Lee, K. R. Butler, A. Bianchi, and
D. J. Tian, “Fuzzusb: Hybrid stateful fuzzing of usb gadget stacks.”

[17] “American fuzzy lop - a security-oriented fuzzer,” https://github.com/
google/AFL.

[18] Z. Ma, B. Zhao, L. Ren, Z. Li, S. Ma, X. Luo, and
C. Zhang, “Printfuzz: Fuzzing linux drivers via automated
virtual device simulation,” in Proceedings of the 31st ACM
SIGSOFT International Symposium on Software Testing and
Analysis, ser. ISSTA 2022. New York, NY, USA: Association
for Computing Machinery, 2022, p. 404–416. [Online]. Available:
https://doi.org/10.1145/3533767.3534226

[19] Z. Shen, R. Roongta, and B. Dolan-Gavitt, “Drifuzz: Harvesting
bugs in device drivers from golden seeds,” in 31st USENIX Security
Symposium (USENIX Security 22). Boston, MA: USENIX Associ-
ation, Aug. 2022, pp. 1275–1290. [Online]. Available: https://www.
usenix.org/conference/usenixsecurity22/presentation/shen-zekun

[20] “Intel 8257 dma controller,” https://en.wikipedia.org/wiki/Intel 8257.

[21] “U-boot,” https://en.wikipedia.org/wiki/Das U-Boot.

[22] “Linux and the device tree,” https://www.kernel.org/doc/html/latest/
devicetree/usage-model.html.

[23] B. Feng, A. Mera, and L. Lu, “P2IM: Scalable and hardware-
independent firmware testing via automatic peripheral interface mod-
eling,” in 29th USENIX Security Symposium (USENIX Security 20),
2020, pp. 1237–1254.

[24] A. Mera, B. Feng, L. Lu, and E. Kirda, “Dice: Automatic emulation
of dma input channels for dynamic firmware analysis,” in 2021 IEEE
Symposium on Security and Privacy (SP), 2021, pp. 1938–1954.

[25] I. Pustogarov, Q. Wu, and D. Lie, “Ex-vivo dynamic analysis frame-
work for android device drivers,” in 2020 IEEE Symposium on
Security and Privacy (SP). IEEE, 2020, pp. 1088–1105.

[26] W. Zhao, K. Lu, Q. Wu, and Y. Qi, “Semantic-informed driver fuzzing
without both the hardware devices and the emulators,” in Network and
Distributed Systems Security (NDSS) Symposium, April 2022.

[27] “Ibm cell be iommu,” https://github.com/torvalds/linux/blob/master/
arch/powerpc/platforms/cell/iommu.c.

[28] M. Ben-Yehuda, J. Xenidis, M. Ostrowski, K. Rister, A. Bruemmer,
and L. Van Doorn, “The price of safety: Evaluating iommu perfor-
mance,” in The Ottawa Linux Symposium, 2007, pp. 9–20.

[29] “Arm smmu version 1 and 2,” https://wiki.osdev.org/ARM SMMU
versions 1 and 2.

[30] “Playstation 3 jailbreak on ti84 calculator,” https://hackaday.com/
2010/09/10/playstation-3-exploit-using-a-ti84-calculator/.

[31] V. Chipounov, V. Kuznetsov, and G. Candea, “S2e: A platform for
in-vivo multi-path analysis of software systems,” in Proceedings of
the Sixteenth International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS XVI.
New York, NY, USA: Association for Computing Machinery, 2011,
p. 265–278. [Online]. Available: https://doi.org/10.1145/1950365.
1950396

[32] F. Bellard, “Qemu, a fast and portable dynamic translator,” in Pro-
ceedings of the Annual Conference on USENIX Annual Technical
Conference, ser. ATEC ’05. USA: USENIX Association, 2005, p. 41.

[33] C. Cadar, D. Dunbar, and D. Engler, “Klee: Unassisted and automatic
generation of high-coverage tests for complex systems programs,” in
Proceedings of the 8th USENIX Conference on Operating Systems
Design and Implementation, ser. OSDI’08. USA: USENIX Associ-
ation, 2008, p. 209–224.

[34] “Syzkaller is an unsupervised coverage-guided kernel fuzzer,” https:
//github.com/google/syzkaller.

[35] C. Aschermann, S. Schumilo, T. Blazytko, R. Gawlik, and T. Holz,
“Redqueen: Fuzzing with input-to-state correspondence.” in NDSS,
vol. 19, 2019, pp. 1–15.

[36] Z.-M. Jiang, J.-J. Bai, J. Lawall, and S.-M. Hu, “Fuzzing error
handling code in device drivers based on software fault injection,”
in 2019 IEEE 30th International Symposium on Software Reliability
Engineering (ISSRE). IEEE, 2019, pp. 128–138.

[37] K. Kim, D. R. Jeong, C. H. Kim, Y. Jang, I. Shin, and B. Lee, “Hfl:
Hybrid fuzzing on the linux kernel.” in NDSS, 2020.

[38] S. Pailoor, A. Aday, and S. Jana, “MoonShine: Optimizing OS
fuzzer seed selection with trace distillation,” in 27th USENIX Security
Symposium (USENIX Security 18), 2018, pp. 729–743.

[39] D. Song, F. Hetzelt, J. Kim, B. B. Kang, J.-P. Seifert, and M. Franz,
“Agamotto: Accelerating kernel driver fuzzing with lightweight vir-
tual machine checkpoints,” in 29th USENIX Security Symposium
(USENIX Security 20), 2020, pp. 2541–2557.

[40] A. Machiry, C. Spensky, J. Corina, N. Stephens, C. Kruegel, and
G. Vigna, “DR. CHECKER: A soundy analysis for linux kernel
drivers,” in 26th USENIX Security Symposium (USENIX Security 17),
2017, pp. 1007–1024.

3259

Authorized licensed use limited to: Yonsei Univ. Downloaded on December 08,2023 at 22:06:19 UTC from IEEE Xplore. Restrictions apply.

[41] J.-J. Bai, T. Li, K. Lu, and S.-M. Hu, “Static detection of unsafe DMA
accesses in device drivers,” in 30th USENIX Security Symposium
(USENIX Security 21), 2021, pp. 1629–1645.

[42] X. Tan, Y. Zhang, X. Yang, K. Lu, and M. Yang, “Detecting kernel
refcount bugs with Two-Dimensional consistency checking,” in 30th
USENIX Security Symposium (USENIX Security 21), 2021, pp. 2471–
2488.

[43] Q. Wu, A. Pakki, N. Emamdoost, S. McCamant, and K. Lu, “Under-
standing and detecting disordered error handling with precise function
pairing,” in 30th USENIX Security Symposium (USENIX Security 21),
2021, pp. 2041–2058.

[44] F. Fowze, D. Tian, G. Hernandez, K. Butler, and T. Yavuz, “Proxray:
Protocol model learning and guided firmware analysis,” IEEE Trans-
actions on Software Engineering, vol. 47, no. 9, pp. 1907–1928, 2021.

[45] “Intel process tracing,” https://software.intel.com/content/www/us/en/
develop/blogs/processor-tracing.html.

[46] S. Schumilo, C. Aschermann, R. Gawlik, S. Schinzel, and T. Holz,
“kAFL: Hardware-Assisted feedback fuzzing for OS kernels,” in 26th
USENIX Security Symposium (USENIX Security 17), 2017, pp. 167–
182.

[47] “Net tools,” https://github.com/ecki/net-tools.

[48] “Can utils,” https://github.com/linux-can/can-utils.

[49] “Rapidio remote memory access platform software,” https://github.
com/RapidIO/RapidIO RRMAP.

[50] “Generic hdlc layer,” https://mirrors.edge.kernel.org/pub/linux/utils/
net/hdlc/.

[51] “Linux kernel,” https://github.com/torvalds/linux.

[52] “X server,” https://github.com/freedesktop/xorg-xserver.

[53] “Coreutils - gnu core utilities,” https://www.gnu.org/software/
coreutils/.

[54] “Trinity: Linux system call fuzzer,” https://github.com/kernelslacker/
trinity.

[55] “Linux test project,” https://github.com/linux-test-project/ltp.

[56] G. Klees, A. Ruef, B. Cooper, S. Wei, and M. Hicks, “Evaluating
fuzz testing,” in Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security, ser. CCS ’18. New
York, NY, USA: Association for Computing Machinery, 2018,
p. 2123–2138. [Online]. Available: https://doi.org/10.1145/3243734.
3243804

[57] “CVE-2022-0487,” https://nvd.nist.gov/vuln/detail/CVE-2022-0487.

[58] “media: bt878: do not schedule tasklet when it is not setup,” https:
//github.com/torvalds/linux/commit/a3a54bf.

Appendix
1. BUG 1: An IRQ Handler Bug in bt878

Figure 13 shows a null pointer deference bug found in
the IRQ handler of bt878 driver. The driver reads stat and
mask from the device’s MMIO registers in lines 4-5. It then
checks whether the device actually raised the IRQ at line 6.
The PCI system allows multiple devices to share the same
IRQ line; when the host receives an IRQ request, it needs
to check which device actually raised the IRQ. Lines 4-6
check whether BT878 has raised an IRQ or not. In line 8, it
checks some flags in the BT878_AINT_STAT register. If the
check succeeds, it will schedule a tasklet (&bt->tasklet)
in line 10. The tasklet (one of the bottom half logics),
allows a non-critical part of IRQ handling to be postponed
to improve system responsiveness. In the bottom half, the
tasklet calls a callback function (bt->tasklet.callback)

1 // bt878.c, bt878.ko
2 static irqreturn_t bt878_irq(int irq, void

*dev_id)↪→
3 {
4 stat = btread(BT878_AINT_STAT);
5 mask = btread(BT878_AINT_MASK);
6 if (!(astat = (stat & mask)))
7 return IRQ_NONE;
8 if (astat & BT878_ARISCI) {
9 bt->finished_block = (stat & BT878_ARISCS)

>> 28;↪→
10 - tasklet_schedule(&bt->tasklet);
11 + if (bt->tasklet.callback)
12 + tasklet_schedule(&bt->tasklet);
13 break;
14 }
15 }
16 // dvb-bt8xx.c, dvb-bt8xx.ko
17 static int dvb_bt8xx_load_card(struct

dvb_bt8xx_card *card, u32 type)↪→
18 {
19 tasklet_setup(&card->bt->tasklet,

dvb_bt8xx_task);↪→
20 }

Figure 13: A null pointer deference bug in Linux bt878
driver. Fixed in: a3a54bf [58]

to process the rest of the IRQ handler. However, the prob-
lem is that the bt->tasklet.callback is initialized in
a separate kernel module dvb-bt8xx.ko, line 19. The
bt878 kernel module can be loaded independently, while
the bt->tasklet.callback remains null. In this case,
when the tasklet is scheduled to run, it will cause a null
pointer dereference.

It is worth noting that during post-probing fuzzing, our
MMIO model could set the bits that can pass the checks at
lines 6 and 8, constructing a proper context where the tasklet
is scheduled. Together with timer-based IRQ injection, our
MMIO model cooperatively helped the bug detection.

2. Bug 48: A DMA Bug in epic100

Figure 14 shows a buffer overflow bug detected in the
network device epic100 using our DMA model-guided
fuzzing. The driver reads from the secondary DMA buffer
when the DescOwn bit in the rxstatus field of the first
level DMA buffer is not set. In line 11, the packet length is
calculated using the upper 32 bit of the status read from the
DMA buffer. The buffer overflow bug is caused by an arith-
metic overflow of the pkt_len variable. When the pkt_len
is -1, the length checking in line 13 is bypassed. Since the
variable rx_copybreak is 0 by default, the if condition in
line 17 is satisfied and its true branch is executed. In line 20,
the driver tries to copy the pkt_len size of data to the skb
buffer. However, the function skb_copy_to_linear_data
treats pkt_len as a 64-bit unsigned integer. This will cause
65535 bytes of data to be copied into the skb buffer, which
only has the size of one page, triggering a buffer overflow.

Though it is a severe security vulnerability that can
be fixed by changing the type of pkt_len to unsigned
short, triggering the bug is non-trivial. First, without know-
ing the DMA buffer location, the DMA buffer will never
be fuzzed. Second, reaching the bug needs to combine
two constraints together: the flag check in line 6 and the
pkt_len check in line 17. Thanks to our DMA model, this
bug is revealed just in a few minutes during fuzzing.

3260

Authorized licensed use limited to: Yonsei Univ. Downloaded on December 08,2023 at 22:06:19 UTC from IEEE Xplore. Restrictions apply.

1 // epic100.c
2 static int epic_rx(struct net_device *dev, int

budget)↪→
3 {
4 ...
5 /* Read RX buffer status from DMA Buffer */
6 while ((ep->rx_ring[entry].rxstatus & DescOwn)

== 0) {↪→
7 int status = ep->rx_ring[entry].rxstatus;
8 if (status & 0x2006) {
9 /* Omitted */

10 } else {
11 - short pkt_len = (status >> 16) - 4;
12 + unsigned pkt_len = (status >> 16) - 4;
13 if (pkt_len > PKT_BUF_SZ - 4) {
14 pkt_len = 1514;
15 }
16
17 if (pkt_len < rx_copybreak &&
18 (skb = netdev_alloc_skb(dev,

pkt_len+2)) != NULL) {↪→
19 ...
20 skb_copy_to_linear_data(skb,

ep->rx_skbuff[entry]->data,
pkt_len);

↪→
↪→

21 skb_put(skb, pkt_len);
22 } else {
23 /* Omitted */
24 }
25 netif_receive_skb(skb);
26 }
27 work_done++;
28 entry = (++ep->cur_rx) % RX_RING_SIZE;
29 }
30
31 return work_done;
32 }

Figure 14: A buffer overflow bug in epic100.

1 static void arcmsr_drain_donequeue(struct
AdapterControlBlock *acb, u_int32_t
flag_srb, u_int16_t error) {

↪→
↪→

2 srb = (struct CommandControlBlock
*)(acb->vir2phy_offset+(flag_srb<< 5));↪→

3 if((srb->acb != acb) || (srb->srb_state !=
ARCMSR_SRB_START)) {↪→

4 if(srb->srb_state == ARCMSR_SRB_TIMEOUT) {
5 arcmsr_free_srb(srb);
6 return;
7 }
8 printf("...srb_state=0x\%x...", ...

,srb->srb_state,...);↪→
9 return;

10 }
11 arcmsr_report_srb_state(acb, srb, error);
12 }
13 static void arcmsr_hba_postqueue_isr(struct

AdapterControlBlock *acb)↪→
14 {
15 u_int32_t flag_srb;
16 u_int16_t error;
17 ...
18 while((flag_srb =

CHIP_REG_READ32(HBA_MessageUnit,↪→
19 0, outbound_queueport)) != 0xFFFFFFFF) {
20 ...
21 arcmsr_drain_donequeue(acb, flag_srb,

error);↪→
22 } /*drain reply FIFO*/
23 }

Figure 15: A kernel information disclosure bug in arcmsr.

3. Bug 56: An IRQ Handler Bug in arcmsr

Figure 15 shows a code snip from FreeBSD’s arcmsr
driver. The function arcmsr_hba_postqueue_isr can
be triggered by a device interrupt. In this example, the
variable flag_srb can be controlled by the device. This
variable is read from line 19 and then passed to function
arcmsr_drain_donequeue. In this function, the variable
srb is calculated based on this value at line 2. This means

the device can change srb to any arbitrary value. The
following statement at line 8 can cause kernel information
disclosure: e.g., can be used to defeat kernel address space
layout randomization (ASLR). If lines 5 and 11 are reached,
the kernel will overwrite the data pointed by variable srb.
In the worst case, this means the device can fool the driver
to modify important kernel data structure and it may be used
to help gain root privilege for a user process.

3261

Authorized licensed use limited to: Yonsei Univ. Downloaded on December 08,2023 at 22:06:19 UTC from IEEE Xplore. Restrictions apply.

