
Low-Cost Soft Error Resilience with Unified Data
Verification and Fine-Grained Recovery for

Acoustic Sensor Based Detection
Qingrui Liu∗, Changhee Jung∗, Dongyoon Lee∗ and Devesh Tiwari†

∗ Virginia Tech, Blacksburg, Virginia, USA
†Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA

Email: lqingrui@vt.edu, chjung@cs.vt.edu, dongyoon@vt.edu, tiwari@ornl.gov

Abstract—This paper presents Turnstile, a hardware/software
cooperative technique for low-cost soft error resilience. Lever-
aging the recent advance of acoustic sensor based soft error
detection, Turnstile achieves guaranteed recovery by taking into
account the bounded detection latency. The compiler forms
verifiable regions and selectively inserts store instructions to
checkpoint their register inputs so that Turnstile can verify the
register/memory states with regard to a region boundary in a
unified way without expensive register file protection.

At runtime, for each region, Turnstile regards any stores (to
both memory and register checkpoints) as unverified, and thus
holds them in a store queue until the region ends and spends
the time of the error detection latency. If no error is detected
during the time, the verified stores are merged into memory
systems, and registers are checkpointed. When all the stores
including checkpointing stores prior to a region boundary are
verified, the architectural and memory states with regard to the
boundary are verified, thus it can serve as a recovery point. In
this way, Turnstile contains the errors within the core without
extra memory buffering.

When an error is detected, Turnstile invalidates unverified
entries in the store queue and restores the checkpointed register
values to get the architectural and memory states back to
what they were at the most recently verified region boundary.
Then, Turnstile simply redirects program control to the verified
region boundary and continues execution. The experimental
results demonstrate that Turnstile can offer guaranteed soft error
recovery with low performance overhead (<8% on average).

Keywords—Soft Error Resilience, Fine-Grained Recovery,
Acoustic Sensor, Compiler, Region Boundary Buffer

I. INTRODUCTION

Due to technology scaling and near-threshold computing,
radiation-induced soft errors become a challenging concern in
computing systems [1], [2], [3]. When high-energy particles
(e.g., alpha or cosmic neutron particles) strike the circuit, they
might lead to an application crash or even worse, silent data
corruption (SDC) where the errors corrupt the program output
without being detected. The near-threshold voltage and the
process variation make it harder to predict the response of the
circuit to a particle strike, and thus they become significantly
more susceptible to soft errors [1], [4], [5], [6], [7].

For soft error resilience, detection and recovery are two
essential steps to expose the errors and fix any resulting
corruption. Recently, Upasani et al. have proposed an acoustic

sensor based detection [3], [8], [9] as an alternative to tradi-
tional redundancy or symptom-based schemes [10], [11], [12],
[13], [14], [15]. Acoustic sensors are very promising in that
they can detect soft errors within the core by sensing the sound
wave made by actual particle strikes with bounded detection
latency (<30 cycles) at the cost of ∼1% area overhead [3].

Since every particle strike detected by the acoustic sensors
does not necessarily produce an error in the output of the
program [16], [17], fine-grained recovery schemes with short
rollback distance (<100 instructions) are more favorable. The
reason is that fine-grained recovery schemes can tolerate high
false positives since they only need to rollback beyond a small
amount of instructions. However, prior fine-grained recovery
schemes [18], [19], [20], [21], [22] cannot provide core-level
error containment which in turn requires an extra memory
buffer. Besides, prior fine-grained recovery schemes incur
expensive hardware and performance overhead to preserve
the architectural and memory states of the recovery points.
More importantly, simply combining acoustic sensors-based
detection and prior fine-grained recovery schemes cannot
guarantee to recover the system due to the detection latency
of acoustic sensors [21] as Section II-B shows.

To this end, this paper presents Turnstile, a lightweight
hardware/software cooperative technique for soft error re-
silience that leverages the acoustic sensors. The design ob-
jective of Turnstile is to provide low-cost and fine-grained
checkpoint/rollback/re-execution mechanisms. Turnstile is mo-
tivated by the insight that all the committed instructions before
a program point p are verified only if the acoustic sensors raise
no alarm during the time of the error detection latency since
p. Therefore, Turnstile partitions the program into different
verifiable fine-grained regions and proposes a simple hardware
support to verify those regions one by one, preventing any
errors from escaping the core. In case of an error, Turnstile
rollbacks the program to the most recently verified region
boundary rb, restores rb’s architectural and memory states,
and re-executes from rb to recover from the error.

For the region based verification and recovery, Turnstile
needs to verify and preserve the program state (registers and
memory) with regard to the beginning of each region (i.e., rb).
As for the memory state, Turnstile leverages gated store queue
(GSQ) to buffer all the committed yet unverified stores before978-1-5090-3508-3/16/$31.00 c© 2016 IEEE



rb until its last preceding region (i.e., the region before rb)
ends and spends the time of the error detection latency [23],
[24], [25]. Once the last preceding region is verified, its
committed stores can be drained to the L1 cache 1. If a fault
happens since then, all the unverified stores after rb are flushed
out (squashed) from the GSQ, thus the memory state with
regard to rb is always preserved.

As for the register state, Turnstile proposes unified data
verification which leverages a novel compiler analysis to
automatically identify the minimal register state necessary for
restoring a recovery point in case of a fault, and inserts stores
to checkpoint their value in a reserved checkpoint location
of the memory. This approach allows Turnstile to convert the
problem of register data verification into that of memory data
verification, which is very cheap since stores are not on the
critical path in general. Therefore, the stored data of the not-
yet-verified registers are eventually verified in the same way of
memory data verification. The error recovery process remains
the same as well, i.e., reading from verified (checkpointed)
register data from memory.

In particular, to realize the proposed verification and re-
covery, Turnstile introduces a simple hardware support called
RBB (region boundary buffer) that is off the critical path of
the pipeline and interacts with the ROB (reorder buffer) and
the GSQ (gated store queue). Taking into account the error
detection latency, the RBB precisely controls the GSQ for
timely verification as well as directs the program control to
the most recently verified recovery point on a fault. The ROB
notifies the RBB of each committed recovery point, and the
RBB notifies the GSQ of unverified stores to be squashed
during the error recovery.

Finally, for the proposed hardware support, Turnstile intro-
duces another new compiler analysis to statically partition the
whole program into different verifiable fine-grained regions
considering the capacity of the GSQ in the core. For Turnstile
to buffer all the stores in an unverified region, its compiler
guarantees that the number of stores in a single region never
exceeds the size of the GSQ to contain the errors within
the core. Besides, to avoid performance degradation, Turnstile
forms the regions such that the stores in the neighboring
regions can be verified in a pipelined fashion, i.e., overlapping
the verification of one region with the execution of the next
region.

The following are the contributions of this work:

• A low-cost soft error resilient solution that offers guar-
anteed, fine-grained recovery with core-level error con-
tainment. Turnstile does not require expensive hardware
support (e.g., large store buffer and ECC-protected regis-
ter file) for recovery. The runtime overhead is only ∼8%
on average.

• A new hardware support called RBB that interacts with
GSQ and ROB to efficiently and precisely realize the re-

1Stores are merged to L1 when the bandwidth of the bus between the GSQ
and the cache is available

gion verification and the recovery considering the latency
of the sensor-based soft error detection.

• A novel compiler analysis framework, that requires no
source code, to automatically partition the whole program
into verifiable fine-grained regions taking into account
Turnstile’s hardware support, as well as to checkpoint
the minimal architectural state with regard to the region
boundaries.

II. BACKGROUND AND CHALLENGES

This section discusses the state-of-the-art soft error de-
tection/recovery schemes and their limitations. Throughout
the paper, a region will refer to a single-entry, multiple-
exits subgraph of control flow graph where the entry block
dominates all other blocks [26]. This paper also uses the term
inputs to refer to the variables live-in to the region boundary.

A. Sensor-Based Soft Error Detection

Recently, researchers have proposed a lightweight approach
that detects the actual particle strike rather than its impact to
the program execution [8], [3], [27], [28], [29]. When a particle
collides with a silicon nucleus, the ionization process produces
a mass of electron-hole pairs, which subsequently generate
phonons and photons resulting into an acoustic wave. Thus, the
particle strike can be detected by the change in the capacitance
of a cantilever beam like sensor [8], which is placed on top
of the processor. It can detect a strike that is 5mm away from
the detector within 500ns (1000 cycles at 2 GHz) [8].

The detection latency can be bounded by both the number
of sensors deployed and their elaborate placement, and is
referred to worst case detection latency (WCDL). For example,
Upasani et al. [3] proposed to leverage 300 detectors, which
results in 30 cycles WCDL at 2GHz at the cost of ∼1% area
overhead.

Turnstile assumes this kind of soft error detection scheme
with a WCDL and focuses on designing detection latency
aware recovery mechanism. Note that the prior work used
the majority of the detectors to cover large storage units such
as caches. Given that the caches have already been protected
with ECC [30], [31] in the commodity processors (e.g., ARM
Cortex-A57 [32]), we expect that the detection latency can
be further decreased with the same number of detectors when
they are used to protect only smaller portion of processing
units such as RF, RAT, PC, and ALU, which is sufficient for
Turnstile as it contains soft errors within the core (i.e., the
effects of soft errors do not escape to the memory system).

B. Fine-grained Soft Error Recovery and Challenges

State-of-the-art fine-grained recovery schemes [22], [18],
[19], [20], [21], [33], [34] follow the checkpoint, rollback
and re-execution model, but at a much finer granularity (<30
instructions on average [19]). They divide the control flow
graph into different regions and correct a soft error by jumping
back to the beginning of the faulty region. To achieve this,
the compiler guarantees the inputs to the region boundary are
not overwritten, i.e., no anti-dependence (write-after-read) on



the inputs, during the execution of the region. That way the
region inputs remain the same within the region, making the
regions harmless to be re-executed multiple times. If some
inputs are overwritten within the region, their values do not
remain the same as they were at the region boundary making
the re-execution of the region unsafe, i.e., ending up with
unexpected output. Thus, prior fine-grained recovery schemes
require that the region inputs are never overwritten during the
execution of the region. For example, De Kruijf et al. place
region boundaries to break the memory-level anti-dependence
and leverage register renaming to eliminate the register anti-
dependence on the inputs to the region [19], [20], [21].

Despite the benefit of false-positive tolerance and region-
level error containment, prior fine-grained recovery schemes
expose three critical challenges that hinder their pervasive use.

• Challenge 1: Prior fine-grained recovery schemes contain
the error within the region rather than the core. If the
destination address of a store is corrupted and the store
is performed, the memory state might be corrupted.
Therefore, those recovery schemes assume a large store
buffer to hold all the stores in a region. Besides, prior
region partition algorithms [19], [18] fail to constrain the
number of stores in a region which might overflow the
store buffer leaving the possibility of failure to recovery.

• Challenge 2: Prior fine-grained recovery schemes have
to pay a high overhead to protect the region inputs from
being corrupted (overwritten) by the soft errors (anti-
dependence). For example, [19] needs to protect the
register files (RF) with error correcting code (ECC) as
well as hardening logic for RF’s controller which is on the
processor’s critical path. Besides, [19] leverages register
renaming to eliminate the register anti-dependence which
leads to performance degradation. Even worse, [18] gives
up the protection of some regions due to the high over-
head caused by preserving all the their inputs.

• Challenge 3: An error must be detected within the region,
which either requires an expensive detector to ensure the
correctness of region inputs or sacrifices error coverage.
If an error occurring in one region is detected in the next
region, simply re-executing it cannot achieve the recovery
since its inputs may have been corrupted by the error.
In general, a majority of regions in the state-of-the-art
schemes are very short (e.g., ≈ 10 instructions [19], [21])
which requires an expensive error detector with almost
zero latency. Thus, acoustic sensors cannot work with
prior fine-grained recovery schemes.

The following sections show how Turnstile differs from the
previous fine-grained recovery schemes and solves the above
challenges at a low cost.

III. TURNSTILE OVERVIEW

The goal of Turnstile is to provide a low-cost fine-grained
hardware/software cooperative technique for soft error re-
silience with guaranteed error recovery which can work with
detectors with detection latency, e.g., acoustic sensors.

Fig. 1. The region verification/recovery idea (top) and the status change of
region execution (bottom)

a) Containing The Errors Within The Core: Turnstile
proposes a software/hardware co-design scheme to contain
the errors within the core. Turnstile first partitions the entire
program into different fine-grained regions preventing the
number of stores in each region from overflowing the gated
store queue (GSQ) (Section IV). Then, Turnstile introduces
the region boundary buffer (RBB) to control the GSQ to
hold the stores of a region until the region ends and spends
WCDL cycles (Section V). Thus, Turnstile can verify the
entire region as fault-free after WCDL cycles, by carefully
exploiting the acoustic sensor-based detector and the GSQ.
Figure 1 describes the status change of each region during
its execution in the presence of soft errors. Initially, Turnstile
regards all the committed stores in the region as unverified,
thus holding their write-back to memory until the region is
verified, i.e., if there is no error detected during the time of
WCDL after the region exit. For regions R1 and R2, they can
drain the stores in their region only after the time of WCDL
elapses from when they reach the next region boundaries,
i.e., R2 and R3, respectively. Consequently, no faulty store
of unverified regions can be drained to memory system (L1
cache), That is, Turnstile can contain the error occurred in a
region within the core.

b) Unified Data Verification: Premised on Turnstile’s
hardware support (Section V), Turnstile enables unified data
verification. Each region generates some or all of the inputs
to the later regions by defining the variables that can reach
the later regions. The region input is two-fold: (1) the values
stored in memory, simply memory inputs. They can be verified
by leveraging the Turnstile’s RBB and GSQ; and (2) the
values of register, i.e., register inputs. Turnstile leverages a
novel compiler analysis [34] to insert checkpoints right after
the instructions that define the registers as long as they are
used as the inputs of later regions (Section IV). Note that
the checkpoints are essentially store instructions that save the
checkpointed register value in reserved memory location. In
effect, Turnstile transforms the verification of register region
inputs into that of their store instructions for checkpointing.
That way Turnstile can unify the verifications of memory and
register inputs.



Original
Binary

Region
partitioned

binary

Turnstile
Compiler

Turnstile 
enabled 

CPU

Fig. 2. The high-level view of Turnstile

c) Detection Latency Aware Rollback and Re-execution
Based Recovery: Turnstile can successfully recover the system
even if the error is not detected within the faulty region, i.e.
Turnstile can tolerate the error detection latency of acoustic
sensors. If an error is detected during the time of WCDL after
a region (R2) encounters its next region boundary (R3), e.g.,
the first error in R3, Turnstile’s recovery handler takes the
following three actions to recover the error:
• First, Turnstile discards all the unverified stores in the

GSQ, i.e., all the stores and checkpointing stores after
R2’s entry point. Note that all the entries in the internal
structures (e.g. instruction queue etc.) are invalidated and
drained from the pipeline as well.

• Second, it restores the region input of R2 next to most
recently verified region R1. Since all the stores after re-
gion R2’s entry are discarded, the entire memory remains
intact, that includes the memory inputs to R2 as well as
the reserved memory location for the register checkpoint-
ing. Turnstile can thus safely restore the register inputs
to R2 by loading the values from the location.

• Finally, Turnstile jumps back to R2’s entry and continue
execution from there to correct the error.

As shown in Figure 1, the following regions (R2, R3) are
then executed and verified once again. Note that to recover
from the second error detected in R3, Turnstile redirects the
program control to the beginning of R3, since R2 has already
been verified.

d) Addressing the Previous Challenges: Turnstile solves
the three challenges in the previous section. Challenge 1
is solved with Turnstile’s compiler and hardware support to
contain the error within the core without sacrificing error
recovery capability. Challenge 2 is also solved with unified
data verification. Turnstile does not require any hardware
protection for register files since it handles the register ver-
ification in a unified way as discussed above. Besides, as the
checkpointing stores are generally off-the-critical-path of the
processor, we expect the performance degradation is small.
Challenge 3 is solved, since Turnstile does not require an error
to be detected within the region. This is because Turnstile can
always guarantee to recover the inputs of the most recently
verified region boundary, i.e., the inputs to the faulty region.

Figure 2 shows a high-level view of Turnstile. An ap-
plication binary is fed into the compiler, in this case a
binary rewriter. The resulting binary has special instructions
to represent a region boundary as well as store instructions
to checkpoint registers. During program execution, Turnstile
holds all the unverified data stored in a region using a
gated store queue in the first place. At the same time, the

verification controller of the Turnstile processor verifies each
region execution by intelligently counting down the detection
latency time after the region exit. Once a region is verified, the
controller signals the GSQ to release those data stored by the
region, and keeps the PC of the first instruction of the next
region. For later errors, Turnstile uses the PC as a recover
point once flushing (squashing) every unverified data in the
GSQ and restoring the region inputs.

IV. TURNSTILE COMPILER

Turnstile compiler primarily performs two tasks on the
binary before it runs on the Turnstile-enabled processor. First,
Turnstile partitions the binary into different verifiable fine-
grained regions considering the capacity of the gated store
queue (GSQ) in the processor to contain the error within
the core. Then, the compiler inserts checkpointing store in-
structions to preserve the register inputs to the regions so
that Turnstile can achieve unified data verification with simple
hardware support called RBB (region boundary buffer) shown
in Section V that controls and interacts with the GSQ and the
ROB (reorder buffer).

As Turnstile’s region partition algorithm requires the knowl-
edge of checkpoints to be inserted, we first introduce the
checkpoint set identification in Section IV-A before discussing
the region partition algorithm in Section IV-B. Finally, we
present our loop optimization technique in Section IV-C.

A. Checkpoint Set Identification

Turnstile leverages a novel compiler analysis to identify
the minimal register state [34] necessary for restoring a
recovery point (the most recently verified region boundary)
in case of a fault. Then, Turnstile inserts stores to checkpoint
those register value in the reserved checkpoint locations in
the memory. The checkpoint-set analysis investigates register-
updating instructions to checkpoint the resulting value being
used in later regions as their live-in registers [26]. That is,
Turnstile is interested in the last among those instructions that
update the same register. For a given region r, Turnstile thus
cares about only the instruction d whose register definition is
downward-exposed [26]. To determine if the updated register
needs to be checkpointed, Turnstile evaluates the following
boolean function.

Ckpt(r, d) =

{
1 if (Reg(d) ∈ LiveOut(r))

0 otherwise

where Reg maps an instruction to its first operand (i.e., the
destination register) while LiveOut maps a region to a set
of live registers at the end of the region. If the output of
Ckpt(r, d) is set, Turnstile simply inserts a checkpoint (i.e., a
store instruction) immediately following those instructions d to
store the updated value Reg(d) in a reserved memory location.
Note that for each register being checkpointed, Turnstile
reserves a specific region in the stack frame. Thus, the worst-
case memory overhead due to the checkpoints is bound to the
register file size times the maximum stack depth at runtime.



B. Region Formation

At a first glance, forming regions appears to be as simple as
counting the store instructions while traversing the control flow
graph (CFG) and placing boundaries whenever a threshold
(i.e., half size of GSQ) is reached. However, before deter-
mining the region boundaries, Turnstile cannot determine the
locations where checkpoints (i.e., stores) are inserted, making
the region formation non-trivial. That is, the region formation
problem is circularly dependent on itself: determining region
boundaries requires the resulting instrumented binary contain-
ing checkpoints, which in turn requires identification of the
regions.

To solve the problem, Turnstile first considers all the basic
blocks in the CFG as initial regions, and calculates the number
of checkpoints to be instrumented in each region. Traversing
the CFG, Turnstile then attempts to combine those initial
regions into larger regions as much as possible. By combining
them, Turnstile can eliminate many checkpoint instructions
(i.e., stores). This is because the registers being checkpointed
are no longer live-out to the later regions. The key of our
heuristic is to ensure the number of stores during the execution
of each region will not overflow the threshold (i.e., half size
of GSQ) even after the checkpointing stores are inserted. Note
that we set our threshold to be half the size of the store queue
so that Turnstile can overlap the verification of one region (i.e.,
waiting for WCDL at the end of the region) with the execution
of the next region. Therefore, Turnstile can greatly reduce the
pipeline stalls due to the store queue overflow.

Algorithm 1 Turnstile Region Formation Algorithm
1: Place a boundary at the beginning of functions and at the

end of each callsite.
2: Place a boundary at the beginning of the loop header of

each loop.
3: Place a boundary at a memory fence and an atomic

operation.
4: for each basic block bbi in CFG do
5: Strbbi ← Str oribbi + Str ckptbbi
6: IncomeStrbbi ← 0
7: end for
8: for each basic block bbi in program topological order do
9: if bbi starts with region boundary then

10: accum str ← Strbbi
11: else
12: accum str ← Strbbi + IncomeStrbbi
13: end if
14: while accum str > threshold do
15: place boundary and split bbi into bbi

′ and bbi
16: recalculate Str oribbi and Str ckptbbi
17: accum str ← Str oribbi + Str ckptbbi
18: end while
19: for each successor basic block bbj of bbi do
20: IncomeStrbbj ← max(IncomeStrbbj , accum str)
21: end for
22: end for

Algorithm 1 shows the heuristic. First, Turnstile considers
all the entry and exit points of functions as region boundaries
(line 1), as prior works do [19], [20], [21]. Second, Turnstile
places a boundary at the beginning of each loop header
(line 2) 2. Third, Turnstile treats memory fences and atomic
operations as region boundaries (line 3). The ISA enforces
an ordering constraint on memory operations before and after
the memory fences (e.g, x86 TSO consistency model requires
that queued stores must be merged into the memory system
at a fence instruction). In addition, atomic operations (e.g.,
atomic compare-and-swap) should complete, i.e., obtain the
write permission and become visible to other processors 3. As
these are critical to guarantee correctness of synchronization
operations for multithreaded programs, Turnstile places a
boundary at a memory fence and an atomic operation, similar
to [19]. Then, Turnstile identifies the basic block that has
region boundaries in the middle of it, and splits it into different
basic blocks. This guarantees that region boundaries always
start at the beginning of basic blocks, thus helping the next
step to compute the initial checkpoint instructions.

After placing the first set of region boundaries, Turnstile fur-
ther analyzes the program and, if necessary, places additional
boundaries to prevent the GSQ from overflowing. In line 4∼7,
as each basic block bbi is initially regarded as a region,
Turnstile computes the total number of stores (Strbbi ) in bbi
as the sum of original stores (Str oribbi ) and checkpointing
stores (Str ckptbbi ).

Based on the checkpoint set identification (Section IV-A),
Turnstile conservatively calculates the number of checkpoint-
ing stores in each basic block bbi with the following equation:

Str ckptbbi = Defbbi
⋂

LiveOutbbi (1)

where Defbbi is the set of registers defined in bbi and
LiveOutbbi is the set of live-out registers of bbi. Then,
Turnstile assigns zero to IncomeStrbbi which will be updated
with the maximum of number of incoming stores accumulated
from bbi’s predecessors during the later analyses.

And then, Turnstile traverses the CFG in topological order,
consulting Strbbi , i.e., the total number of stores of each
basic block bbi (line 8∼22). In line 9∼13, if bbi already
has a region boundary at the entry, Turnstile updates the
accumulating store number (accum str) with Strbbi since
we have started a new region. Otherwise, Turnstile keeps
combining each basic block, updating accum str with the sum
of Strbbi and IncomeStrbbi , i.e., the incoming store number
of bbi. If accum str is greater than the threshold which is
half the size of the GSQ (line 14∼18), Turnstile tries to
place a new boundary after a store where the number of
stores in the region prior to the new boundary is less than

2Since the loop trip count is not always statically known, GSQ may
overflow in some number of iterations even with a single store in the loop
body. Section IV-C proposes our optimization to remove such a mandatory
region boundary for certain loops.

3TSO model also requires draining the store queue at an atomic operation
as it should ensure the program order between stores, whereas RMO model
only requires the store of the atomic operation to be completed as it may
employ unordered store queue [35]



5

(a)

BB0

BB2

BB1 BB3'

BB4

Rg2

Rg0

10
45

5

10

BB3

(b)

5 BB0

BB2

BB1

BB4

Rg0

10 15

5

10 BB3

20

10

BB3''

Rg1

Rg4

15

20

20

Fig. 3. An example of Turnstile Region Partition Heuristic

the threshold, if one exists, and splits the bbi (line 14) into
head (bbi′) and tail (bbi) basic blocks. If there is no such store,
Turnstile puts the new boundary at the basic block entry. Then,
Turnstile updates the accumulating store number (accum str)
with the total store number Strbbi of the new (tail) basic
block bbi (line 17). The above process keeps repeated as long
as accum str is greater than the threshold. Finally, for each
successor basic bbj of bbi, Turnstile updates the incoming store
number of bbj (IncomeStrbbj ) with the remaining accum str.
IncomeStrbbj is updated iff the remaining accum str is
greater than IncomeStrbbj ’s original value (line 19∼21). Note
that, as Turnstile traverses the CFG in program topological
order, the incoming store number of each basic block is always
guaranteed to be the maximum incoming store number from
all its predecessor basic blocks when Turnstile visits the basic
block.

Example: Figure 3 presents an example of Turnstile’s
region formation heuristic. Figure 3 (a) shows the origi-
nal CFG where the number in each basic block is the
total store number. Assuming the basic block BB0 starts
with a region boundary Rg0 (shown as a dotted line),
Turnstile traverses the basic blocks in a topological order
(BB0→BB1→BB2→BB3→BB4). We also assume a store
queue with 40 entries, thus the threshold is 20 in this case.
When Turnstile visits BB3, as the calculated accumulating
store number (accum str) is already 50 thus greater the thresh-
old.

Turnstile then keeps placing a region boundary thus splitting
BB3 until the accum str becomes smaller than the threshold.
For ease of presentation, we assume that the sum of each
recalculated total store number for every split blocks remain
the same (45) as shown in Figure 3 (b). The figure shows the
partitioned program where the numbers on the edges are the
incoming store numbers. Note that the maximum incoming
store number of BB4 (i.e., IncomeStrBB4

) is 20. Thus, we
place a boundary at the entry of BB4 as its accum str is
greater than the threshold.

C. Optimization for Storeless Loops

In order to improve the performance, Turnstile identifies
those loops that have no store in the loop body, i.e., storeless
loops. Here, Turnstile can eliminate the region boundaries in

IF ID  

MEM

EX

ROB

DCache

GSQ

RBB

Control
Logic

To
Wait

Has
Waited

Recovery PC

PC GSQ 
ptr

Region
Time

Fig. 4. The high-level view of Turnstile hardware scheme

the header of such loops, since there is no chance of the store
queue overflow during the execution of the loops. As a result,
Turnstile can avoid inserting checkpoints (i.e., store) right after
the instructions that update the register region inputs in the
loop. However, the updated registers in the loop may be able
to reach the later regions once the loop terminates.

To preserve the live-out registers, Turnstile places a re-
gion boundary at the end of loop preheader, and creates
new basic blocks before the loop’s exit basic blocks. Note
that the new blocks exist outside the loop. Then, Turnstile
inserts checkpoints into those new basic blocks, and places
a region boundary at the end of the new blocks. With this
optimization, Turnstile still guarantees 100% error recovery
while significantly improving the performance.

V. TURNSTILE HARDWARE SUPPORT: REGION BOUNDARY
BUFFER (RBB)

Turnstile leverages special hardware logic to realize the
region verification and the recovery for soft error resilience.
As highlighted with the dashed box in Figure 4, the hardware
logic interacts with the ROB and the gated store queue
(GSQ) to recognize the boundary of executed regions and to
write back their verified data, respectively. Note that Turnstile
honors the original semantics of the store queue in an Out-of-
Order processor (e.g. CAM search, Non-snoopable etc.).

To keep track of those regions that have not been verified
yet, the hardware logic leverages the region boundary buffer
(RBB) whose entry is allocated whenever the boundary in-
struction is executed. The RBB entry is a tuple of three values:
(1) the PC of the boundary instruction; once the region ending
at the boundary is verified, the PC is used as a recovery point
when an error is detected, (2) the tail pointer of GSQ; this
is necessary to write back only the data written in the fault-
free region once it is verified, (3) the execution cycles of the
region; this is important information for Turnstile’s efficient
region verification in the next section. Whenever a new region
is verified, the logic writes the PC of the boundary instruction
that finishes the region to a special register called RP (recovery
PC) which will be used in case of an error.



RBB(t1)

Time0(t0) 5(t1) 10(t3) 13(t5) 15(t6) 23(t9)11(t4) 21(t8)

WorstCaseDetectionLatency

(r1, sq1, 10) (r2, sq2, 5) (r4, sq4, 5)(r1) (r2) (r4)

RBB(t2) RBB(t8)

head head

ToWait: 5 (0 5) 4 2 (0 3) 2

Has
Waited: 3 0 0(8 3) (8 5)

0(0 10)

(0 0)

(r3, sq3, 3)

8(t2)

2

(5 8)

18(t7)

(r3)

(3 8)

(0 5)

(5 0)

PC GSQP RT
r1
r2

sq1 10
sq2 5

PC GSQP RT
r1
r2
r3

sq1 10
sq2 5
sq3 3

RBB(t5)

head

PC GSQP RT
r1
r2
r3
r4

sq1 10
sq2 5
sq3 3
sq4 5

PC GSQP RT
r1
r2
r3
r4

sq1 10
sq2 5
sq3 3
sq4 5head

(0 5)

Fig. 5. An illustrating example of Turnstile’s hardware support.

A. Region Verification and Recovery Algorithm

This section first introduces a simple but an inefficient
region verification/recovery algorithm and the lessons from
it. Then, Turnstile’s efficient algorithm is presented with an
example.

Naive Algorithm: On a region boundary, one would write
the TSC (time stamp counter) in the tail index of RBB,
checking it from the head to see if there is an entry whose TSC
value is less than the difference between the current TSC and
the error detection latency time (cycles). Obviously, this naive
approach is expensive due to the access to multiple entries of
RBB on each region boundary, the check cost, and the area
overhead (64-bit-TSC) in RBB entries. Even worse, for the
region that has already spent the detection latency cycles since
it is finished, the GSQ cannot release its verified data until the
next region boundary is reached. Note that this makes GSQ
become full more frequently than usual, thus causing pipeline
stalls leading to performance degradation.

Turnstile’s Efficient Algorithm: The lesson from the pre-
vious algorithm is three-fold. First, TSC based approach is
expensive, e.g., 64 bits per each RBB entry; Turnstile only
uses Log2DL bits where DL is the error detection latency in
cycles. Second, the verification check should be done in a real
time manner, i.e., it should not be delayed to the next region
boundary. Third, as soon as a region is verified, Turnstile
should be able to write back all its data buffered in GSQ
without unnecessarily holding them. In light of this, Turnstile
leverages a timer based approach to efficiently achieve region
verification based on the following insight.

Axiom 1: If a given region, Rn, is verified at a time T , then
the very next region, Rn+1, will be verified at a later time T ′,
T ′ = T + ElapsedT ime(Rn+1) where ElapsedT ime maps
a region to its execution cycles.

The takeaway is that Turnstile can achieve the region

verification by simply tracking the execution cycles of each
executed region. For this purpose, Turnstile requires only two
metadata for tracking every region. (1) a watchdog timer
called ToWait represents the number of cycles for which
the region in the head of RBB should wait more before
being verified. (2) an auxiliary counter called HasWaited
represents the number of cycles for which a region has already
waited to be verified once the region becomes the head of
RBB. Thus, ToWait and HasWaited both track the head
entry of RBB.

When a region boundary instruction is executed, Turnstile
allocates a new RBB entry for the region that has just finished
at the boundary. At the same time, Turnstile reads the watch-
dog timer (ToWait) and the counter (HasWaited) to calcu-
late the elapsed time of the region, i.e., RegionT ime. Note
that unlike the watchdog timer that automatically counts down
each cycle, Turnstile here reads the value of HasWaited
which was written at the previous region boundary. Therefore,
the RegionT ime can be obtained by subtracting the sum of
HasWaited and ToWait from the error detection latency
(DL). Then, Turnstile records the resulting RegionT ime in
the new RBB entry allocated, and updates the HasWaited
counter as “DL− ToWait”.

When ToWait becomes zero, i.e., RBB’s head entry region
is now verfied, it is removed by updating the head pointer of
RBB; the removed entry is referred to as the old head entry
hereafter. Thus, the PC of the old head entry is written in RP
that will be used for recovery in case of an error. Then, GSQ
marks as verified those entries preceding the GSQ pointer of
the old head entry, so that they can be written back to L1 data
cache when the bandwidth between the store queue and the
cache is available. Note, having the old head entry tracked
by ToWait and HasWaited removed from RBB requires
updating them for a new head entry region. ToWait is reset



to the RegionT ime of the new head entry of RBB (See the
Axiom 1), and the value of RegionT ime is subtracted from
HasWaited. Recall that HasWaited means the time for
which a region has waited to verify itself since it became the
head entry of RBB. Therefore, excluded is the time between
the end of the old head region and the end of the new head
region, which is the execution cycles of the new head region,
i.e., its RegionT ime.

If an error is detected, Turnstile’s recovery handler discards
all unverified data in the GSQ and empties the RBB. Then,
Turnstile restores the checkpointed register values from mem-
ory. At this point, all the program status is guaranteed to be
the same as it were before the error occurs. Finally, Turnstile
jumps back to the end of the most recently verified region
whose address is available in RP, the recovery point register.

Summary of Hardware Cost: Turnstile’s hardware support
is lightweight and non-intrusive to the critical path. It only
needs a 5 bit timer and 5 bit counter. The modification to store
queue for gating the stores requires one bit to flag verification
status for each entry. The RBB is also trivially small (<14
entries) as evaluated in Section VII-E.

Example: Figure 5 presents an example to show how RBB
verification works. We assume the worst-case error detection
latency (WCDL) to be 10 cycles. Along the timeline, the
blue arrow corresponds to the time points on which a region
boundary instruction is executed, while the orange arrow to
the time points on which a region is verified.

When a region boundary instruction is executed, i.e., a blue
arrow is reached in the timeline, the RBB is updated with
the tuple above the arrow comprising the PC of the boundary
instruction, the tail of pointer the GSQ, and RegionTime
shown as RT in Figure 5. Below the timeline, there are two
lines of numbers which represent the ToWait timer and
HasWaited counter at each time point, respectively. When
the ToWait timer expires reaching 0, RBB first pops out
the head entry, and updates the timer with the RegionTime
in the new head entry. At the same time, RBB also updates
the HasWaited accordingly.

Below the two lines of numbers, there are four tables
showing the status of RBB at different time points, i.e., t1,
t2, t5, and t8. At t1, there are two region entries sitting in
the table waiting to be verified. At t2, both the ToWait timer
and HasWaited counter are not zero in the RBB where the
RT is calculated by subtracting the sum of HasWaited and
ToWait from the WCDL. At t3, the region r1 has already
been verified. Therefore, the head pointer of RBB comes to
point to r2 at t3, and the ToWait timer is updated with r2’s
RT value. At the same time, r2’s RT value is subtracted from
HasWaited to update the HasWaited counter.

At t4, a soft error occurs, and it is detected at t8 after the
WCDL. At t8, r3 has already been verified since t7 and popped
out from the RBB, which means the instructions before r3
has been verified. Therefore, at t8, Turnstile redirects program
control to the end of the most recently verified region (r3 in
this case), thus re-executing r4 from the beginning to recover
from the error. The takeaway is that Turnstile can achieve the

region verification by simply tracking the execution cycles of
each executed region.

VI. DISCUSSION AND LIMITATIONS

Turnstile Hardware Protection/Fault Model: We assume
that both the gated store queue (GSQ) and the region boundary
buffer (RBB) are protected against soft errors. Note that there
will not be any timing delay as they are off the critical path.
Besides, we also assume that our watchdog timer and counter
are also hardened by some protection schemes.

Tolerating Multiple-bit Errors: Multiple-bit errors can be
handled easily by Turnstile. As discussed in Section III, all
the errors are guaranteed to be detected by the sensor-based
detection scheme, and any un-verified stores are discarded
during recovery.

Handling I/O Operations: Turnstile takes a conventional
way, i.e., holding the I/O stores during the detection-latency
cycles in an ECC-protected buffer to ensure error-free I/O
stores as well as replaying the I/O loads upon recovery as
with [3], [12]. Turnstile can have a gated I/O buffer, which is
similar to our gated store queue (GSQ), to verify I/O requests
in case they bypass the GSQ.

Silent Data Corruption (SDC): Even if an energetic
particle strike is the major source of soft errors, they can
also be induced by other sources, e.g., transistor variability
or power supply noise etc. [36], [37]. Since these sources are
not covered by the sensor-based soft error detection, Turnstile
might generate silent data corruption (SDC). However, under
aggressive transistor scaling and near-threshold computing,
high-energy particle strikes are considered a critical source
of soft errors [2], [38], [39].

VII. EVALUATION AND ANALYSIS

Our evaluation answers the following research questions:
• What is the performance impact of our hardware support

and how sensitive is it to the worst-case detection latency
(WCDL)?

• How does our compiler transformation affect the appli-
cation performance and region characteristics?

• What is the impact on overall performance when Turnstile
functions as a whole? How is the overhead affected by
varying the size of the gated store queue (GSQ) and the
time of the WCDL?

• What is the right size of the region boundary buffer
(RBB)?

A. Experimental Methodology
We implemented the compiler analysis and checkpoint

instrumentation passes described in Section IV using the
LLVM Compiler Infrastructure [40]. As with the common
practice in the literature [41], [10], We used SPEC2006 [42],
MediaBench [43] and SPLASH2 [44] benchmark suites tar-
geting different computing areas for our experiments, and all
applications were compiled with standard -O3 optimization.

We conduct our simulations on the Gem5 simulator [45]
with the ARMv7 ISA, modeling a modern two-issue out-
of-order 2 GHz (1∼4 cores) processor with private L1-I/D



mcf gc
c

bz
ip2

pe
rlb

en
ch

go
bm

k

hm
mer

sje
ng

lib
qu

an
tum

h2
64

re
f

om
ne

tpp

xa
lan

cb
mk

as
tar milc

na
md

so
ple

x

ge
om

ea
n

ad
pc

mde
c

ad
pc

men
c
ep

ic

un
ep

ic

g7
21

de
c

g7
21

en
c

gs
mde

c

gs
men

c

jpe
gd

ec

jpe
ge

nc

mpe
g2

de
c

mpe
g2

en
c

ge
om

ea
n

ray
tra

ce

ch
ole

sk
y fft lu

oc
ea

n
ra

dix

wate
r-n

s

wate
r-s

p

ge
om

ea
n

all
ge

om
ea

n
0

1

2

3

4

5

6

7

8

9

10
no

rm
al

iz
ed

ov
er

he
ad

[%
]

SPEC2006 MediaBench SPLASH2

47 20 20 12 12 18 31 11 45 16 DL10 DL30 DL100

Fig. 6. Turnstile hardware effect varying different detection latencies (10, 30, 100)

mcf gc
c

bz
ip2

pe
rlb

en
ch

go
bm

k

hm
mer

sje
ng

lib
qu

an
tum

h2
64

re
f

om
ne

tpp

xa
lan

cb
mk

as
tar milc

na
md

so
ple

x

ge
om

ea
n

ad
pc

mde
c

ad
pc

men
c
ep

ic

un
ep

ic

g7
21

de
c

g7
21

en
c

gs
mde

c

gs
men

c

jpe
gd

ec

jpe
ge

nc

mpe
g2

de
c

mpe
g2

en
c

ge
om

ea
n

ray
tra

ce

ch
ole

sk
y fft lu

oc
ea

n
ra

dix

wate
r-n

s

wate
r-s

p

ge
om

ea
n

all
ge

om
ea

n
0

10

20

30

40

50

60

70

80

90

100

A
ve

ra
ge

re
gi

on
si

ze
(#

of
In

st
s)

SPEC2006 MediaBench SPLASH2

144141 112
SQ-40 SQ-80 SQ-160

Fig. 7. The average region length when partitioned for different store queue size (40, 80, 160)

mcf gc
c

bz
ip2

pe
rlb

en
ch

go
bm

k

hm
mer

sje
ng

lib
qu

an
tum

h2
64

re
f

om
ne

tpp

xa
lan

cb
mk

as
tar milc

na
md

so
ple

x

ge
om

ea
n

ad
pc

mde
c

ad
pc

men
c
ep

ic

un
ep

ic

g7
21

de
c

g7
21

en
c

gs
mde

c

gs
men

c

jpe
gd

ec

jpe
ge

nc

mpe
g2

de
c

mpe
g2

en
c

ge
om

ea
n

ray
tra

ce

ch
ole

sk
y fft lu

oc
ea

n
ra

dix

wate
r-n

s

wate
r-s

p

ge
om

ea
n

all
ge

om
ea

n
0

5

10

15

20

25

no
rm

al
iz

ed
ov

er
he

ad
[%

]

SPEC2006 MediaBench SPLASH2

SQ-40 SQ-80 SQ-160

Fig. 8. The normalized instruction counts when partitioned for different store queue size (40, 80, 160)

(32KB, 2-way, 2-cycle latency, LRU), and shared L2 (2MB,
8-way, 20-cycle latency, LRU) caches. The ROB, physical
integer register file, and load queue have 192, 256, and 40
entries, respectively. The simulator was modified to accurately
implement the effect of the gated store queue (GSQ) and the
region boundary buffer (RBB) as discussed in Section V. We
vary the size of the GSQ (i.e., 40, 80, and 160 entries) to
perform the sensitivity analysis.

For SPEC2006 applications, in order to show the perfor-
mance impact of the executables generated by Turnstile’s
compiler versus the original executables, we synchronize the
simulation length by measuring the number of functions
executed which is constant between two versions as in the
case of the prior work [19]. All the benchmarks in SPEC2006
are fast-forwarded the number of function calls to execute at
least 5 billion instructions on the original executables, and then
we simulate 1 billion additional instructions on the original
executables. For the MediaBench and SPLASH2, we simulate
the entire program for all the applications.

B. Turnstile Hardware Effect

Figure 6 examines the effect of Turnstile’s hardware support
by varying the WCDL. We partitioned the original binaries
into different regions. However, we do not inject the check-
pointing stores. We use the partitioned binaries as input and

run the experiments on our modified simulator to observe
how Turnstile’s hardware support affects the performance of
original binaries. We normalize the overhead with the baseline
where the original binaries run on an un-modified simulator.

From left to right, each application has three bars represent-
ing different worst-case error detection latencies (i.e., 10, 30,
100) which are the time needed to verify the region. According
to Upasani’s work [3], having a 30 or 100 WCDL cycles of
sensor-based detection scheme will cost less than 1% area
overhead. However, as we assume that the memory system
is protected by other schemes, e.g., ECC, there is no need to
protect the caches, etc. That is, it is possible to deploy those
detectors on only the core parts to achieve a lower WCDL,
thus we also explore the effect of 10 WCDL cycles.

It is interesting to observe that the applications in three
different benchmark suites show significantly different degrees
of sensitivity to different WCDL. As the applications in
MediaBench are mostly computation-intensive, they are rarely
affected by Turnstile’s hardware even when the WCDL is
100 cycles. On the other hand, the applications in SPLASH-
2 benchmark show relatively higher overhead, and are more
sensitive to WCDL than the others. The reason is that Turnstile
treats fence operations and atomic operations, which are the
basic ingredients in implementing synchronization between
threads, as region boundaries. This implies that the cost of such



operations become more expensive than before as Turnstile
hardware have to wait for WCDL, affecting other threads.
However, our experiment shows that the overall overhead is
about 3.5% for WCDL of 30 and 4.5% for WCDL of 100.

Not surprisingly, with longer WCDL, the resulting perfor-
mance overhead is higher. With 100-cycles-of-WCDL, Turn-
stile can slow down the original program up to 47% with
16% performance degradation on average. This is because
holding the stores for a long time may result in the pipeline
stalls when the gated store queue (GSQ) become full. As
expected, smaller WCDL of 10 does little harm to the program
performance which is less than 1% degradation in average. It is
interesting to find that 30-cycles-of-WCDL also have a trivial
impact on the performance (around 1%). To sum up, Turnstile
can spend less than 1% hardware overhead to achieve 30-
cycles-of-WCDL detection scheme, and the runtime overhead
of Turnstile’s hardware is not significant. Thus, in order to
achieve low-cost, the following sections evaluate Turnstile
with 10, and 30 cycles of WCDL configuration. In addition,
we also evaluate Turnstile with 5 cycles WCDL assuming an
aggressive sensor placement to reduce the WCDL [3].

C. Turnstile Compiler Effect

This section shows how Turnstile’s compiler affects the
original binaries. We report 1) the average number of instruc-
tions per region, and 2) the number of increased instructions
for checkpointing, when different region formation thresholds
are used.

1) Region Length: Figure 7 shows the average dynamic
region length by varying the gated store queue (GSQ) size (i.e.,
40, 80, 160) during the region formation. Note that we use the
half GSQ size as the region formation threshold. However, for
most of the applications, increasing the threshold does not help
improve the dynamic region length. This is because we have
to place the region boundary at the beginning of the header
for most loops that have stores in the loop body to avoid the
GSQ overflow. As such loops dominate the execution time, we
can expect that the dynamic region length should not vary a
lot even with different thresholds during the region formation.

A few applications (e.g., hmmer, astar and adpcm etc.) show
great improvement in dynamic region length after increasing
the threshold. This is because these applications have few
loops with store instruction in the loop body or have a
large loop body where increasing the threshold improves the
dynamic region length.

As Turnstile does not require the error to be detected
within the each region. The region length actually has no
impact on the error coverage. In fact, a longer region may
be less preferable during recovery as we may waste a lot of
execution time. However, shorter regions are not always good
for Turnstile, as Turnstile need to preserve the register region
inputs with checkpointing store instruction. The shorter the
region length is, the more performance overhead we need to
pay for the checkpointing. Therefore, mediocre region length
may be more preferable to Turnstile. The average dynamic
region length is around 35 instructions across different GSQ

sizes which is beneficial for both tolerating false-positives and
performance.

2) Checkpointing Instructions: Figure 8 shows the number
of increased instructions for checkpointing normalized to the
original binary. The average instruction overhead of Turnstile
is around 10% when regions are formed for the gated store
queue (GSQ) of size 40. The general trend is that when in-
creasing the GSQ sizes (region formation threshold) which in
turn generate less regions, the checkpoint instruction overhead
gets smaller as fewer region inputs need to checkpoint.

D. Overall Overhead

This section evaluates the overall overhead by running our
Turnstile compiler generated binaries on top of Turnstile’s
hardware support. We vary the factors (e.g. size of GSQ and
WCDL) to see how it can affect the overall performance. Our
baseline is the original binaries that run on an un-modified
simulator.

1) Sensitivity to WCDL: Figure 9 show the the normalized
runtime overhead with the gated store queue (GSQ) of size 40
and different WCDL from 5, 10, to 30, compare to the base-
line. Increasing the WCDL can slow down some applications’
performance by up to 20%, but the geometric mean (6∼8%)
shows trivial differences between different WCDL.

2) Sensitivity to the Size of Gated Store Queue: Figure 10
show the normalized runtime overhead compared to the base-
line with varying the size of the gated store queue (GSQ).
The overall overhead across different GSQ sizes stay around
6% up to 7.2%. With a large GSQ, Turnstile compilers can
create a longer region, leading to less checkpoint instructions
(Section VII-C2). The general trend observed here is that the
increase of GSQ’s size helps applications reduce the runtime.

E. Exploration of Region Boundary Buffer Size

Lastly, we explore the design choice of the size of the
region boundary buffer (RBB). Figure 11 shows the dynamic
number of entries occupied during the execution. We use a
gated store queue (GSQ) with 40 entries and a WCDL of 30
cycles to perform our profiling simulation. The left bar shows
the dynamic average number of entries used by Turnstile while
the right bar shows the maximum number of RBB entries
occupied. As we can see, the maximum number across all the
applications is 14 while the average number is 2. The number
of bits needed in an entry of RBB can be calculated as follows:

#RBB Entry = #(PC)+Log2#(GSQ)+Log2#(WCDL)

where #(PC) represents instruction size (32), #(GSQ) is the
number of entries in GSQ (40) and #(WCDL) is the cycle
number of WCDL (30).

Therefore, one entry in the RBB requires 43 bits. Even if we
design the RBB with the maximum number (i.e. 14). We only
need 602 bits for the RBB. Besides, Turnstile also requires a
5 bit timer and 5 bit counter. The overall hardware overhead is
trivial. More importantly, Turnstile’s hardware implementation
is off the critical path of the processor.



mcf gc
c

bz
ip2

pe
rlb

en
ch

go
bm

k

hm
mer

sje
ng

lib
qu

an
tum

h2
64

re
f

om
ne

tpp

xa
lan

cb
mk

as
tar milc

na
md

so
ple

x

ge
om

ea
n

ad
pc

mde
c

ad
pc

men
c
ep

ic

un
ep

ic

g7
21

de
c

g7
21

en
c

gs
mde

c

gs
men

c

jpe
gd

ec

jpe
ge

nc

mpe
g2

de
c

mpe
g2

en
c

ge
om

ea
n

ray
tra

ce

ch
ole

sk
y fft lu

oc
ea

n
ra

dix

wate
r-n

s

wate
r-s

p

ge
om

ea
n

all
ge

om
ea

n
0
2
4
6
8

10
12
14
16
18
20
22

no
rm

al
iz

ed
ov

er
he

ad
[%

]

SPEC2006 MediaBench SPLASH2

DL-5 DL-10 DL-30

Fig. 9. Turnstile overhead with 40 gated store queue entries varying different detection latencies (5, 10, 30)

mcf gc
c

bz
ip2

pe
rlb

en
ch

go
bm

k

hm
mer

sje
ng

lib
qu

an
tum

h2
64

re
f

om
ne

tpp

xa
lan

cb
mk

as
tar milc

na
md

so
ple

x

ge
om

ea
n

ad
pc

mde
c

ad
pc

men
c
ep

ic

un
ep

ic

g7
21

de
c

g7
21

en
c

gs
mde

c

gs
men

c

jpe
gd

ec

jpe
ge

nc

mpe
g2

de
c

mpe
g2

en
c

ge
om

ea
n

ray
tra

ce

ch
ole

sk
y fft lu

oc
ea

n
ra

dix

wate
r-n

s

wate
r-s

p

ge
om

ea
n

all
ge

om
ea

n
0

2

4

6

8

10

12

14

16

18

20

no
rm

al
iz

ed
ov

er
he

ad
[%

]

SPEC2006 MediaBench SPLASH2

SQ-40 SQ-80 SQ-160

Fig. 10. Turnstile overhead with 10 cycles WCDL varying different gated store queue size (40, 80, 160)

mcf gc
c

bz
ip2

pe
rlb

en
ch

go
bm

k

hm
mer

sje
ng

lib
qu

an
tum

h2
64

re
f

om
ne

tpp

xa
lan

cb
mk

as
tar milc

na
md

so
ple

x

ge
om

ea
n

ad
pc

mde
c

ad
pc

men
c
ep

ic

un
ep

ic

g7
21

de
c

g7
21

en
c

gs
mde

c

gs
men

c

jpe
gd

ec

jpe
ge

nc

mpe
g2

de
c

mpe
g2

en
c

ge
om

ea
n

ray
tra

ce

ch
ole

sk
y fft lu

oc
ea

n
ra

dix

wate
r-n

s

wate
r-s

p

ge
om

ea
n

all
ge

om
ea

n
0

2

4

6

8

10

12

14

16

#
of

R
B

B
en

tr
ie

s

SPEC2006 MediaBench SPLASH2

Average Maximum

Fig. 11. Region boundary buffer dynamic entry number with 40 gated store queue entries and 30 cycles WCDL

VIII. OTHER RELATED WORK

In addition to the recovery schemes discussed previously,
this section compares Turnstile with other existing recovery
schemes and shows how Turnstile differs from those recovery
schemes.

Coarse-Grained Recovery: Prior coarse-grained recovery
schemes [3], [14] generally cannot contain the error within
the core and requires expensive hardware support to relieve
the performance overhead which relegates their use to high-
end server systems. For example, to preserve the register
states, those recovery schemes usually leverage two additional
copies of ECC-protected register file (RF) and register alias
table (RAT). As for the memory state preservation, previ-
ous coarse-grained recovery schemes either restructure the
caches (e.g., new coherence) to incrementally checkpoint the
memory state [3] or maintain a large buffer for memory
logging [14]. Besides, Jeyapaul et al. [46] explores multicore
CMP architecture to recover from soft errors with an efficiently
modified cache structure. In contrast, Turnstile does not require
such expensive hardware support and provides a low-cost
alternative.

Finer-Grained Recovery: There are several recovery
schemes that can also contain the error within the core.
Flushing the pipeline to recover from a soft error is another
alternative [47]. However, such schemes requires a near-zero
detection latency detector and cannot be applied to low-

cost acoustic sensor based detector with detection latency.
Triple-Modular-Redundancy [48] can correct the error at
the instruction-level at the cost of significant performance
degradation. On the contrary, Turnstile leverages the low-
cost acoustic sensors and imposes low performance overhead
making it a practical choice for soft error resilience.

IX. SUMMARY

This paper introduces Turnstile, a lightweight hard-
ware/software cooperative soft error resilience technique that
leverages low-cost acoustic sensors. Turnstile can provide
guaranteed soft-error recovery that can contain the error
within the core, incurring only ∼8% runtime overhead without
expensive hardware support for checkpointing. Leveraging
Turnstile’s novel compiler analysis and lightweight hardware
support, we can preserve the program state effectively and
practically. Turnstile neither requires expensive RF protection
to preserve the register state nor a extra large store buffer to
maintain the memory state. To the best of our knowledge,
Turnstile is the first technique for soft error resilience, that
does not impose expensive hardware overhead, with guaran-
teed recovery. We believe that Turnstile can lay the foundation
for the soft error resilience of future computing systems.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their valuable comments and feedback. This work was



partly supported by the National Science Foundation under
the grant CCF-1527463 and Google Faculty Research Awards.
This work was also suppported by and used the resources
of Oak Ridge National Laboratory, which is managed by UT
Battelle, LLC for the U.S. DOE (under the contract No. DE-
AC05-00OR22725).

REFERENCES

[1] L. Wang et al., “Implications of the power wall: Dim cores and
reconfigurable logic,” IEEE Micro, pp. 40–48, 2013.

[2] C. Constantinescu, “Trends and challenges in vlsi circuit reliability,”
Micro, IEEE, vol. 23, pp. 14–19, July 2003.

[3] G. Upasani, et al., “Avoiding core’s due & sdc via acoustic wave
detectors and tailored error containment and recovery.,” in ISCA, pp. 37–
48, 2014.

[4] H. Esmaeilzadeh, et al., “Dark silicon and the end of multicore scaling,”
in ISCA, pp. 365–376, 2011.

[5] N. Hardavellas, et al., “Toward dark silicon in servers,” IEEE Micro,
vol. 31, no. 4, pp. 6–15, 2011.

[6] M. Shafique, et al., “The eda challenges in the dark silicon era: Temper-
ature, reliability, and variability perspectives,” in DAC, pp. 185:1–185:6,
2014.

[7] H. Kaul, et al., “Near-threshold voltage (ntv) design: Opportunities and
challenges,” in DAC, pp. 1153–1158, 2012.

[8] G. Upasani, et al., “Setting an error detection infrastructure with low
cost acoustic wave detectors.,” in ISCA, pp. 333–343, 2012.

[9] G. Upasani, et al., “A case for acoustic wave detectors for soft-errors,”
IEEE Transactions on Computers, vol. 65, pp. 5–18, Jan 2016.

[10] G. A. Reis, et al., “Swift: software implemented fault tolerance,” in
CGO, pp. 243–254, March 2005.

[11] N. J. Wang et al., “Restore: symptom based soft error detection in
microprocessors,” in DSN, pp. 30–39, June 2005.

[12] E. Rotenberg, “Ar-smt: a microarchitectural approach to fault tolerance
in microprocessors,” in Fault-Tolerant Computing, 1999. Digest of
Papers. Twenty-Ninth Annual International Symposium on, pp. 84–91,
June 1999.

[13] M. Dimitrov et al., “Unified architectural support for soft-error protec-
tion or software bug detection,” in PACT, pp. 73–82, 2007.

[14] D. Sorin, et al., “Safetynet: improving the availability of shared memory
multiprocessors with global checkpoint/recovery,” in ISCA, pp. 123–134,
2002.

[15] A. Meixner, et al., “Argus: Low-cost, comprehensive error detection in
simple cores,” in MICRO, pp. 210–222, IEEE, 2007.

[16] S. S. Mukherjee, et al., “A systematic methodology to compute the ar-
chitectural vulnerability factors for a high-performance microprocessor,”
in Proceedings of the 36th Annual IEEE/ACM International Symposium
on Microarchitecture, MICRO 36, (Washington, DC, USA), pp. 29–,
IEEE Computer Society, 2003.

[17] J. Suh, et al., “Soft error benchmarking of l2 caches with parma,”
SIGMETRICS Perform. Eval. Rev., vol. 39, pp. 85–96, June 2011.

[18] S. Feng, et al., “Encore: low-cost, fine-grained transient fault recovery,”
in Proceedings of the 44th Annual IEEE/ACM International Symposium
on Microarchitecture, pp. 398–409, ACM, 2011.

[19] M. A. de Kruijf, et al., “Static analysis and compiler design for
idempotent processing,” in Proceedings of the 33rd ACM SIGPLAN
Conference on Programming Language Design and Implementation,
PLDI ’12, (New York, NY, USA), pp. 475–486, ACM, 2012.

[20] M. de Kruijf et al., “Idempotent code generation: Implementation,
analysis, and evaluation,” in Code Generation and Optimization (CGO),
2013 IEEE/ACM International Symposium on, pp. 1–12, IEEE, 2013.

[21] Q. Liu, et al., “Clover: Compiler directed lightweight soft error re-
silience,” in LCTES, (New York, NY, USA), pp. 2:1–2:10, ACM, 2015.

[22] X. Li et al., “Application-level correctness and its impact on fault
tolerance,” in High Performance Computer Architecture, 2007. HPCA
2007. IEEE 13th International Symposium on, pp. 181–192, IEEE, 2007.

[23] M. J. Wing et al., “Gated store buffer for an advanced microprocessor,”
U.S. Patent 6,011,908 A, January 2000.

[24] M. S. Gupta, et al., “Decor: A delayed commit and rollback mecha-
nism for handling inductive noise in processors,” in 2008 IEEE 14th
International Symposium on High Performance Computer Architecture,
pp. 381–392, Feb 2008.

[25] Q. Liu et al., “Lightweight hardware support for transparent consistency-
aware checkpointing in intermittent energy-harvesting systems,” in Pro-
ceedings of the IEEE Non-Volatile Memory Systems and Applications
Symposium (NVMSA), 2016.

[26] S. Muchnick, Advanced Compiler Design Implementation. Morgan
Kaufmann Publishers, 1997.

[27] B. S. Gill, et al., “An efficient bics design for seus detection and
correction in semiconductor memories.,” in date05, pp. 592–597, IEEE
Computer Society, 2005.

[28] Z. F. Huang et al., “BISS: A Built-In SEU Sensor for Soft Error
Mitigation,” Applied Mechanics and Materials, vol. 130, pp. 4228–4231,
Oct. 2011.

[29] A. Narsale et al., “Variation-tolerant hierarchical voltage monitoring
circuit for soft error detection.,” in isqed09, pp. 799–805, IEEE, 2009.

[30] S.-L. Gong, et al., “Clean-ecc: High reliability ecc for adaptive granu-
larity memory system,” in the Proceedings of MICRO, 2015.

[31] J. Kim, et al., “Frugal ecc: Efficient and versatile memory error
protection through fine-grained compression,” in Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, SC ’15, (New York, NY, USA), pp. 12:1–12:12,
ACM, 2015.

[32] ARM., “Cortex-a57 technique reference manual.”
[33] Q. Liu, et al., “Compiler directed soft error detection and recovery

to avoid due and sdc via tail-dmr,” ACM Transactions on Embedded
Computing Systems (TECS), vol. XX, no. X, 2016.

[34] Q. Liu, et al., “Compiler-directed lightweight checkpointing for fine-
grained guaranteed soft error recovery,” in Proceedings of the Inter-
national Conference on High Performance Computing, Networking,
Storage and Analysis (SC), Nov 2016.

[35] C. Blundell, et al., “Invisifence: Performance-transparent memory order-
ing in conventional multiprocessors,” in Proceedings of the 36th Annual
International Symposium on Computer Architecture, ISCA ’09, pp. 233–
244, 2009.

[36] W. Jang, Soft-error tolerant quasi delay-insensitive circuits. PhD thesis,
Pasadena, CA, USA, 2011.

[37] S. S. Mukherjee, et al., “The soft error problem: An architectural
perspective,” in Proceedings of the 11th International Symposium on
High-Performance Computer Architecture, HPCA ’05, pp. 243–247,
2005.

[38] N. DeBardeleben, et al., “Extra bits on sram and dram errorsmore data
from the field,” in IEEE Workshop on Silicon Errors in Logic-System
Effects (SELSE), 2014.

[39] J. Wadden, et al., “Real-world design and evaluation of compiler-
managed gpu redundant multithreading,” in Proceeding of the 41st
Annual International Symposium on Computer Architecuture, ISCA ’14,
(Piscataway, NJ, USA), pp. 73–84, IEEE Press, 2014.

[40] C. Lattner et al., “Llvm: A compilation framework for lifelong program
analysis & transformation,” in Proceedings of the International Sympo-
sium on Code Generation and Optimization, CGO ’04, (Washington,
DC, USA), pp. 75–, IEEE Computer Society, 2004.

[41] S. Feng, et al., “Shoestring: Probabilistic soft error reliability on the
cheap,” in Proceedings of the Fifteenth Edition of ASPLOS on Archi-
tectural Support for Programming Languages and Operating Systems,
ASPLOS XV, (New York, NY, USA), pp. 385–396, ACM, 2010.

[42] J. L. Henning, “Spec cpu2006 benchmark descriptions,” ACM SIGARCH
Computer Architecture News, vol. 34, no. 4, pp. 1–17, 2006.

[43] C. Lee, et al., “Mediabench: A tool for evaluating and synthesizing mul-
timedia and communicatons systems,” in Proceedings of the 30th Annual
ACM/IEEE International Symposium on Microarchitecture, MICRO 30,
(Washington, DC, USA), pp. 330–335, IEEE Computer Society, 1997.

[44] S. Woo, et al., “The splash-2 programs: characterization and method-
ological considerations,” in Computer Architecture, 1995. Proceedings.,
22nd Annual International Symposium on, pp. 24–36, June 1995.

[45] N. Binkert, et al., “The gem5 simulator,” SIGARCH Comput. Archit.
News, vol. 39, Aug. 2011.

[46] R. Jeyapaul, et al., “Unsync-cmp: Multicore cmp architecture for energy-
efficient soft-error reliability,” Parallel and Distributed Systems, IEEE
Transactions on, vol. 25, no. 1, pp. 254–263, 2014.

[47] P. Racunas, et al., “Perturbation-based fault screening,” in High Perfor-
mance Computer Architecture, 2007. HPCA 2007. IEEE 13th Interna-
tional Symposium on, pp. 169–180, IEEE, 2007.

[48] J. Chang, et al., “Automatic instruction-level software-only recovery,”
in International Conference on Dependable Systems and Networks
(DSN’06), pp. 83–92, June 2006.


