
Write-Light Cache for Energy Harvesting Systems

Jongouk Choi*
University of Central Florida

jongouk.choi@ucf.edu

Jianping Zeng
Purdue University

zeng207@purdue.edu

Dongyoon Lee
Stony Brook University

dongyoon@cs.stonybrook.edu

Changwoo Min
Virginia Tech

changwoo@vt.edu

Changhee Jung
Purdue University

chjung@purdue.edu

ABSTRACT
Energy harvesting system has huge potential to enable battery-less

Internet of Things (IoT) services. However, it has been designed

without a cache due to the difficulty of crash consistency guarantee,

limiting its performance. This paper introduces Write-Light Cache

(WL-Cache), a specialized cache architecture with a new write pol-

icy for energy harvesting systems. WL-Cache combines benefits of

a write-back cache and a write-through cache while avoiding their

downsides. Unlike a write-through cache, WL-Cache does not ac-

cess a non-volatile main memory (NVM) at every store but it holds

dirty cache lines in a cache to exploit locality, saving energy and im-

proving performance. Unlike a write-back cache, WL-Cache limits

the number of dirty lines in a cache. When power is about to be cut

off, WL-Cache flushes the bounded set of dirty lines to NVM in a

failure-atomic manner by leveraging a just-in-time (JIT) checkpoint-

ing mechanism to achieve crash consistency across power failure.

For optimization, WL-Cache interacts with a run-time system that

estimates the quality of energy source during each power-on period,

and adaptively reconfigures the possible number of dirty cache lines

at boot time. Our experiments demonstrate that WL-Cache reduces

hardware complexity and provides a significant speedup over the

state-of-the-art volatile cache design with non-volatile backup. For

two representative power outage traces, WL-Cache achieves 1.35x

and 1.44x average speedups, respectively, across 23 benchmarks

used in prior work.

ACM Reference Format:
Jongouk Choi*, Jianping Zeng, Dongyoon Lee, Changwoo Min, and Changhee

Jung. 2023. Write-Light Cache for Energy Harvesting Systems. In Proceed-
ings of the 50th Annual International Symposium on Computer Architecture
(ISCA ’23), June 17–21, 2023, Orlando, FL, USA. ACM, New York, NY,

USA, 13 pages. https://doi.org/10.1145/3579371.3589098

1 INTRODUCTION
Energy harvesting systems offer battery-less computing that is deemed

to be the next step in the evolution of IoT [56]. Without a battery,

energy harvesting systems can self-power their devices by collecting

*This work was mostly done when the author was a PhD student at Purdue.

ISCA ’23, June 17–21, 2023, Orlando, FL, USA.
© 2023 Association for Computing Machinery.
ACM ISBN 979-8-4007-0095-8/23/06. . . $15.00
https://doi.org/10.1145/3579371.3589098

ambient energy from external sources (e.g., radio frequency, WiFi,

etc.). They enable various applications such as wearables, sensors,

and implantable medical devices in which a battery-equipped design

could be bulky, environment-unfriendly, and cost-inefficient—apart

from regular battery replacements [3, 15, 30, 54, 55, 63].

However, due to unreliable nature of ambient energy sources,

energy harvesting systems suffer from frequent power failures. To

mitigate the problem, existing energy harvesting systems leverage a

small capacitor as an energy buffer and employ a non-volatile pro-

cessor (NVP) that can instantly checkpoint/restore all on-chip data,

i.e., volatile registers to/from neighboring non-volatile flip-flops at a

power failure/recovery point [69]. In addition, the systems use non-

volatile memory (NVM), not Flash, as main memory to persist all

off-chip data across power failure.1 Notably, they do not make use of

(volatile) cache since its states are lost across power failure causing

a crash consistency problem [14, 35]. That is, without a cache, they

directly persist data on NVM at the cost of long NVM access latency

for every memory operation, resulting in poor performance.

A cache has high potential to significantly improve performance

for energy harvesting systems. Given an energy budget, they can

make a further forward execution progress by avoiding NVM ac-

cesses on cache hits. Unfortunately, leveraging a cache in energy

harvesting systems remains a challenge due to the difficulty of crash

consistency guarantee. Different cache write policies (i.e., write-

though or write-back) have different implications on the crash con-

sistency. A (volatile) write-through cache directly achieves crash

consistency as it has no concern about losing volatile cache states

across power failures. However, it requires updating both the cache

and NVM on each memory store and thus consumes more power,

offsetting the caching benefits.

In contrast, a write-back cache does not update NVM until dirty

cachelines are evicted to NVM, i.e., write hits do not involve NVM

access. However, to ensure crash consistency, it requires additional

hardware support that can flush all the updated (dirty) cachelines to

NVM before impending power failure. For example, prior works in-

troduce a write-back NVSRAM cache [16, 41, 69] that uses a volatile

SRAM cache backed with the same size non-volatile (NV) cache

counterpart. When power is about to be cut off, the NVSRAM cache

triggers just-in-time (JIT) checkpointing that can failure-atomically

flush the entire cache [41, 69] or dirty lines [16] to the neighboring

NV counterpart. This approach has two downsides: (1) its hardware

modification cost is high—no such fabrication has been adopted

for production yet; and (2) it requires reserving a large amount of

extra energy enough to backup all cache lines (in the worst case all

1Flash memory requires (9x) higher voltage and incurs orders-of-magnitude slower
write latency (1000x) than byte-addressable NVM such as FRAM [1].

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3579371.3589098&domain=pdf&date_stamp=2023-06-17

ISCA ’23, June 17–21, 2023, Orlando, FL, USA. Choi et al.

may be dirty). The reserved energy cannot be used for computation,

significantly limiting the forward progress and the energy efficiency.

This paper presents Write-Light2 Cache (WL-Cache), specialized

cache architecture with a new write policy for energy harvesting

systems. In particular, WL-Cache builds upon traditional SRAM

cache design without requiring non-volatile cache counterpart and

combines the benefits of a write-through cache and a write-back

cache while avoiding their downsides. Unlike a write-through cache,

WL-Cache does not update data in NVM main memory at every

store, but it holds dirty lines in a cache to take advantage of locality,

saving energy and improving performance. Unlike a write-back

cache, WL-Cache permits only a limited number of dirty lines in

a cache. That way WL-Cache has only to secure a small amount

of energy—so that the bounded number of dirty lines can be JIT-

checkpointed—without expensive backup/restoration costs.

To achieve this, WL-Cache tracks a set of dirty cache lines in a

separate small hardware queue, called DirtyQueue. Then, WL-Cache

uses two reconfigurable thresholds, named maxline and waterline.

On the other hand, the maxline threshold (≤ |DirtyQueue|) defines

the maximum number of dirty cache lines in WL-Cache. When

the number of dirty cache lines reaches maxline, WL-Cache stalls

a store instruction until a free slot in DirtyQueue becomes avail-

able. Importantly, maxline determines and bounds the amount of

energy WL-Cache needs to reserve to failure-atomically checkpoint

dirty cache lines—which is much lower than that of the NVSRAM

cache—when power failure is impending.

The waterline threshold (≤ maxline) determines when WL-Cache

writes back dirty cache lines to NVM. When the number of dirty

lines exceed waterline, WL-Cache picks one of dirty lines and asyn-

chronously writes it back to NVM. The persisted cache line remains

in the cache with a “clean” state for future references. The asynchro-

nous write-back operation overlaps with the execution of following

instructions, realizing instruction-level parallelism (ILP). The gap

between maxline and waterline defines the potential ILP opportunity,

not available in a write-through cache.

For optimization, WL-Cache interacts with a run-time system

that adaptively adjusts the two thresholds depending on the energy

harvesting quality. The run-time system measures a power-on period

across power outages and estimates the quality of energy source

at each reboot time. When the power-on time increases (i.e., the

energy source condition is seemingly good), the runtime raises the

waterline/maxline and the JIT checkpointing threshold (Vbackup) ac-

cordingly to hold more dirty cache lines in WL-Cacheat each reboot

time, making it behave more like a write-back cache. On the con-

trary, when the power-on time decreases (i.e., possible sign of poor

energy harvesting), the runtime lowers the waterline/maxline and

the Vbackup threshold to hold a smaller number of dirty lines. That

way WL-Cache starts to act more like a write-through cache and

can use hard-won energy more for forward progress—rather than

lavishing it on recurring JIT checkpointing of many lines across

frequent outages.

Our experiments with 23 applications and 4 different capaci-

tors highlight that WL-Cache always provides significant speedups

over the non-volatile cache baseline. With a default capacitor (1uF)

2As light can behave simultaneously as a particle and a wave, WL-Cache takes ad-
vantages of both write-through and write-back writing policies; and WL-Cache is
“light”weight.

where all cache designs deliver the best performance, WL-Cache

achieves a 3.1x speedup in the absence of power failure while it does

2.8x and 2.48x speedups for two representative power failure traces,

respectively. In particular, WL-Cache even outperforms the ideal

NVSRAM cache with a significant margin, achieving 1.35x and

1.44x speedups for the two traces, respectively. Overall, WL-Cache

performs the best regardless of the capacitor size.

This paper makes the following contributions:

• This paper presents WL-Cache, a new cache design for energy

harvesting systems.

• WL-Cache introduces a new cache write policy that takes ad-

vantages of both write-back’s efficiency and write-through’s

persistence.

• WL-Cache adaptively behaves as a write-through or a write-

back cache by changing its characteristic back and forth with

the quality of energy source in mind.

• Our experiments demonstrate that WL-Cache significantly

outperforms existing cache designs, including the state-of-

the-art NVSRAM cache, regardless of capacitor size.

2 BACKGROUND AND MOTIVATION
2.1 Energy Harvesting System Architecture
Energy harvesting systems collect ambient energy into a small ca-

pacitor and spend the energy for computing without a battery. Due

to the battery-less design, they suffer frequent power failures and

thus should ensure crash consistency to resume a power-interrupted

program [9–13, 36, 61, 70]. Unfortunately, prior undo/redo logging-

based crash consistency solutions [8, 21–23, 26, 34, 35, 37–40, 68,

76, 77] do not fit well for energy harvesting systems because logging

requires additional memory writes, consuming hard-won energy.

To address the challenge, recent works [19, 50, 51, 69] have

adopted checkpoint-and-restore-based crash consistency, called just-
in-time (JIT) checkpointing. They monitor the capacitor by using a

voltage monitoring system, and checkpoint all volatile architectural

states to NVM just before a power outage occurs. When the power

returns, they restore the states and resume the interrupted program.

At a high level, a representative energy harvesting system, Non-

Volatile Processor (NVP) [42–49, 66, 67], uses NVM as main mem-

ory (without cache) and provides hardware support for JIT check-

pointing of volatile registers to ensure whole system persistence

guarantee [28, 53]. When its operating voltage drops below a certain

threshold (Vbackup), NVP instantly checkpoints all the registers into

their neighboring non-volatile flip-flops (NVFFs). When power is

secured enough again (Von), it restores the checkpointed register

states from the NVFFs and resumes the interrupted program; we

assume that the voltage monitoring system is reliable as with all prior

works built on JIT checkpointing [20, 43–49, 66, 67]. Alternatively,

other approaches [19, 58] store the volatile registers into the (main

memory) NVM by using the (software-based) JIT checkpointing

mechanism, instead of using a separate hardware NVFF (at the cost

of reserving more energy for software-based JIT checkpointing).

Note, they all have been designed without a volatile cache due to the

potential crash consistency issue.

Write-Light Cache for Energy Harvesting Systems ISCA ’23, June 17–21, 2023, Orlando, FL, USA.

(a) NVP without cache
volatile registers are
checkpointed to NVFF in a
core at a power failure point.

(b) NVP with WTCache, a
write-though volatile cache.
A processor updates data in
both cache and NVM.

(c) NVP with NVCache, a
write-back non-volatile
cache. A processor updates
data in cache, but it is slow.

(d) NVP with NVSRAMCache.
Registers and cache data are
checkpointed to NVFF and
NVM.

(e) WL-Cache. A processor
holds a few dirty lines in the
cache and flushes them at a
power outage.

Figure 1: Design comparison of cache architectures in NVP. Gray boxes are non-volatile while white boxes are volatile. Red arrows
represent JIT checkpointing.

2.2 Cache and Write Policy
A cache allows a system to exploit temporal and spatial locality and

thus improves overall performance. Conventional caches employ

either write-through or write-back policies, which affect the crash

consistency design discussed in the next section. A write-through

cache updates both the cache and the main memory at every store.

A write-back cache updates only the cache and keeps track of dirty

cache lines. It coalesces subsequent write hits on the cache and

reduces the write traffic to the main memory, achieving higher per-

formance than the write-through design in many cases.

2.3 Crash Consistency with a Cache
2.3.1 Volatile Write-through Cache. A traditional SRAM-based

write-through cache can be used in energy harvesting systems with-

out modification (Figure 1(b)). The write-through policy naturally

supports crash consistency by persisting data at every store in a syn-

chronous manner while updating the same data in the cache. How-

ever, the requirement of synchronous writes prevents store buffer

optimization. The system should pay the long store latency as in the

case without a cache. Table 1 (second row) summarizes the pros and

cons of write-through cache (WTCache). It does not require extra

energy for JIT checkpointing, nor additional hardware (beyond a

traditional write-through cache). However, all stores have to travel

to NVM, so its performance improvement is limited.

HW
cost

Energy Buf.
Requirement

NVM Cache
Req.(size)

Perf.
Improve.

WTCache None No No Low
NVCache [6, 18] Low No Yes (Large) Low
NVSRAM(full) [41] High Large Yes (Large) High
NVSRAM(ideal) [16] High+ Large Yes (Large) High
NVSRAM(practical) [72, 73] Medium Medium Yes (Medium) Medium
ReplayCache [75] None Small No Medium
WL-Cache Low Small No High

Table 1: Hardware complexity and performance comparison in
prior cache schemes for energy harvesting systems.

2.3.2 Non-volatileWrite-back Cache. A write-back cache addresses

the performance issue of a write-through cache by holding dirty lines

in the cache without having synchronous writes. However, it raises

the crash consistency problem since the main memory could be out-

dated upon power outage. For crash consistency, NVCache [6, 18]

is designed as a full non-volatile cache, instead of a traditional

SRAM-based volatile one, as illustrated in Figure 1 (c). However,

NVCache is inevitably slower and requires more energy than a tradi-

tional SRAM-based cache. As summarized in Table 1 (third row),

NVCache does not need to reserve extra energy for JIT checkpoint-

ing, but it requires a full non-volatile cache design. The performance

impact is limited due to long latency and additional energy consump-

tion. Later we use NVCache as baseline for comparison.

2.3.3 NVSRAMCache. NVSRAMCache [16, 41, 42, 72, 73] cou-

ples a traditional write-back SRAM cache with an NVM counterpart

as shown in Figure 1(d). It achieves crash consistency via JIT check-

pointing; it monitors a remaining energy in a capacitor (energy

buffer) and copies the SRAM cache states to the NVM counterpart

right before a power loss. As listed in Table 1, NVSRAMCache can

achieve higher performance improvement as it uses write-back policy

and absorb write hits (unlike WTCache) and it uses a SRAM-based

cache at runtime (unlike NVCache). Additionally, NVSRAMCache

can resume from a warm cache (as in NVCache). Three versions

(full, ideal, and practical) of NVSRAMCache designs have been

proposed and they differ in how to achieve crash consistency and

associated hardware complexity.

The original NVSRAMCache (full) [41] checkpoints the “en-

tire” SRAM cache to the NVM counterpart, while the optimized

NVSRAMCache (ideal) [16] reduces checkpointing overhead by

magically copying “dirty” SRAM cache states only without requir-

ing any additional support. However, note that because all cache

lines could be dirty in the worst case, NVSRAMCache (ideal) still

needs to reserve the same amount of large energy, enough to JIT

checkpoint the entire cache. Moreover, the NVM part is unnecessar-

ily large and mostly wasted because it is used only for checkpointing;

therefore, these two versions are impractical. Table 1 list the high

energy buffer requirement and the HW cost as their main downside.

NVSRAMCache (practical) [72, 73] integrates SRAM and NVM

cache designs by maintaining SRAM cache lines and NV cache lines

in the same cache set. At runtime, it migrates SRAM cache line to

NV lines (if available). Upon power failure, NVSRAMCache (prac-

tical) uses JIT checkpointing to move the (remaining) dirty SRAM

lines to NV lines, i.e., it should ensure that there are enough available

NV lines for JIT checkpointing at all times. Therefore, it writes-back

dirty NV lines to NVM main memory at runtime, introducing addi-

tional traffic to NVM main memory. Besides, in NVSRAMCache

(practical), a data may reside in NV lines, yet accessing NV cache

lines is slower and consumes more energy than accessing SRAM

lines (as in NVCache). Consequently, the performance improvement

of NVSRAMCache (practical) is smaller than that the other designs

(Table 1). Though NVSRAMCache (practical) is claimed to be more

practical, NVSRAMCache (ideal) can achieve better performance,

so we later compare our proposed scheme with NVSRAMCache

(ideal). We omit “(ideal)” from now on.

ISCA ’23, June 17–21, 2023, Orlando, FL, USA. Choi et al.

3 DESIGN OF WL-CACHE
3.1 Overview
WL-Cache is designed on top of a traditional SRAM-based cache

with a write-back policy that holds dirty cache lines and avoids NV

main memory accesses on every store. However, unlike a traditional

write-back cache, WL-Cache limits the possible number of dirty

lines at a moment, so that it can failure-atomically flush the bounded

number of dirty lines to NVM before power failure by leveraging

the JIT checkpointing with a small energy reservoir. For instance,

Figure 1(e) shows the case in which WL-Cache allows up to two

dirty lines in a cache. By bounding the maximum number of dirty

lines, WL-Cache achieves crash consistency without requiring ex-

pensive hardware support such as a large energy buffer or an NVM

cache counterpart.

WL-Cache tracks dirty cache lines with a small hardware compo-

nent, called DirtyQueue. When a cache line becomes dirty, WL-Cache

inserts its memory address in DirtyQueue. The data remains in the

cache (as dirty) and does not become immediately persisted in NVM.

When DirtyQueue is about to be full, WL-Cache selects one of the

dirty lines and asynchronously writes it back to NVM—though it

may not be in the LRU position WL-Cache does not evict the line

but leave the data in the cache as clean. When the asynchronous

write-back finishes, WL-Cache removes the entry from DirtyQueue

to serve later stores.

To manage DirtyQueue, WL-Cache employs two configurable

thresholds, i.e., maxline and waterline. The maxline threshold (≤
|DirtyQueue|) defines the maximum number of dirty cache lines

in WL-Cache. When the number of dirty cache lines reaches the

maxline, WL-Cache stalls a store instruction until a free slot be-

comes available. In other words, the maxline determines and bounds

the amount of energy that WL-Cache needs to secure for checkpoint-

ing dirty cache lines to NVM upon a power failure. WL-Cache is

more energy-efficient than an alternative NVSRAMCache (ideal)

that should reserve a larger amount of energy enough to flush all

dirty cache states, e.g., for the worst case that every line is dirty. Ini-

tially, the maxline is set to be reasonable number (e.g., maxline = 4)

by considering the energy availability of a given energy buffer.

The waterline threshold (≤ maxline) determines when WL-Cache

starts writing back a dirty cache line to NVM during a program exe-

cution. When the number of dirty lines exceeds waterline, WL-Cache

picks a dirty cache line, based on the DirtyQueue replacement pol-

icy (§5.3), and asynchronously writes it back to NVM. Note that

WL-Cache does not evict a dirty line from the cache (which is sepa-

rately done by a conventional cache replacement policy). Instead, the

persisted (written-back) cache line remains in the cache in a “clean”

state for future references; the address of the clean cache line is

just removed from DirtyQueue only. WL-Cache exploits instruction

level parallelism (ILP) by overlapping the asynchronous write-back

operations with the executions of the following instructions.

The gap between maxline and waterline defines the potential ILP

opportunity. A high waterline would keep more dirty cachelines in a

cache, and should allow WL-Cache to serve more subsequent write

hits without traveling to NVM, saving energy and improving perfor-

mance. However, at the same time, a higher waterline has a risk to

stall the following store instructions in case where WL-Cache can-

not effectively hide the write-back latency (e.g., a code region with

frequent/dense stores). By default, waterline is set to be maxline−1.

So WL-Cache cleans (persists) one cache line at a time. The default

setting attempts to make DirtyQueue at least one slot available so

that a new dirty line can be added in DirtyQueue with no stall.

Conceptually, one can view WL-Cache with a cache-size maxline

(waterline) as a traditional write-back cache; WL-Cache with a zero

maxline (waterline) as a write-through cache. WL-Cache interacts

with the runtime system that reconfigures the maxline and waterline

threshold and thus simultaneously behave as a write-back, write-

through, and somewhere between them, depending on the qual-

ity/stability of power sources. WL-Cache in effect provides a tuning

knob to make the best of two worlds; this will be discussed in §4.

Figure 2 illustrates a running example of WL-Cache. Suppos-

edly, DirtyQueue’s maxline is 2 and waterline is 1 in this example.

Assumes that the system has enough energy to execute a given pro-

gram on the top that consists of three store instructions and two

arithmetic instructions in between. The first two store instructions

introduces two new dirty cache lines and their addresses (0x10000

and 0x20000) are maintained in DirtyQueue as shown in Figure 2

(a) and (b). After the second store, the number of dirty lines exceeds

waterline. In response, WL-Cache picks one of dirty cache lines

and asynchronously makes it persisted and clean (without eviction).

If WL-Cache relies on FIFO-based DirtyQueue replacement pol-

icy, WL-Cache writes back the oldest line (0x10000) in DirtyQueue

which is mapped to 0x1 tag address in a cache (Figure 2 (c)). In the

meantime, a program can make a progress and execute the next ADD

and SUB instructions, exploiting ILP. When the asynchronous write-

back operation is completed (with the ACK message), WL-Cache

removes the corresponding entry from DirtyQueue (Figure 2 (d)).

With an empty slot in DirtyQueue, the third store instruction can be

served without a stall. If the number of dirty lines reaches maxline

(which did not happen in this example), WL-Cache stalls the store

instruction and bounds the total number of dirty lines.

3.2 Crash Consistency with WL-Cache
WL-Cache ensures crash consistency using the following check-

pointing and recovery protocols. When a voltage drops below the

threshold Vbackup, the voltage monitor signals the processor to check-

point volatile registers (as in NVP) and volatile dirty cache lines (in

DirtyQueue) to the NVM space. In particular, WL-Cache sets the JIT

checkpointing voltage threshold (Vbackup) accordingly to persist the

maxline number of cache lines at each reboot time. While WL-Cache

needs to reserve more energy than NVP (without a volatile cache)

for dirty cache line checkpointing, WL-Cache’s caching benefits

are expected to be much higher (as will be shown in our evaluation

(§6.3)). During JIT checkpointing, WL-Cache identifies the dirty

cache lines based on the memory addresses stored in DirtyQueue

using the existing cache lookup control/data path. Then, WL-Cache

writes them back to the NVM using the existing cache-memory data

path. Note that WL-Cache neither allows more dirty cachelines than

it can handle (i.e., a maxline threshold) nor overspends the energy

budget for JIT-checkpointing as many dirty lines as the threshold.

Once the maxline threshold is (re)configured, WL-Cache adjusts the

Vbackup voltage accordingly at boot time. This backup energy is set

aside for JIT-checkpointing, and thus any dirty line hitting the thresh-

old would be flushed—asynchronously—using additional energy,

Write-Light Cache for Energy Harvesting Systems ISCA ’23, June 17–21, 2023, Orlando, FL, USA.

(a) (b) (c) (d) (e)

Figure 2: Running example of WL-Cache. WL-Cache holds dirty cache lines and keeps track of their memory addresses in DirtyQueue
(DQ). When the number of dirty lines exceeds waterline (blue dashed line), WL-Cache asynchronously writes back a dirty line to
NVM while a processor executes the next instructions. When the number of dirty lines reaches maxline (red dashed line), WL-Cache
stalls the store instruction, bounding the total number of dirty lines in WL-Cache.

not consuming the backup energy. In this way, whether program runs

longer or shorter, WL-Cache always secures a sufficient amount of

energy to checkpoint the maxline number of dirty cachelines during

the program execution.

The recovery protocol after power becomes available again re-

mains simple and the same as that of existing energy harvesting

systems. When the capacitor becomes full, energy harvesting sys-

tems restore the register states (including instruction pointer) from

NVFF for NVP (or from NVM for QuickRecall [20]).

3.3 Discussion
We found that a WTCache with a large write-back buffer can also

behave like WL-Cache. However, the alternative design would be

inferior to WL-Cache for three issues. First, the design increases

HW cost since the large write-back buffer must be backed with

content-addressable memory (CAM) search; one might think of a

small buffer to reduce CAM search cost, but it would lead to a worse

problem, i.e., frequent NVM writes and pipeline stalls. Second,

the design is energy-inefficient since the large buffer requires a

significant amount of energy to be secured for crash consistency

(failure-atomic write-back before outages). Third, the design would

suffer performance degradation by extending the critical path of

memory access since the write-back buffer must be consulted before

accessing memory, i.e., cache miss latency is lengthened.

The key architectural innovation is that WL-Cache decouples the

metadata (which cachelines are dirty) from the actual cacheline data.

That way WL-Cache does not increase the critical path of memory

access thanks to the lack of metadata (DirtyQueue) lookup, e.g., load

miss latency remains the same. This enables WL-Cache to achieve

a lightweight cache along with its adaptation to varying energy

harvesting conditions. Not only that, the decoupled design makes

it possible for WL-Cache to realize the DirtyQueue as a volatile

structure without compromising the crash consistency guarantee.

4 ADAPTIVE MAXLINE MANAGEMENT
WL-Cache interacts with a runtime system (a system software)

that reconfigures maxline and waterline in DirtyQueue. Energy har-

vesting systems stores energy in the capacitor so the recharging

time (power-off time) directly depends on the quality of energy

source. However, the power-off time is hard to measure. Instead,

the WL-Cache runtime system measures a “power-on time” using

a watch-dog timer to estimate the quality of energy source. Note

that energy harvesting systems continuously collect energy as they

execute (during power-on as well). Though every on-interval starts

from the same level of energy (at the same Von voltage level of the

capacitor), when the harvesting condition is good, the system may

run longer.

Based on the observation, WL-Cache runtime system estimates

the energy source quality from the past power-on times, and ad-

justs the maxline and waterline thresholds at each boot time. Once

set, they remain the same during execution (until energy drains).

Changing the thresholds while running could be dangerous as energy

harvesting systems may not be able to guarantee JIT checkpointing.

For adaptive management, WL-Cache compares the power-on

times of the last two intervals (Tn−2 and Tn−1) to determine the

maxline and waterline thresholds of the next interval (maxlinen and

waterlinen). If the measured power-on time increases significantly,

it implies that the energy source quality is good, and thus the system

adaptively raises maxline and waterline. With the higher maxline,

WL-Cache attempts to take more advantage of locality like a write-

back cache. In contrast, if the power-on time decreases, implying

a poor energy source condition, the system lowers maxline and

waterline because it is better to avoid a large voltage margin. Oth-

erwise, the two thresholds remain the same. Once the maxline is

determined, the runtime system also need to adjust the voltage mar-

gin Vbackup large enough to JIT-checkpoint the maxline number of

dirty cache lines at boot time.

Figure 3 describes an example execution in which the maxline

and waterline are reconfigured. Supposedly, at the beginning of a

program execution, the maxline and waterline in DirtyQueue are 3

and 2, respectively. When the capacitor voltage level reaches Von,

the system boots on (the first boot) and runs. When the voltage

level becomes below Vbackup, the system initiates JIT checkpointing

of volatile registers and (maxline) dirty cache lines. The system

also stores its power-on time for the first interval (T1). Suppose

now the energy source condition becomes much better. The system

recharges energy quickly and it makes more forward progress. Upon

the third boot, the system detects that the power-on time of the

second interval (T2) becomes much longer than that of the first

interval (T1). It increases the maxline and waterline thresholds (4

and 3, respectively) as well as the voltage margin Vbackup accordingly.

The reconfiguration allows the system to hold more dirty cache lines

during the execution of the third interval, providing more opportunity

to exploit locality. There is no big change in the power-on times of

ISCA ’23, June 17–21, 2023, Orlando, FL, USA. Choi et al.

Figure 3: An example execution with adaptive maxline, waterline, and Vbackup. The red and white intervals represents power-off and
power-on periods, respectively. The system boots and runs when the charge reaches Von, and starts JIT-checkpointing (gray interval)
when it becomes below Vbackup. Tn represents the power-on time of n-th interval.

the second and third intervals (T2 and T3), so the thresholds remain

the same. When the power-on time drops later, the system may

adaptively decrease the thresholds accordingly.

Dynamic adaptation: When the energy source is strong (e.g.,

solar or thermal) without causing frequent power failure, WL-Cache

may not fully exploit the adaptive maxline management since the

adaptation is done statically at boot time—though we target RF-

based energy harvesting systems as in other NVP proposals [16,

41, 71–73, 75]. To address this issue, WL-Cache can dynamically

raise Vbackup as the number of dirty cache lines increases. Note that

WL-Cache performs such dynamic adaptation opportunistically, i.e.,

if the capacitor energy cannot afford a new line, we would rather

write back one of the dirty lines tracked by DirtyQueue than stall

the pipeline to charge the capacitor. For example, when the number

of dirty lines reaches the maxline, WL-Cache checks the residual

energy in the capacitor. If the energy is sufficient to JIT-checkpoint

another line, WL-Cache increases the maxline by 1 while raising

Vbackup accordingly. We found that the dynamic adaptation works

better than the static adaptation when the energy source is strong;

this will be discussed in §6.

5 WL-CACHE POLICY AND PROTOCOLS
5.1 DirtyQueue Insertion Protocol
When a cache line becomes dirty,WL-Cache first checks if there

is an empty space in DirtyQueue by comparing the maxline and

the number of dirty lines (a tail of the circular queue). If avail-

able, the corresponding store address is appended in DirtyQueue.

Otherwise, the store instruction stalls until an empty slot becomes

available. The subsequent store instructions to the same dirty line

(i.e., no dirty state change) does not trigger an interaction between a

cache and DirtyQueue. Note that, thanks to the waterline constraint,

WL-Cache leaves an at least one space empty (§4); therefore, the

stall rarely occurs.

5.2 DirtyQueue Replacement Policy
When the number of total dirty cache lines exceeds the waterline,

WL-Cache selects a dirty line to write back in NVM. We refer

to the decision process as a “DirtyQueue replacement policy” to

differentiate it from a traditional cache replacement policy since

WL-Cache does not evict it but cleans it. WL-Cache supports FIFO

and LRU replacement policies.

5.3 DirtyQueue Replacement Protocol
After a dirty line is selected according to the above DirtyQueue re-

placement policy, WL-Cache asynchronously write-backs the dirty

cache line using the following four steps. (1) WL-Cache marks the

cache line clean without eviction, (2) WL-Cache sends an asynchro-

nous write-back request, (3) WL-Cache waits for the delivery of

an ACK message (acknowledging the completion of the write-back

operation). In the meantime, a processor executes the subsequent

instructions, and (4) upon ACK, WL-Cache removes the associated

slot from DirtyQueue. For FIFO policy, it will be always the head.

The LRU-based scheme requires search.

Figure 2 (c) illustrates the first and the second steps in which

the cache line of Tag 0x1 (Address 0x10000) becomes clean then

persisted in NVM. At the moment, the processor executes ADD

instruction (exploiting ILP). Figure 2 (d) shows the next two steps

where the ACK message is delivered and the DQ entry (head, Ad-

dress 0x10000) is removed.

Removing the associated entry in DirtyQueue last (Step 4) en-

sures that if a power fails any step before Step 4, WL-Cache can still

safely find the entry in DirtyQueue and perform JIT-checkpointing

of the dirty cache line, regardless of whether the write-back request

(Step 2) has been fulfilled or not. If completed, WL-Cache may

(redundantly) write back the cache line again, yet there is no cor-

rectness issue. If write-back is not done, WL-Cache will persist the

cache line, making the NVM state consistent across a power failure.

Marking the cache line clean first (Step 1) ensures the correctness

even when the store instruction to the same cache line is executed

while the cache line is being written back asynchronously (Step 3).

Suppose we have two stores to the same memory location X , say

WX = 1 and WX = 2, and some other instructions in between. The

first store WX = 1 makes the cache line X = 1 and dirty. Let’s say

DirtyQueue becomes full (by other store instructions) and the cache

line X is selected to be cleaned. The protocol first marks the cache

line clean (Step 1) and then start a write-back operation (Step 2).

Suppose at the moment, the second store WX = 2 performs. Now

we demonstrate what could go wrong if the cache line is not marked

clean (not doing Step 1 first).

If the cache line remains dirty, the second store will not find

a state transition to dirty, so it will not update DirtyQueue. The

second store will make the cache line X = 2 and dirty. Suppose

the write-back operation of the first store finishes (NVM now has

X = 1), and the address X is removed from DirtyQueue (Step 3

Write-Light Cache for Energy Harvesting Systems ISCA ’23, June 17–21, 2023, Orlando, FL, USA.

and 4). Then, the power is out while the cache has X = 2. This is

problematic as the cache has X = 2 but NVM has X = 1 (inconsistent)

and DirtyQueue does not have the recent X , losing the cache state

X = 2. To avoid the problem, WL-Cache marks the cache line clean

first (Step 1), so that the second store will also add the address

X in DirtyQueue. As this may happen rarely, WL-Cache allows

DirtyQueue to temporarily hold redundant X (wasting the slots in

DirtyQueue), instead of actively searching the redundant entry in

DirtyQueue with additional hardware logic. A redundant entry in

DirtyQueue does not affect the correctness as it may only cause

redundant write-back operations.

5.4 Cache Replacement Policy
WL-Cache can rely on a traditional LRU cache placement policy

that determines which cache line to evict on a cache miss. Yet, the

cache replacement policy may conflict with the DirtyQueue replace-

ment policy. When the cache replacement policy decides to evict

a dirty cache line whose address is in DirtyQueue, the cache line

becomes invalid after a write-back operation (i.e., after it becomes

persisted). Thus, it would be ideal to remove the associated entry

in DirtyQueue upon an eviction so that DirtyQueue can become

more available to other stores. However, this eager cleanup requires

searching DirtyQueue to find the entry on each eviction, increasing

the latency and hardware complexity. To avoid search, WL-Cache in-

stead chooses not to remove it eagerly and allows an outdated slot to

reside in DirtyQueue temporarily. When an DirtyQueue entry is se-

lected for replacement or JIT-checkpointing, WL-Cache can find the

cache line invalid (or does not exist) and safely ignore it. Moreover,

we empirically found that the traditional LRU cache replacement

policy is energy-inefficient for energy harvesting systems. Since it

tracks LRU/MRU list at every memory access, it consumes more

power and increases more latency than FIFO cache replacement

policy; this will be discussed in §6.6.

5.5 DirtyQueue Threshold Management
WL-Cache introduces a small hardware space (1 byte each) to hold

the maxline and waterline thresholds of DirtyQueue. As they have

to be alive across a power failure, WL-Cache introduces NVFF-

based backup and performs JIT checkpointing (similar to volatile

registers). For adaptive threshold management (§4), WL-Cache adds

a watchdog timer and two NVFF-based non-volatile storage (2 bytes

each) to keep the last two past power-on times. When the power

backs on, all these values are restored from NVFF.

At boot time, given maxline, WL-Cache also needs to adjust

the voltage margin Vbackup to ensure the failure-atomic JIT check-

pointing of (1) registers, (2) (up to maxline) dirty cache lines, and

(3) maxline, waterline, and power-on timer values. To reconfigure

Vbackup, WL-Cache assumes existing hardware support in current

commodity micro-controller such as TI-MSP430 [2] that already sup-

port different voltage selections. WL-Cache sets Vbackup by choosing

an associated voltage divider with a reference voltage.

6 EVALUATION
6.1 Experimental Settings
We implemented WL-Cache on gem5 [7] with ARM ISA, model-

ing a single core in-order processor. For power failure simulation,

Processor (1.0GHz, 1 core)
L1 I/D Cache 8kB, 2-way, 64B block

Cache Latencies (hit/miss) NVRAM(1.6ns/1.5ns), SRAM(0.3ns/0.1ns)

NVM (ReRAM) Latency (ns)
0.94/7.5/18/15/7.5/150/30

(tCK/tBURST/tRCD/tCL/tWTR/tWR/tXAW)

Energy buffer (capacitor) 1uF [16, 45, 69]

Vbackup/restore
NV(2.9/3.3), NVSRAM(3.1/3.5),

WL(2.95∼3.1/3.3∼3.5)

Vmin/max
NV(2.8/3.5), NVSRAM(2.8/3.5),

WL(2.8/3.5)

Table 2: Simulation configuration.

we used NVPsim [16] with the same core model. We compared

WL-Cache to (1) non-volatile write-back cache (NVCache-WB) [6,

18], (2) volatile write-through SRAM-based cache (VCache-WT),

(3) VCache-WB with ReplayCache compiler (ReplayCache) [75],

and (4) the state-of-the-art NVSRAM cache that uses ReRAM as the

SRAM cache backup storage, with a write-back policy (NVSRAM-

WB) [65]; we set this as an ideal design that can checkpoint only

dirty lines from SRAM to ReRAM at power-off point. We used Me-

diabench [31] and MiBench [17] compiled with -O3 optimization.

As a default configuration, we use volatile L1 instruction and data

caches as with the prior work [41, 75] (see Table 2). For WL-Cache,

we use the FIFO for DirtyQueue replacement policy and LRU for

cache replacement policy as default; we varied the policies for sen-

sitivity analysis (§6.5). Also, we set the DirtyQueue size to 8 and

the maxline to 6 as default (i.e., the waterline is 5), then we enable

the adaptive threshold management (§4) to reconfigure maxline and

waterline, accordingly.

To evaluate WL-Cache in realistic energy harvesting situations,

we used the same two power traces, i.e., Trace 1 and Trace 2, of the

NVPsim which were collected from real RF sources [16, 75]; Trace

1 and 2 are from home and office, respectively. Trace 2 is relatively

less stable than Trace 1.

6.2 Hardware Cost
We analyzed the hardware cost of WL-Cache by using CACTI [62]

with 90 nm technology. WL-Cache requires at most 0.005 mm2

area and 0.0008 nJ (dynamic access). Furthermore, the total leakage

power of WL-Cache (DirtyQueue with a logic) causes only 0.1mW

in total, which is only 9% of NV cache leakage [16, 73, 75].

6.3 Performance Analysis
Performance Analysis without Power Outages: For performance

analysis, we set the baseline to be NVSRAM-WB [65] and com-

pared with NVCache-WB [6, 18], VCache-WT, ReplayCache with

VCache-WB [75], and WL-Cache. Figure 4 shows the speedup

when there is no power failure. Overall, WL-Cache shows a similar

speedup to NVSRAM-WB, achieving a 3.1x speedup on average.

The baseline NVSRAM-WB is the fastest cache design for Non-

volatile processor (NVP) [75]. On the other hand, NVCache-WB

is the slowest as it has to pay long latency for every nonvolatile

cache access. VCache-WT could take advantage of (SRAM-based)

fast cache hits. ReplayCache improves the performance since it

overlaps the next instruction execution with NVM stores of the same

program region without waiting the corresponded ACK like ILP; it

persists all stores at region-level granularity. Thanks to the region-

level persistence with ILP execution, it can achieve almost 60%

speedup compared to VCache-WT. On the other hand, NVSRAM-

WB shows the best performance among all designs, demonstrating

ISCA ’23, June 17–21, 2023, Orlando, FL, USA. Choi et al.

a
d

p
cm

d
e
co

d
e

a
d

p
cm

e
n

co
d

e

e
p

ic

g
7

2
1

d
e
co

d
e

g
7

2
1

e
n

co
d

e

g
sm

d
e
co

d
e

g
sm

e
n

co
d

e

jp
e
g

d
e
co

d
e

jp
e
g

e
n

co
d

e

m
p

e
g

2
d

e
co

d
e

m
p

e
g

2
e
n

co
d

e

p
e
g

w
it

d
e
cr

y
p

t

sh
a

su
sa

n
co

rn
e
rs

su
sa

n
e
d

g
e
s

g
m

e
a
n

(M
e
d

ia
)

b
a
si

cm
a
th

q
so

rt

d
ijk

st
ra

F
F
T

F
F
T
_i

p
a
tr

ic
ia

ri
jn

d
a
e
l_

d

ri
jn

d
a
e
l_

e

g
m

e
a
n

(M
i)

g
m

e
a
n

(T
o
ta

l)0.0
0.5
1.0
1.5
2.0

N
o
rm

a
liz

e
d

 S
p

e
e
d

u
p

 (
X

)

NVSRAM(ideal)

NVCache-WB VCache-WT ReplayCache WL-Cache

Figure 4: Normalized speedup of each cache design compared to NVSRAM(ideal) with no power failure.

a
d

p
cm

d
e
co

d
e

a
d

p
cm

e
n

co
d

e

e
p

ic

g
7

2
1

d
e
co

d
e

g
7

2
1

e
n

co
d

e

g
sm

d
e
co

d
e

g
sm

e
n

co
d

e

jp
e
g

d
e
co

d
e

jp
e
g

e
n

co
d

e

m
p

e
g

2
d

e
co

d
e

m
p

e
g

2
e
n

co
d

e

p
e
g

w
it

d
e
cr

y
p

t

sh
a

su
sa

n
co

rn
e
rs

su
sa

n
e
d

g
e
s

g
m

e
a
n

(M
e
d

ia
)

b
a
si

cm
a
th

q
so

rt

d
ijk

st
ra

F
F
T

F
F
T
_i

p
a
tr

ic
ia

ri
jn

d
a
e
l_

d

ri
jn

d
a
e
l_

e

g
m

e
a
n

(M
i)

g
m

e
a
n

(T
o
ta

l)0.0
0.5
1.0
1.5
2.0

N
o
rm

a
liz

e
d

 S
p

e
e
d

u
p

 (
X

)

NVSRAM(ideal)

NVCache-WB VCache-WT ReplayCache WL-Cache

Figure 5: Normalized speedup of each cache design compared to NVSRAM(ideal) in Power Trace 1.

a
d

p
cm

d
e
co

d
e

a
d

p
cm

e
n

co
d

e

e
p

ic

g
7

2
1

d
e
co

d
e

g
7

2
1

e
n

co
d

e

g
sm

d
e
co

d
e

g
sm

e
n

co
d

e

jp
e
g

d
e
co

d
e

jp
e
g

e
n

co
d

e

m
p

e
g

2
d

e
co

d
e

m
p

e
g

2
e
n

co
d

e

p
e
g

w
it

d
e
cr

y
p

t

sh
a

su
sa

n
co

rn
e
rs

su
sa

n
e
d

g
e
s

g
m

e
a
n

(M
e
d

ia
)

b
a
si

cm
a
th

q
so

rt

d
ijk

st
ra

F
F
T

F
F
T
_i

p
a
tr

ic
ia

ri
jn

d
a
e
l_

d

ri
jn

d
a
e
l_

e

g
m

e
a
n

(M
i)

g
m

e
a
n

(T
o
ta

l)0.0
0.5
1.0
1.5
2.0

N
o
rm

a
liz

e
d

 S
p

e
e
d

u
p

 (
X

)

NVSRAM(ideal)

NVCache-WB VCache-WT ReplayCache WL-Cache

Figure 6: Normalized speedup of each cache design compared to NVSRAM(ideal) in Power Trace 2.

the benefit of write-back. WL-Cache was slower than NVSRAM-

WB, implying that WL-Cache could hold enough dirty cache lines.

With waterline-based write-back, WL-Cache did not suffer much

from potential stalls. WL-Cache also effectively hide the cost of

asynchronous write-back operation, exploiting ILP.

Performance Analysis with Power Outages: Figure 5 and 6 show

the speedup of each cache design using Power Trace 1 and 2, respec-

tively. We took into account both power-on and power-off periods in

this experiment.

For all applications, WL-Cache shows the best performance among

all designs. WL-Cache achieves on average about 1.09x and 1.12x

speedup compared to the baseline in Trace 1 and 2, respectively.

WL-Cache is 225% and 198% faster than NVCache-WB, 71% and

55% faster than VCache-WT, and 32% and 30% faster than Replay-

Cache in Trace 1 and 2, respectively, demonstrating the benefits of

holding dirty cache lines and exploiting cache locality. Upon a power

failure, WL-Cache needs to persist a bounded number of dirty cache

lines, whereas NVCache-WB should reserve more energy to sup-

port cache backup. With less energy reserved for JIT checkpointing,

WL-Cache could efficiently use the energy to compute and make a

further forward progress.

Write Traffic with Power Outages: Figure 7 shows the write traffic

overhead of WL-Cache compared to NVSRAM-WB cache using

Trace 1. The result demonstrates that WL-Cache slightly increases

a
d

p
cm

d
e
co

d
e

a
d

p
cm

e
n

co
d

e
e
p

ic
g

7
2

1
d

e
co

d
e

g
7

2
1

e
n

co
d

e
g

sm
d

e
co

d
e

g
sm

e
n

co
d

e
jp

e
g

d
e
co

d
e

jp
e
g

e
n

co
d

e
m

p
e
g

2
d

e
co

d
e

m
p

e
g

2
e
n

co
d

e
p

e
g

w
it

d
e
cr

y
p

t
sh

a
su

sa
n

co
rn

e
rs

su
sa

n
e
d

g
e
s

g
m

e
a
n

(M
e
d

ia
)

b
a
si

cm
a
th

q
so

rt
d

ijk
st

ra
F
F
T

F
F
T
_i

p
a
tr

ic
ia

ri
jn

d
a
e
l_

d
ri

jn
d

a
e
l_

e
g

m
e
a
n

(M
i)

g
m

e
a
n

(T
o
ta

l)1.00
1.02
1.04
1.06
1.08
1.10

N
o
rm

a
liz

e
d

 W
ri

te
 T

ra
ff

ic
 I
n

cr
e
a
se

Figure 7: Normalized write traffic increase compared to NVS-
RAM(ideal) in Power Trace 1.

no failure trace 1 trace 2
0

1

2

N
o
rm

a
liz

e
d

S
p

e
e
d

u
p

 (
X

) DQ-FIFO DQ-LRU

(a) DirtyQueue replacement.

no failure trace 1 trace 2
0

1

2

N
o
rm

a
liz

e
d

S
p

e
e
d

u
p

 (
X

)

D-Map. 2-Way 4-Way

(b) Cache set associativity

Figure 8: Normalized speedup of WL-Cache with different
DirtyQueue replacement and different cache set associativity
compared to NVSRAM(ideal) on average.

the write traffic; however, it can be paid off by enabling asynchronous

write back and adaptive execution as proven in Figure 5.

Write-Light Cache for Energy Harvesting Systems ISCA ’23, June 17–21, 2023, Orlando, FL, USA.

2 4 6 8
Maxline

0.6

0.8

1.0

1.2

1.4

N
o
rm

a
liz

e
d

 S
p

e
e
d

u
p

 (
X

)

FIFO LRU NVSRAM(ideal)

(a) adpcmdecode

2 4 6 8
Maxline

0.6

0.8

1.0

1.2

1.4

N
o
rm

a
liz

e
d

 S
p

e
e
d

u
p

 (
X

)

FIFO LRU NVSRAM(ideal)

(b) adpcmencode

2 4 6 8
Maxline

0.6

0.8

1.0

1.2

1.4

N
o
rm

a
liz

e
d

 S
p

e
e
d

u
p

 (
X

)

FIFO LRU NVSRAM(ideal)

(c) epic

2 4 6 8
Maxline

0.6

0.8

1.0

1.2

1.4

N
o
rm

a
liz

e
d

 S
p

e
e
d

u
p

 (
X

)

FIFO LRU NVSRAM(ideal)

(d) g721dec

2 4 6 8
Maxline

0.6

0.8

1.0

1.2

1.4

N
o
rm

a
liz

e
d

 S
p

e
e
d

u
p

 (
X

)

FIFO LRU NVSRAM(ideal)

(e) g721enc

2 4 6 8
Maxline

0.6

0.8

1.0

1.2

1.4

N
o
rm

a
liz

e
d

 S
p

e
e
d

u
p

 (
X

)

FIFO LRU NVSRAM(ideal)

(f) gsmdec

2 4 6 8
Maxline

0.6

0.8

1.0

1.2

1.4

N
o
rm

a
liz

e
d

 S
p

e
e
d

u
p

 (
X

)

FIFO LRU NVSRAM(ideal)

(g) gsmenc

2 4 6 8
Maxline

0.6

0.8

1.0

1.2

1.4

N
o
rm

a
liz

e
d

 S
p

e
e
d

u
p

 (
X

)

FIFO LRU NVSRAM(ideal)

(h) jpegdec

2 4 6 8
Maxline

0.6

0.8

1.0

1.2

1.4

N
o
rm

a
liz

e
d

 S
p

e
e
d

u
p

 (
X

)

FIFO LRU NVSRAM(ideal)

(i) jpegenc

2 4 6 8
Maxline

0.6

0.8

1.0

1.2

1.4

N
o
rm

a
liz

e
d

 S
p

e
e
d

u
p

 (
X

)

FIFO LRU NVSRAM(ideal)

(j) mpeg2dec

2 4 6 8
Maxline

0.6

0.8

1.0

1.2

1.4

N
o
rm

a
liz

e
d

 S
p

e
e
d

u
p

 (
X

)

FIFO LRU NVSRAM(ideal)

(k) mpeg2enc

2 4 6 8
Maxline

0.6

0.8

1.0

1.2

1.4

N
o
rm

a
liz

e
d

 S
p

e
e
d

u
p

 (
X

)

FIFO LRU NVSRAM(ideal)

(l) pegwitdec

2 4 6 8
Maxline

0.6

0.8

1.0

1.2

1.4

N
o
rm

a
liz

e
d

 S
p

e
e
d

u
p

 (
X

)

FIFO LRU NVSRAM(ideal)

(m) sha

2 4 6 8
Maxline

0.6

0.8

1.0

1.2

1.4

N
o
rm

a
liz

e
d

 S
p

e
e
d

u
p

 (
X

)

FIFO LRU NVSRAM(ideal)

(n) susancorners

2 4 6 8
Maxline

0.6

0.8

1.0

1.2

1.4

N
o
rm

a
liz

e
d

 S
p

e
e
d

u
p

 (
X

)

FIFO LRU NVSRAM(ideal)

(o) susanedges

2 4 6 8
Maxline

0.6

0.8

1.0

1.2

1.4

N
o
rm

a
liz

e
d

 S
p

e
e
d

u
p

 (
X

)

FIFO LRU NVSRAM(ideal)

(p) basicmath

2 4 6 8
Maxline

0.6

0.8

1.0

1.2

1.4

N
o
rm

a
liz

e
d

 S
p

e
e
d

u
p

 (
X

)

FIFO LRU NVSRAM(ideal)

(q) qsort

2 4 6 8
Maxline

0.6

0.8

1.0

1.2

1.4

N
o
rm

a
liz

e
d

 S
p

e
e
d

u
p

 (
X

)

FIFO LRU NVSRAM(ideal)

(r) dijkstra

2 4 6 8
Maxline

0.6

0.8

1.0

1.2

1.4

N
o
rm

a
liz

e
d

 S
p

e
e
d

u
p

 (
X

)

FIFO LRU NVSRAM(ideal)

(s) fft

2 4 6 8
Maxline

0.6

0.8

1.0

1.2

1.4

N
o
rm

a
liz

e
d

 S
p

e
e
d

u
p

 (
X

)

FIFO LRU NVSRAM(ideal)

(t) ifft

2 4 6 8
Maxline

0.6

0.8

1.0

1.2

1.4

N
o
rm

a
liz

e
d

 S
p

e
e
d

u
p

 (
X

)

FIFO LRU NVSRAM(ideal)

(u) patracia

2 4 6 8
Maxline

0.6

0.8

1.0

1.2

1.4

N
o
rm

a
liz

e
d

 S
p

e
e
d

u
p

 (
X

)

FIFO LRU NVSRAM(ideal)

(v) rijndec

2 4 6 8
Maxline

0.6

0.8

1.0

1.2

1.4

N
o
rm

a
liz

e
d

 S
p

e
e
d

u
p

 (
X

)

FIFO LRU NVSRAM(ideal)

(w) rijnenc

2 4 6 8
Maxline

0.6

0.8

1.0

1.2

1.4

N
o
rm

a
liz

e
d

 S
p

e
e
d

u
p

 (
X

)

FIFO LRU NVSRAM(ideal)

(x) avg(gmean)

Figure 9: Sensitivity analysis on applications varying maxline sizes and cache replacement policies in Power Trace 1.

128 256 512 1024 2048 4096

Cache Size (B)

0.0
0.5
1.0
1.5
2.0

N
o
rm

a
liz

e
d

S
p

e
e
d

u
p

 (
X

)

NVSRAM(ideal)

VCache-WT

ReplayCache

WL-Cache

(a) Cache size variation.

100nF344nF 1uF 10uF 100uF500uF 1mF
Capacitor Size

101

103

Ex
ec

ut
io

n
Ti

m
e

(s
)

VCache-WT
ReplayCache

NVSRAM(ideal)
WL-Cache

(b) Capacitor size variation.

Figure 10: Normalized speedup of each cache design in Power
Trace 1 varying (a) each cache size and (b) capacitor size

6.4 DirtyQueue Replacement Policy
We measured performance of WL-Cache by varying the DirtyQueue

replacement policies. WL-Cache with DirtyQueue-FIFO (DQ-FIFO)

shows slightly higher performance than WL-Cache with DirtyQueue-

LRU under power failures as shown in Figure 8(a). Because WL-Cache

does not evict the cache line and keeps it in the cache as clean regard-

less of DirtyQueue replacement policy, most subsequent memory

references would show similar cache hit/miss trends. In general,

LRU is known to be better than FIFO but it turns out that the addi-

tional power consumption for the LRU lookup logic often offsets the

potential benefits of LRU, and the cache is often not warm enough

to see the visible merits of LRU in energy harvesting systems. In

particular, the LRU cleaning policy is slightly slower than FIFO in

Trace 1 and 2, due to additional power consumption for that LRU

lookup logic. WL-Cache uses the FIFO-based DirtyQueue replace-

ment policy by default.

6.5 Sensitivity Analysis
We conducted sensitivity analysis on WL-Cache by varying the

maxline size, cache replacement policy (LRU and FIFO), set as-

sociativity, cache size, capacitor size, power trace, and adaptive

mechanism. Notably, we explore cache replacement policy in this

section (with FIFO-based DirtyQueue replacement policy). For anal-

ysis, we used the same baseline (i.e., NVSRAM-WB) and measured

the performance of each cache design using Trace 1. Figure 9 shows

the results.

Set-associative Cache Variation: We varied cache associativity

and measured the execution time of each design. Figure 8(b) shows

that the direct-mapped cache is the slowest design; it is slower than

the baseline. On the other hand, 2-way and 4-way set-associative

cache design show similar performance. In particular, the 4-way set-

associative cache is slightly slower than 2-way set-associative cache

in Trace 1 and 2, due to additional power consumption. WL-Cache

uses the 2-way set-associative cache by default.

Maxline Variation: We investigate how its performance varies

when the maxline changes from 2 to 8 along with different replace-

ment policies. WL-Cache shows good performance with maxline 4

or 6. The performance differences between maxline 4 and 6 are not

ISCA ’23, June 17–21, 2023, Orlando, FL, USA. Choi et al.

a
d

p
cm

d
e
co

d
e

a
d

p
cm

e
n

co
d

e

e
p

ic

g
7

2
1

d
e
co

d
e

g
7

2
1

e
n

co
d

e

g
sm

d
e
co

d
e

g
sm

e
n

co
d

e

jp
e
g

d
e
co

d
e

jp
e
g

e
n

co
d

e

m
p

e
g

2
d

e
co

d
e

m
p

e
g

2
e
n

co
d

e

p
e
g

w
it

d
e
cr

y
p

t

sh
a

su
sa

n
co

rn
e
rs

su
sa

n
e
d

g
e
s

g
m

e
a
n

(M
e
d

ia
)

b
a
si

cm
a
th

q
so

rt

d
ijk

st
ra

F
F
T

F
F
T
_i

p
a
tr

ic
ia

ri
jn

d
a
e
l_

d

ri
jn

d
a
e
l_

e

g
m

e
a
n

(M
i)

g
m

e
a
n

(T
o
ta

l)

1.0
1.2
1.4
1.6
1.8
2.0

N
o
rm

a
liz

e
d

 S
p

e
e
d

u
p

 (
X

)

NVSRAM(ideal)

LRU(Best) LRU(Adap) FIFO(Best) FIFO(Adap)

Figure 11: Normalized speedup of WL-Cache with adaptive management compared to NVSRAM(ideal) in Power Trace 1.

a
d

p
cm

d
e
co

d
e

a
d

p
cm

e
n

co
d

e

e
p

ic

g
7

2
1

d
e
co

d
e

g
7

2
1

e
n

co
d

e

g
sm

d
e
co

d
e

g
sm

e
n

co
d

e

jp
e
g

d
e
co

d
e

jp
e
g

e
n

co
d

e

m
p

e
g

2
d

e
co

d
e

m
p

e
g

2
e
n

co
d

e

p
e
g

w
it

d
e
cr

y
p

t

sh
a

su
sa

n
co

rn
e
rs

su
sa

n
e
d

g
e
s

g
m

e
a
n

(M
e
d

ia
)

b
a
si

cm
a
th

q
so

rt

d
ijk

st
ra

F
F
T

F
F
T
_i

p
a
tr

ic
ia

ri
jn

d
a
e
l_

d

ri
jn

d
a
e
l_

e

g
m

e
a
n

(M
i)

g
m

e
a
n

(T
o
ta

l)

1.0
1.2
1.4
1.6
1.8
2.0

N
o
rm

a
liz

e
d

 S
p

e
e
d

u
p

 (
X

)

NVSRAM(ideal)

LRU(Best) LRU(Adap) FIFO(Best) FIFO(Adap)

Figure 12: Normalized speedup of WL-Cache with adaptive management compared to NVSRAM(ideal) in Power Trace 2.

tr.1(RF) tr.2(RF) tr.3(RF) solar thermal
0.0
0.5
1.0
1.5
2.0
2.5
3.0

N
or

m
al

iz
ed

Sp
ee

du
p

(X
)

NVSRAM(ideal)

VCache-WT
ReplayCache

WL-Cache
WL-Cache(dyn)

(a) Performance comparison across power traces.

NVCache WT-VCache NVSRAM-WB WL-Cache
0

20
40
60
80

100
120
140
160
180

En
er

gy
 C

on
s.

 B
re

ak
.[%

]

Cache(read)
Cache(write)

Mem(read)
Mem(write)

Compute

(b) Energy consumption breakdown with Power Trace 1.

Figure 13: Performance analysis across power traces (a) and
energy consumption breakdown using Power Trace 1 (b).

significant. With too large maxline (e.g., 8), performance degrades as

WL-Cache has to reserve more energy for JIT checkpointing. With

too small maxline (e.g., 2), performance also degrades as WL-Cache

does not take advantage of dirty cache lines and locality.

Cache Replacement Variation: Figure 9 shows that FIFO-based

WL-Cache (black line) outperforms LRU-based WL-Cache (blue

dotted line) for cache replacement policies. When compared to

NVSRAM-WB (red dotted line), FIFO-based WL-Cache performs

better for almost all applications in all the maxline settings. For

general purpose systems, LRU normally performs better compared

to FIFO. However, for energy harvesting systems with frequent

power outages, we found FIFO is always faster than LRU. Further

investigation reveals two main reasons for this surprising result.

First, the impact of cache replacement policy on cache miss rate

is limited. We found that both policies cause almost the same cache

miss rates. Energy harvesting systems experience frequent power

failures, and they wake up with a “cold” cache—that has no data—

across power failure. Therefore, WL-Cache is likely to cause com-

pulsory (cold) misses across power failure regardless of the replace-

ment policy. Furthermore, the systems run applications for a short

amount of time. Within the limited time, the room for a smart cache

replacement policy to address other conflict misses is simply small.

Second, the FIFO policy is energy-efficient without requiring

additional cost to track LRU/MRU list at every memory access

unlike LRU, that takes more latency and consumes more power

possibly causing more power outages; we found LRU caused more

power outages for most of applications.

Cache Size Variation: Figure 10(a) illustrates that the normalized

performance speedup of alternative cache schemes with a different

cache size from 128B to 4KB using Power Trace 1. The results indi-

cate that the performance gap between WL-Cache and NVSRAM-

WB is decreased when the cache size is decreased, and vice versa;

the speedup is also increased as the cache size increases.

Capacitor Size Variation: For capacitor size sensitivity analysis,

we used NVSRAM(ideal) with 1uF as baseline, and measured the

performance of alternative cache design with a different capacitor

size from 100nF to 1mF using Power Trace 1. Figure 10(b) describes

the normalized performance speedup of alternative cache schemes.

In particular, all schemes show their best performance when the

capacitor size is 1uF. However, when the capacitor size is increased

more than 1uF, their performance is exponentially decreased. This is

mainly because their charging time is increased when the capacitor

size is increased. On the other hand, the performance gap between

WL-Cache and NVSRAM-WB is decreased when the capacitor size

is increased. Nevertheless, it would be a mistake to take the diminish-

ing gain to mean that such a large capacitor is the norm because the

best performance is achieved with 1uF capacitor where WL-Cache

Write-Light Cache for Energy Harvesting Systems ISCA ’23, June 17–21, 2023, Orlando, FL, USA.

significantly outperforms NVSRAM-WB achieving 1.35x and 1.44x

average speedups for Trace 1 and Trace 2, respectively.

6.6 Maxline/Waterline Threshold Adaptation
The above section motivates WL-Cache’s adaptive maxline (and

waterline) management optimization (§4). For comparison, we mea-

sured the performance gain of “adaptive” WL-Cache with FIFO and

LRU replacement policies and compared them to “static” WL-Cache.

For the fixed settings, we picked the best performing maxline size

for each application as we found in Figure 9. Figures 11 and 12 show

the results for Trace 1 and 2, respectively. Adaptive WL-Cache out-

performs static-Best WL-Cache for both FIFO- and LRU- cache

replacement schemes. Overall, for Trace 1, FIFO (Adap) and LRU

(Adap) achieve 1.35x and 1.18x speedups, respectively, while FIFO

(Best) and LRU (Best) do 1.26x and 1.1x speedups, respectively.

For power trace 2, FIFO (Adap/Best) and LRU (Adap/Best) earn

speedups of 1.44x/1.3x and 1.24x/1.15x, respectively.

On average, WL-Cache reconfigures the maxline (and waterline)

thresholds 11 and 12 times on trace 1 and 2, respectively. The mini-

mum and maximum values of maxline are 2 and 6 for both traces.

The energy source prediction accuracy is >98%, and thus the impact

of mis-prediction is minimal in both traces. With adaptive threshold

management, we also measured the number of dirty lines and the

number of write-backs during each power-on period on average,

which are 6/3 and 6/2 (dirty-lines/write-backs) in trace 1 and 2, re-

spectively. In addition, the pipeline stall causes a negligible delay,

<1% of the total execution time on average in both traces.

Power Trace Sensitivity: We conducted additional experiments with

another RF trace (tr.3 [57]) as well as solar and thermal traces [16].

Figure 13(a) shows that WL-Cache outperforms all others signifi-

cantly for all RF traces yet achieves only 8% and 2% speedups over

NVSRAM (ideal) for solar and thermal traces, respectively. This is

because NVSRAM works better in stable environment such as solar

and thermal (as shown in Figure 4); the numbers of power outages in

tr.1/tr.2/tr.3/solar/thermal are 33/45/121/12/9, respectively, on aver-

age during the entire program execution. In particular, such frequent

outages in tr.3 make NVSRAM perform the worst among all tested

cache designs.

Adaptation Sensitivity: We also tested the dynamic adaptation

scheme (§4) shown as WL-Cache (dyn) in Figure 13(a); it outper-

forms WL-Cache by about 5% and 3% for solar and thermal traces,

respectively. This is because by raising the maxline during program

execution, WL-Cache (dyn) can reduce the number of writebacks—

especially when the following stores fall into the lines of DirtyQueue

which would otherwise be written back in NVM due to the waterline

constraint. However, it is slower than WL-Cache for all RF traces

that are less stable than others; it turns out that even if WL-Cache

(dyn) manages to increase the maxline with Vbackup raised, power

failure often occurs before the writeback reduction effect kicks in. In

the presence of unstable power, such premature Vbackup raise leaves

a less amount energy for computation at run time and delays the

booting time without much gain, thus ending up with more failure

and performance degradation compared to WL-Cache.

6.7 Energy Consumption Analysis
We measured energy consumption of WL-Cache and compared it to

other cache designs with power outages for each part of the system:

core (computation), cache, and main memory (NVM). For analy-

sis, we set WL-Cache with FIFO replacement policy and adaptive

maxline management optimization. Figure 13(b) shows the break-

down, normalized to the same NVSRAM(ideal) baseline on average,

using Trace 1. Overall, WL-Cache reduces the total energy con-

sumption by almost 17% compared to the baseline. In particular,

WL-Cache significantly reduces the energy consumption from a

cache part, which is less than the other designs.

7 RELATED WORK
Domain When to write back? Cost WSP

Early-write[33] Reliability
Eager

(timer expiration)
New cache structure

(per-line timer)
No

DPO [29]
HOPS [52]

BBB [4]
ASAP [74]

NVM
crash

consistency

Eager/Write-through
(L1 cache to NVM)

New data-path,
SW support,

Backup battery,
Large buffer

No

VWQ
[64]

DRAM
performance

Eager
(scheduled)

Additional hardware
for writeback

scheduling
No

VIPS/-m
[25, 59]

Cache
coherence

Eager (shared block)
Lazy (private block)

TLB/OS interaction No

Table 3: Related work comparison.

To improve cache performance, a prior work introduces an ea-

ger write-back cache [32] that opportunistically flushes lines when

memory bus is idle. Unfortunately, the prior work was designed

without considering neither crash consistency nor energy efficiency

that are essential for energy harvesting systems. In addition, many

prior studies have leveraged the eager write-back cache for various

purposes, e.g., reliability enhancement [5, 27, 33, 60], NVM crash

consistency guarantee [4, 29, 52, 74], and performance optimiza-

tion [24, 25, 59, 64], as shown in Table 3. However, they are not

applicable to energy harvesting systems that require high energy ef-

ficiency as well as whole system persistence (WSP) [23, 53]. Apart

from the power-hungry hardware support, they require either persis-

tent programming [29, 52] with a separated (persist) data-path and

a large battery [4, 29, 74], customized TLB [25, 59], or additional

cache structure [5, 27, 33, 60].

8 CONCLUSION
This paper presents WL-Cache, new cache organization with a hy-

brid write policy for energy harvesting systems. WL-Cache is nei-

ther write-through nor write-back caches. It combines the benefits of

write-back caches (efficiency) and write-through caches (persistence)

without their downsides. To achieve this, WL-Cache controls the

maximum number of dirty cache lines that it manages to just-in-time

checkpoint upon power failure; if the number gets bigger (smaller),

WL-Cache acts more like a write-back (write-through) cache. For

optimization, WL-Cache estimates the underlying energy harvesting

quality by analyzing power-on times, and adjusts the number of man-

ageable dirty cache lines correspondingly. Our evaluation highlights

that WL-Cache outperforms all existing cache designs significantly.

ACKNOWLEDGMENTS
We thank anonymous reviewers for their comments. At Purdue,

this work was supported by NSF grants 1750503 (CAREER) and

2153749. At Stony Brook, this work was supported by NSF grants

2153747, 2135157, and 2214980. At Virginia Tech, this work was

supported by NSF grant 2153748.

ISCA ’23, June 17–21, 2023, Orlando, FL, USA. Choi et al.

REFERENCES
[1] 2015. Maximizing Write Speed on the MSP430™ FRAM. http://www.ti.com/

mcu/docs/
[2] 2016. MSP430FR5994LaunchPad Development Kit (MSPEXP430FR5994). http:

//www.ti.com/lit/ug/slau678a/slau678a.pdf
[3] Khakim Akhunov and Kasim Sinan Yildirim. 2022. AdaMICA: Adaptive Mul-

ticore Intermittent Computing. Proceedings of the ACM on Interactive, Mobile,
Wearable and Ubiquitous Technologies 6, 3 (2022), 1–30.

[4] Mohammad Alshboul, Prakash Ramrakhyani, William Wang, James Tuck, and
Yan Solihin. 2021. Bbb: Simplifying persistent programming using battery-backed
buffers. In 2021 IEEE International Symposium on High-Performance Computer
Architecture (HPCA). IEEE, 111–124.

[5] Ghazanfar-Hossein Asadi, Vilas Sridharan, Mehdi B Tahoori, and David Kaeli.
2005. Balancing performance and reliability in the memory hierarchy. In IEEE
International Symposium on Performance Analysis of Systems and Software, 2005.
ISPASS 2005. IEEE, 269–279.

[6] Mary Baker, Satoshi Asami, Etienne Deprit, John Ouseterhout, and Margo Seltzer.
1992. Non-volatile memory for fast, reliable file systems. ACM SIGPLAN Notices
27, 9 (1992), 10–22.

[7] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali
Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna, Somayeh
Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish, Mark D.
Hill, and David A. Wood. 2011. The Gem5 Simulator. SIGARCH Comput. Archit.
News 39, 2 (Aug. 2011).

[8] Dhruva R Chakrabarti, Hans-J Boehm, and Kumud Bhandari. 2014. Atlas: Lever-
aging locks for non-volatile memory consistency. In ACM SIGPLAN Notices,
Vol. 49. ACM, 433–452.

[9] Jongouk Choi. 2022. HIGH-PERFORMANCE AND RELIABLE INTERMITTENT
COMPUTATION. Ph. D. Dissertation. Purdue University Graduate School.

[10] Jongouk Choi, Hyunwoo Joe, and Changhee Jung. 2022. CapOS: Capacitor Error
Resilience for Energy Harvesting Systems. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems (2022).

[11] Jongouk Choi, Hyunwoo Joe, Yongjoo Kim, and Changhee Jung. 2019. Achieving
stagnation-free intermittent computation with boundary-free adaptive execution.
In 2019 IEEE Real-Time and Embedded Technology and Applications Symposium
(RTAS). IEEE, 331–344.

[12] Jongouk Choi, Larry Kittinger, Qingrui Liu, and Changhee Jung. 2022. Compiler-
Directed High-Performance Intermittent Computation with Power Failure Immu-
nity. In Real-Time & Embedded Technology and Applications Symposium.

[13] Jongouk Choi, Qingrui Liu, and Changhee Jung. 2019. CoSpec: Compiler di-
rected speculative intermittent computation. In Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture. 399–412.

[14] Marc A. De Kruijf. 2012. Compiler Construction of Idempotent Regions and
Applications in Architecture Design. Ph. D. Dissertation. Madison, WI, USA.
Advisor(s) Sankaralingam, Karthikeyan.

[15] Jasper de Winkel, Carlo Delle Donne, Kasim Sinan Yildirim, Przemysław
Pawełczak, and Josiah Hester. 2020. Reliable timekeeping for intermittent comput-
ing. In Proceedings of the Twenty-Fifth International Conference on Architectural
Support for Programming Languages and Operating Systems. 53–67.

[16] Yizi Gu, Yongpan Liu, Yiqun Wang, Hehe Li, and Huazhong Yang. 2016. NVPsim:
A simulator for architecture explorations of nonvolatile processors. In Design
Automation Conference (ASP-DAC), 2016 21st Asia and South Pacific.

[17] Matthew R Guthaus, Jeffrey S Ringenberg, Dan Ernst, Todd M Austin, Trevor
Mudge, and Richard B Brown. 2001. MiBench: A free, commercially represen-
tative embedded benchmark suite. In Workload Characterization, 2001. WWC-4.
2001 IEEE International Workshop on. IEEE, 3–14.

[18] Christian E Herdt and CA Paz de Araujo. 1992. Analysis, measurement, and
simulation of dynamic write inhibit in an nvSRAM cell. IEEE transactions on
electron devices 39, 5 (1992), 1191–1196.

[19] Harishankar Jayakumar, Arnab Raha, and Vijay Raghunathan. 2014. QuickRecall:
A low overhead HW/SW approach for enabling computations across power cycles
in transiently powered computers. In VLSI Design and 2014 13th International
Conference on Embedded Systems, 2014 27th International Conference on. IEEE,
330–335.

[20] Hrishikesh Jayakumar, Arnab Raha, and Vijay Raghunathan. 2014. QuickRecall:
A low overhead HW/SW approach for enabling computations across power cycles
in transiently powered computers. In 2014 27th International Conference on VLSI
Design and 2014 13th International Conference on Embedded Systems. IEEE,
330–335.

[21] Jungi Jeong, Jaewan Hong, Seungryoul Maeng, Changhee Jung, and Youngjin
Kwon. 2020. Unbounded hardware transactional memory for a hybrid
DRAM/NVM memory system. In International Symposium on Microarchitecture
(MICRO).

[22] Jungi Jeong and Changhee Jung. 2021. PMEM-Spec: persistent memory specula-
tion (strict persistency can trump relaxed persistency). In ACM ASPLOS.

[23] Jungi Jeong, Jianping Zeng, and Changhee Jung. 2022. Capri: Compiler and
architecture support for whole-system persistence. In Proceedings of the 31st In-
ternational Symposium on High-Performance Parallel and Distributed Computing.

71–83.
[24] Rajat Kateja, Anirudh Badam, Sriram Govindan, Bikash Sharma, and Greg Ganger.

2017. Viyojit: Decoupling battery and DRAM capacities for battery-backed
DRAM. ACM SIGARCH Computer Architecture News 45, 2 (2017), 613–626.

[25] Stefanos Kaxiras and Alberto Ros. 2013. A new perspective for efficient virtual-
cache coherence. In Proceedings of the 40th Annual International Symposium on
Computer Architecture. 535–546.

[26] Hongjune Kim, Jianping Zeng, Qingrui Liu, Mohammad Abdel-Majeed, Jaejin
Lee, and Changhee Jung. 2020. Compiler-directed soft error resilience for light-
weight GPU register file protection. In Proceedings of the 41st ACM SIGPLAN
Conference on Programming Language Design and Implementation. 989–1004.

[27] Seongwoo Kim and Arun K Somani. 1999. Area efficient architectures for in-
formation integrity in cache memories. ACM SIGARCH Computer Architecture
News 27, 2 (1999), 246–255.

[28] Aasheesh Kolli. 2017. Architecting persistent memory systems. Ph. D. Disserta-
tion.

[29] Aasheesh Kolli, Jeff Rosen, Stephan Diestelhorst, Ali Saidi, Steven Pelley, Sihang
Liu, Peter M Chen, and Thomas F Wenisch. 2016. Delegated persist ordering.
In 2016 49th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO). IEEE, 1–13.

[30] Vito Kortbeek, Kasim Sinan Yildirim, Abu Bakar, Jacob Sorber, Josiah Hester,
and Przemysław Pawełczak. 2020. Time-sensitive intermittent computing meets
legacy software. In Proceedings of the Twenty-Fifth International Conference
on Architectural Support for Programming Languages and Operating Systems.
85–99.

[31] Chunho Lee et al. 1997. MediaBench: A Tool for Evaluating and Synthesizing
Multimedia and Communicatons Systems. In Proceedings of the 30th Annual
ACM/IEEE International Symposium on Microarchitecture.

[32] Hsien-Hsin S Lee, Gary S Tyson, and Matthew K Farrens. 2000. Eager writeback-a
technique for improving bandwidth utilization. In Proceedings of the 33rd annual
ACM/IEEE international symposium on Microarchitecture. 11–21.

[33] Lin Li, Vijay Degalahal, Narayanan Vijaykrishnan, Mahmut Kandemir, and
Mary Jane Irwin. 2004. Soft error and energy consumption interactions: A data
cache perspective. In Proceedings of the 2004 international symposium on Low
power electronics and design. 132–137.

[34] Mengxing Liu, Mingxing Zhang, Kang Chen, Xuehai Qian, Yongwei Wu, Weimin
Zheng, and Jinglei Ren. 2017. DudeTM: Building durable transactions with
decoupling for persistent memory. ACM SIGPLAN Notices 52, 4 (2017), 329–
343.

[35] Qingrui Liu, Joseph Izraelevitz, Se Kwon Lee, Michael L Scott, Sam H Noh,
and Changhee Jung. 2018. iDO: Compiler-directed failure atomicity for non-
volatile memory. In 2018 51st Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). IEEE, 258–270.

[36] Qingrui Liu and Changhee Jung. 2016. Lightweight Hardware Support for Trans-
parent Consistency-Aware Checkpointing in Intermittent Energy-Harvesting sys-
tems. In Proceedings of the IEEE Non-Volatile Memory Systems and Applications
Symposium (NVMSA).

[37] Qingrui Liu, Changhee Jung, Dongyoon Lee, and Devesh Tiwari. 2015. Clover:
Compiler Directed Lightweight Soft Error Resilience. In Proceedings of the 16th
ACM SIGPLAN/SIGBED Conference on Languages, Compilers and Tools for
Embedded Systems 2015.

[38] Qingrui Liu, Changhee Jung, Dongyoon Lee, and Devesh Tiwari. 2016. Compiler-
directed lightweight checkpointing for fine-grained guaranteed soft error recovery.
In High Performance Computing, Networking, Storage and Analysis, (SC16).

[39] Qingrui Liu, Changhee Jung, Dongyoon Lee, and Devesh Tiwari. 2016. Compiler-
Directed Soft Error Detection and Recovery to Avoid DUE and SDC via Tail-DMR.
ACM Transactions on Embedded Computing Systems (TECS) 16, 2, 32.

[40] Qingrui Liu, Changhee Jung, Dongyoon Lee, and Devesh Tiwari. 2016. Low-cost
soft error resilience with unified data verification and fine-grained recovery for
acoustic sensor based detection. In 49th IEEE/ACM International Symposium on
Microarchitecture (MICRO).

[41] Yongpan Liu, Zewei Li, Hehe Li, Yiqun Wang, Xueqing Li, Kaisheng Ma,
Shuangchen Li, Meng-Fan Chang, Sampson John, Yuan Xie, et al. 2015. Ambient
energy harvesting nonvolatile processors: From circuit to system. In Proceedings
of the 52nd Annual Design Automation Conference. 1–6.

[42] Yongpan Liu, Jinshan Yue, Hehe Li, Qinghang Zhao, Mengying Zhao, Chun Jason
Xue, Guangyu Sun, Meng-Fan Chang, and Huazhong Yang. 2017. Data backup
optimization for nonvolatile SRAM in energy harvesting sensor nodes. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems 36,
10 (2017), 1660–1673.

[43] Kaisheng Ma, Jinyang Li, Xueqing Li, Yongpan Liu, Yuan Xie, Mahmut Kandemir,
Jack Sampson, and Vijaykrishnan Narayanan. 2018. IAA: Incidental approximate
architectures for extremely energy-constrained energy harvesting scenarios using
IoT nonvolatile processors. IEEE Micro 38, 4 (2018), 11–19.

[44] Kaisheng Ma, Xueqing Li, Mahmut Taylan Kandemir, Jack Sampson, Vijaykrish-
nan Narayanan, Jinyang Li, Tongda Wu, Zhibo Wang, Yongpan Liu, and Yuan
Xie. 2018. NEOFog: Nonvolatility-exploiting optimizations for fog computing.
In Proceedings of the Twenty-Third International Conference on Architectural

Write-Light Cache for Energy Harvesting Systems ISCA ’23, June 17–21, 2023, Orlando, FL, USA.

Support for Programming Languages and Operating Systems. 782–796.
[45] Kaisheng Ma, Xueqing Li, Jinyang Li, Yongpwan Liu, Yuan Xie, Jack Samp-

son, Mahmut Taylan Kandemir, and Vijaykrishnan Narayanan. 2017. Incidental
computing on IoT nonvolatile processors. In Proceedings of the 50th Annual
IEEE/ACM International Symposium on Microarchitecture. ACM, 204–218.

[46] Kaisheng Ma, Xueqing Li, Huichu Liu, Xiao Sheng, Yiqun Wang, Karthik Swami-
nathan, Yongpan Liu, Yuan Xie, John Sampson, and Vijaykrishnan Narayanan.
2017. Dynamic power and energy management for energy harvesting nonvolatile
processor systems. ACM Transactions on Embedded Computing Systems (TECS)
16, 4 (2017), 1–23.

[47] Kaisheng Ma, Xueqing Li, Srivatsa Rangachar Srinivasa, Yongpan Liu, John
Sampson, Yuan Xie, and Vijaykrishnan Narayanan. 2017. Spendthrift: Machine
learning based resource and frequency scaling for ambient energy harvesting
nonvolatile processors. In 2017 22nd Asia and South Pacific Design Automation
Conference (ASP-DAC). IEEE, 678–683.

[48] Kaisheng Ma, Xueqing Li, Karthik Swaminathan, Yang Zheng, Shuangchen Li,
Yongpan Liu, Yuan Xie, John Jack Sampson, and Vijaykrishnan Narayanan. 2016.
Nonvolatile processor architectures: Efficient, reliable progress with unstable
power. IEEE Micro 36, 3 (2016), 72–83.

[49] Kaisheng Ma, Yang Zheng, Shuangchen Li, Karthik Swaminathan, Xueqing Li,
Yongpan Liu, Jack Sampson, Yuan Xie, and Vijaykrishnan Narayanan. 2015.
Architecture exploration for ambient energy harvesting nonvolatile processors.
In 2015 IEEE 21st International Symposium on High Performance Computer
Architecture (HPCA). IEEE, 526–537.

[50] Kiwan Maeng and Brandon Lucia. 2019. Supporting peripherals in intermittent
systems with just-in-time checkpoints. In Proceedings of the 40th ACM SIGPLAN
Conference on Programming Language Design and Implementation. ACM, 1101–
1116.

[51] Kiwan Maeng and Brandon Lucia. 2020. Adaptive low-overhead scheduling for
periodic and reactive intermittent execution. In Proceedings of the 41st ACM
SIGPLAN Conference on Programming Language Design and Implementation.
1005–1021.

[52] Sanketh Nalli, Swapnil Haria, Mark D Hill, Michael M Swift, Haris Volos, and
Kimberly Keeton. 2017. An analysis of persistent memory use with WHISPER.
ACM SIGPLAN Notices 52, 4 (2017), 135–148.

[53] Dushyanth Narayanan and Orion Hodson. 2012. Whole-system persistence. In
Proceedings of the seventeenth international conference on Architectural Support
for Programming Languages and Operating Systems. 401–410.

[54] Shahriar Nirjon. 2018. Lifelong Learning on Harvested Energy. In Proceedings of
the 16th Annual International Conference on Mobile Systems, Applications, and
Services. ACM, 500–501.

[55] Ebelechukwu Nwafor, Andre Campbell, David Hill, and Gedare Bloom. 2017.
Towards a provenance collection framework for Internet of Things devices.
In 2017 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced
& Trusted Computed, Scalable Computing & Communications, Cloud &
Big Data Computing, Internet of People and Smart City Innovation (Smart-
World/SCALCOM/UIC/ATC/CBDCom/IOP/SCI). IEEE, 1–6.

[56] Shashank Priya and Daniel J Inman. 2009. Energy harvesting technologies. Vol. 21.
Springer.

[57] Benjamin Ransford, Jacob Sorber, and Kevin Fu. 2012. Mementos: System support
for long-running computation on RFID-scale devices. Acm Sigplan Notices 47, 4
(2012), 159–170.

[58] Alberto Rodriguez Arreola, Domenico Balsamo, Anup K. Das, Alex S. Weddell,
Davide Brunelli, Bashir M. Al-Hashimi, and Geoff V. Merrett. 2015. Approaches
to Transient Computing for Energy Harvesting Systems: A Quantitative Evaluation.
In Proceedings of the 3rd International Workshop on Energy Harvesting &
Energy Neutral Sensing Systems (Seoul, South Korea) (ENSsys ’15). ACM, New
York, NY, USA, 3–8. https://doi.org/10.1145/2820645.2820652

[59] Alberto Ros and Stefanos Kaxiras. 2012. Complexity-effective multicore coher-
ence. In Proceedings of the 21st international conference on Parallel architectures

and compilation techniques. 241–252.
[60] Abdallah M Saleh, Juan J Serrano, and Janak H Patel. 1990. Reliability of scrub-

bing recovery-techniques for memory systems. IEEE transactions on reliability
39, 1 (1990), 114–122.

[61] Joshua San Miguel, Karthik Ganesan, Mario Badr, Chunqiu Xia, Rose Li, Hsuan
Hsiao, and Natalie Enright Jerger. 2018. The eh model: Early design space ex-
ploration of intermittent processor architectures. In 2018 51st Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO). IEEE, 600–612.

[62] Premkishore Shivakumar and Norman P Jouppi. 2001. Cacti 3.0: An integrated
cache timing, power, and area model. (2001).

[63] Emiliano Sisinni, Abusayeed Saifullah, Song Han, Ulf Jennehag, and Mikael
Gidlund. 2018. Industrial Internet of Things: Challenges, Opportunities, and
Directions. IEEE Transactions on Industrial Informatics (2018).

[64] Jeffrey Stuecheli, Dimitris Kaseridis, David Daly, Hillery C Hunter, and Lizy K
John. 2010. The virtual write queue: Coordinating DRAM and last-level cache
policies. ACM SIGARCH Computer Architecture News 38, 3 (2010), 72–82.

[65] Fang Su, Yongpan Liu, Yiqun Wang, and Huazhong Yang. 2017. A Ferroelectric
Nonvolatile Processor with 46μ s System-Level Wake-up Time and 14μ s Sleep
Time for Energy Harvesting Applications. IEEE Transactions on Circuits and
Systems I: Regular Papers 64, 3 (2017), 596–607.

[66] Fang Su, Kaisheng Ma, Xueqing Li, Tongda Wu, Yongpan Liu, and Vijaykrish-
nan Narayanan. 2017. Nonvolatile processors: Why is it trending?. In Design,
Automation & Test in Europe Conference & Exhibition (DATE), 2017. IEEE,
966–971.

[67] Sandeep Krishna Thirumala, Arnab Raha, Hrishikesh Jayakumar, Kaisheng Ma,
V Narayanan, Vijay Raghunathan, and Sumeet Kumar Gupta. 2018. Dual mode
ferroelectric transistor based non-volatile flip-flops for intermittently-powered
systems. In Proceedings of the International Symposium on Low Power Electronics
and Design. 1–6.

[68] Haris Volos, Andres Jaan Tack, and Michael M Swift. 2011. Mnemosyne: Light-
weight persistent memory. ACM SIGARCH Computer Architecture News 39, 1
(2011), 91–104.

[69] Yiqun Wang et al. [n. d.]. A 3us wake-up time nonvolatile processor based on
ferroelectric flip-flops. In ESSCIRC, 2012 Proceedings of the.

[70] Joel Van Der Woude and Matthew Hicks. 2016. Intermittent Computation without
Hardware Support or Programmer Intervention. In 12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 16).

[71] Mimi Xie, Chen Pan, Jingtong Hu, Chengmo Yang, and Yiran Chen. 2015.
Checkpoint-aware instruction scheduling for nonvolatile processor with multiple
functional units. In Design Automation Conference (ASP-DAC), 2015 20th Asia
and South Pacific. IEEE, 316–321.

[72] Mimi Xie, Chen Pan, Youtao Zhang, Jingtong Hu, Yongpan Liu, and Chun Ja-
son Xue. 2018. A novel stt-ram-based hybrid cache for intermittently powered
processors in iot devices. IEEE Micro 39, 1 (2018), 24–32.

[73] Mimi Xie, Mengying Zhao, Chen Pan, Hehe Li, Yongpan Liu, Youtao Zhang,
Chun Jason Xue, and Jingtong Hu. 2016. Checkpoint aware hybrid cache ar-
chitecture for NV processor in energy harvesting powered systems. In 2016
International Conference on Hardware/Software Codesign and System Synthesis
(CODES+ ISSS). IEEE, 1–10.

[74] Sujay Yadalam, Nisarg Shah, Xiangyao Yu, and Michael Swift. 2022. ASAP: A
speculative approach to persistence. In 2022 IEEE International Symposium on
High-Performance Computer Architecture (HPCA). IEEE, 892–907.

[75] Jianping Zeng, Jongouk Choi, Xinwei Fu, Ajay Paddayuru Shreepathi, Dongy-
oon Lee, Changwoo Min, and Changhee Jung. 2021. ReplayCache: Enabling
Volatile Cachesfor Energy Harvesting Systems. In International Symposium on
Microarchitecture.

[76] Jianping Zeng, Hongjune Kim, Jaejin Lee, and Changhee Jung. 2021. Turnpike:
Lightweight Soft Error Resilience for In-Order Cores. In MICRO-54: 54th Annual
IEEE/ACM International Symposium on Microarchitecture. 654–666.

[77] Yida Zhang and Changhee Jung. 2022. Featherweight Soft Error Resilience for
GPUs. In 55th International Symposium on Microarchitecture. 101–108.

