
BOGO: Buy Spatial Memory Safety,
Get Temporal Memory Safety (Almost) Free
Tong Zhang
ztong@vt.edu
Virginia Tech

Dongyoon Lee
dongyoon@cs.vt.edu

Virginia Tech

Changhee Jung
chjung@cs.vt.edu
Virginia Tech

Abstract
A memory safety violation occurs when a program has
an out-of-bound (spatial safety) or use-after-free (tempo-
ral safety) memory access. Given its importance as a secu-
rity vulnerability, recent Intel processors support hardware-
accelerated bound checks, called Memory Protection Ex-
tensions (MPX). Unfortunately, MPX provides no temporal
safety.
This paper presents BOGO, a lightweight full memory

safety enforcement scheme that transparently guarantees
temporal safety on top of MPX’s spatial safety. Instead of
tracking separate metadata for temporal safety, BOGO reuses
the bounds metadata maintained byMPX for both spatial and
temporal safety. On free, BOGO scans the MPX bound tables
to invalidate the bound of dangling pointers; any following
use-after-free error can be detected by MPX as an out-of-
bound error. Since scanning the entire MPX bound tables
could be expensive, BOGO tracks a small set of hot MPX
bound table pages to check on free, and relies on the page
fault mechanism to detect any potentially missing dangling
pointer, ensuring sound temporal safety protection.
Our evaluation shows that BOGO provides full memory

safety at 60% runtime overhead and 36% memory overhead
for SPEC CPU 2006 benchmarks. We also show that BOGO
incurs a reasonable 2.7x slowdown for the worst-case malloc-
free intensive benchmarks; and moderate 1.34x overhead for
real-world applications.

CCS Concepts • Security and privacy → Software se-
curity engineering; • Software and its engineering →
Compilers; • Hardware→ Emerging architectures; Emerg-
ing languages and compilers; Emerging tools and methodolo-
gies.

Keywords Memory Safety; MPX

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
ASPLOS ’19, April 13–17, 2019, Providence, RI, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6240-5/19/04. . . $15.00
https://doi.org/10.1145/3297858.3304017

ACM Reference Format:
Tong Zhang, Dongyoon Lee, and Changhee Jung. 2019. BOGO:
Buy Spatial Memory Safety, Get Temporal Memory Safety (Almost)
Free. In 2019 Architectural Support for Programming Languages and
Operating Systems (ASPLOS ’19), April 13–17, 2019, Providence, RI,
USA. ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/
3297858.3304017

1 Introduction
Memory unsafe languages such as C/C++ are prone to bugs
leading to memory safety violations [57]. Spatial safety vi-
olation occurs when memory access is not within the ob-
ject’s bound (e.g., buffer overflow), while temporal safety
violation1 happens when accessing a deallocated object (e.g.,
use-after-free).
Memory safety violations are a common source of real-

world security breaches [1]. While buffer overflow vulner-
abilities have been exploited for return oriented program-
ming [48] and other code reuse attacks [11, 14, 58], use-
after-free vulnerabilities have also been exploited to corrupt
control flow: e.g., virtual function table hijacking [51].
Keeping pace with a broad range of research (§2), hard-

ware support for security has been adopted in mainstream
commodity processors – notably, Intel’s Memory Protection
Extensions (MPX) for hardware-accelerated bounds check-
ing. MPX keeps track of per-pointer bound metadata (the
base and bound of heap/stack objects) in bound tables. On a
pointer dereference, MPX checks if the pointer value remains
within the bounds, ensuring spatial memory safety. Unfor-
tunately, MPX does not support temporal memory safety.
Thus, full memory safety can only be achieved by augment-
ing MPX with a separate temporal safety solution. However,
existing solutions for temporal memory safety (§2.3) require
their metadata tracking and checking, doubling the time and
space overheads when combined with MPX.
This paper presents BOGO2, a lightweight full memory

safety enforcement scheme that works with MPX (Intel Sky-
lake onwards). This work demonstrates a novel software solu-
tion that transparently extends MPX to support both spatial
and temporal memory safety, without additional hardware
support or significant performance degradation: Buy spatial

1We use “temporal memory safety” and “no use-after-free vulnerabilities”
interchangeably, though the former subsumes the latter. The same is true
for “spatial memory safety” and “no out-of-bound vulnerabilities”.
2 The name is inspired from an initialism for Buy One, Get One free.

https://doi.org/10.1145/3297858.3304017
https://doi.org/10.1145/3297858.3304017
https://doi.org/10.1145/3297858.3304017

memory safety, and get temporal memory safety (almost)
free!

The key insight to realize the “promotion” is that the MPX
bound table can be searched for dangling pointers to an ob-
ject when it is freed. Since the bound table entry already
maintains the bound information for each pointer, dangling
pointers can be identified by checking for bounds enclosing
the address being freed. For each dangling pointer p found,
BOGO invalidates the bound information of the bound table
entry, indexed by that pointer p. On the later dereference
of p (use-after-free), MPX instrumentation will find an in-
valid bound (as a part of its bound checking), and raise an
exception. In effect, BOGO achieves temporal safety by trans-
forming it into spatial safety.
This approach relieves BOGO of the burden to maintain

and check a separate temporal memory safety metadata,
reducing time overhead and more drastically space overhead.
BOGO introduces a new synergistic way to enforce spatial
and temporal memory safety by repurposing one for another.
However, scanning the entire MPX bound tables on each
free could lead to significant performance overhead. BOGO
leverages a novel page-protection-based technique to address
this performance challenge. BOGO tracks the working set of
MPX bound table pages and only searches those hot pages on
free for performance. To track a dangling pointer potentially
in the rest cold pages, BOGO makes the cold MPX bound
table pages non-accessible. Any following access to a cold
page is always preceded by a page fault. BOGO’s page fault
handler scans the faulted MPX page and invalidates any
dangling pointers therein, guaranteeing soundness.

This paper makes the following contributions:
• To the best of our knowledge, BOGO is the first temporal

memory safety protection solution that does not maintain
its own metadata, but seamlessly reuses bound metadata
tracked for spatial memory safety.

• BOGO transparently provides an MPX-enabled binary
with full memory safety without application change or other
hardware support.

•We implement llvm-mpx, an LLVM-basedMPX pass, with
sound bound checking optimizations, outperforming existing
MPX compilers.

• The experimental results show that BOGO can support
full memory safety at comparable (in many cases, better) run-
time overhead and much less memory overhead, compared
to the state-of-the-art solutions.

• We stress-test BOGO with the worst-case malloc-free
intensive benchmarks, and also evaluate BOGO’s interoper-
ability and scalability for real-world multithreaded applica-
tions.

Figure 1. MPX stores the base and bound metadata
(0x1000-0x1010) of the pointer p (with an initial value of
0x1000) in the two-level Bound Tables, and checks if the later
use of pointer p (with a new value, say 0x1004, after some
updates) is within the base and the bound.

2 Background and Related Work
2.1 Spatial Memory Safety
Spatial memory safety violations (bounds errors) arise when
memory access is not within the object’s bound. Some [17,
19, 45, 53, 63, 70] use guard blocks or canaries at the be-
ginning and end of memory objects to detect out of bound
memory accesses. Others [9, 20, 22, 35, 50] allocate metadata
for each memory object and perform explicit checking on
pointer manipulation. Still, other schemes [10, 29, 44, 66]
maintain metadata for each pointer and check at the time
of dereferencing. Metadata may be stored in unused most-
significant bits of 64-bit pointer [32]. Custom hardware sup-
port [21, 39, 49, 55, 61, 65] has also been proposed. Soft-
Bound [41] is of particular interest, as its per-pointer base
and bound metadata tracking significantly influences the
design of Intel MPX.

2.2 Memory Protection Extension.
MPX provides ISA support for accelerating pointer-based
bounds checking. It gives four 128-bit bound registers (bnd0-3)
and instructions: bndmk to create base and bound metadata;
bndldx and bndstx to load/store metadata from/to the dis-
joint metadata, called bound tables; bndcl and bndcu to check
pointer with lower and upper bounds; and more.
Figure 1(left) shows how a program is instrumented for

bounds checking. The base and bound metadata is initialized
on pointer creation, and propagated on pointer manipulation.
When a pointer is dereferenced, MPX checks if the pointer
is within the corresponding range, and raises an exception
upon an out-of-bound access. Figure 1(right) illustrates how
MPXmaintains the base and boundmetadata for each pointer.
In short, an MPX bound table entry is indexed by the virtual
address of the pointer (not the object). Similar to page tables,
MPX uses two-level (pointer) address translation to store per-
pointer metadata in memory, namely through the first-level
Bound Directory (BD, 2GB on x86_64) and the second-level
Bound Table (BT, 4MB). Bound Directory Entry (BDE, 8B)

Acronym Full Phrase
BT Bound Table
BTE Bound Table Entry
BTP Bound Table Page
BD Bound Directory
BDE Bound Directory Entry
HPQ Hot BTP Queue
FAQ Freed Address Queue
Table 1. Acronym table.

Types Time Overhead Space
malloc Ptr mani./arith. free Ptr deref. Overhead

Identifier-based low high - high high
Pointer graph-based low high low - high
BOGO (this work) low - medium low -

Table 2. Comparison of temporal memory safety solutions. Memory (de)allocations
are typically less frequent than pointer manipulation, arithmetic, or dereference. Thus,
metadata lookup/update on the latter are expensive. ‘-’ means no overhead.

stores the starting address of a BT, and Bound Table Entry
(BTE, 32B) holds the four types of metadata: the base, bound,
pointer value, and unused space (8B each). A single BT (4MB)
consists of 1024 Bound Table Page (BTP, 4KB), each of which
embraces 128 BTEs. Table 1 lists the acronyms used in this
paper. We refer to BTE[p] as the BTE of the pointer p; BTP[p]
as the BTP that hosts the BTE of the pointer p; and other
notations are defined similarly.
Notably, MPX does not provide temporal memory safety

protection, requiring adoption of one of the following solu-
tions to ensure full memory safety.

2.3 Temporal Memory Safety
Temporal memory safety violations occur when a program
accesses a deallocated object. A multitude of solutions for
temporal memory safety has been proposed. SAFECode [24,
25] and SVA [20] use pool allocation for objects with same.
It guarantees dangling pointer dereference is within cor-
rect type pool thus mitigate the damage. Pool allocation
has been applied to a page-protection based scheme [23]
as well. Recently, EffectiveSan [26] proposes a lightweight
type-based temporal memory safety checking, but it would
miss use-after-free of the object with the same type. Oth-
ers [12, 30, 45, 53] track per-object metadata: e.g., Address-
Sanitizer [53] poisons deallocated objects, and report access
to the poisoned area.

Another line of temporal memory safety work also main-
tains per-pointer metadata like MPX, which can be broadly
grouped into two categories.
Identifier-based scheme.AsMPXkeeps track of per-pointer
bounds metadata for spatial safety checks, identifier-based
solutions [10, 42, 66] maintain separate per-pointer metadata
for temporal safety checks. For example, CETS [38, 42] asso-
ciates each pointer with two identifiers named key and lock
address, and propagates them along pointer manipulation
such that the two values match if and only if a pointer is
valid.
Pointer graph-based scheme. Pointer graph-based solu-
tions such as DangNull [34] and DangSan [59] keep track of
all the pointers to each memory object, building the pointer
graph where nodes and edges are the objects and their con-
nections, respectively. On free, they consult the pointer
graph to nullify all the pointers to the object being deal-
located, guaranteeing the absence of dangling pointers. A

use-after-free error is detected in the form of a segmentation
fault due to a null pointer dereference. A similar approach
can be found in [13, 71].

Table 2 summarizes the sources of overhead for those two
schemes. As a common downside, both maintain their own
metadata for temporal memory safety. As a result, the overall
overhead would be simply added up when they are combined
with (per-pointer based) MPX for full memory safety.

In the next section, we introduce BOGO, a new temporal
memory safety solution that reuses the bounds metadata
tracked for spatial memory safety, and thus avoids additional
cost for temporal memory safety metadata.

3 Overview of BOGO
The goal of BOGO is to provide full memory safety on top
of MPX-enabled processors without significant overheads.
With BOGO, users can buy such processors for spatial mem-
ory safety, and get temporal memory safety (almost) free;
hence relieving the burden of the compiler and architec-
tural support for temporal memory safety guarantee. More
precisely, this paper focuses on temporal memory safety
for heap objects (use-after-free), and BOGO in the current
form does not provide temporal safety for stack objects (use-
after-return). Additional support required for stack objects
is discussed in §7.
ThreatModel andAssumptions. BOGO relies onMPX for
spatial memory safety, and adds temporal memory safety
upon it. Therefore, BOGO assumes that underlying MPX-
enabled processors can be trusted, and there are no hardware
security bugs in the processor circuit fabrication [62, 67].
This work also assumes that adversaries cannot corrupt the
MPX metadata by using non-memory-safety related attacks
such as row hammer attacks [52, 60] or illegitimately having
higher (root) privilege. Any attempts to corrupt the MPX
metadata by exploiting memory safety vulnerabilities will be
detected by BOGO itself. As BOGO relies on the soundness of
MPXmetadata, we further assume thatMPX instrumentation
is applied to all the source codes when soundness is required.
Overview. BOGO takes binary compiled with MPX instru-
mentation and transparently achieves temporal memory
safety by reusing MPX metadata. At a high level: On free

of a pointer p, it searches BTs for the entry whose bound
overlaps with the object being deallocated. The existence of

BTE[a]=..	

a=malloc()	 b=malloc()	 c=a	

1me	
Scan	ALL	BTPs	‘c’;	Inv(a);	Inv(c)	

*a	(MPX	excep1on)	

Check(a,	BTE[a])	BTE[b]=..	

free(c)	

BTE[c]=..	

Put(a)	
	

a=malloc()	 b=malloc()	 c=a	

1me	

Scan	HPQ	for	‘c’;	Inv(c)	

																		*a								(UAF	missed;		
							HPQ	{a,	c}					false	nega1ve)	

Pop(b);	Put(a);Check(a,	BTE[a])	Put(b)	

free(c)	

Pop(a);	Put(c)	
	

?:	Page	fault	of	BTP[?]						Put(?):	HPQ.insert(BTP[?])					Pop(?):	HPQ.evict(BTP[?])						Inv(?):	BTE[?]=invalid	

HPQ	{a}	
	

HPQ	{a,	b}	
	

HPQ	{b,	c}	
	

HPQ	{b,	c}	
	

(a)	

(b)	

Put(a)	
	

a=malloc()	 b=malloc()	 c=a	

1me	

Scan	HPQ	for	‘c’;	Inv(c)	

				*a	(MPX	excep1on)	
HPQ	{a,	c};	FAQ	{c}	

Scan	BTP[a]	for	FAQ,	i.e.,	‘c’;	Inv(a)	
Protect(BTP[b],	NO_RW)	

Pop(b);	Put(a);	Check(a,	BTE[a])	Put(b)	

free(c)	

Protect(BTP[a],	NO_RW)	
Pop(a);	Put(c)	

HPQ	{a}	
	

HPQ	{a,	b}	
	

HPQ	{b,	c}	
	

HPQ	{b,	c};	FAQ{c}	
	

(c)	

a	 b	 c	 a	

a	 b	 c	 a	

Figure 2. (a) FullScan;
(b) PartialScan only; and
(c) PartialScan and Page-
FaultScan. (b) misses the
use-after-free error, and
(c) solves the problem
with PageFaultScan. For
brevity, (b) and (c) omit
the bound creation and
propagation. A bold up-
arrow represents a BTP
fault. Put and Pop insert-
s/evicts a BTP to/from
HPQ. Inv invalidates a
BTE.

such a BTE implies that another pointer, say q, also pointing
to the same object, becomes a dangling pointer. When found,
it invalidates the metadata of dangling pointers. Later deref-
erence of pointer q will be checked by MPX (for the default
spatial memory safety), leading to an OutOfBound exception
because of the invalidated bound. The beauty of BOGO is
that it enforces temporal memory safety by triggering the
violation of spatial memory safety. Users can differentiate
temporal from spatial violations by checking a special value
in the bound register.

BOGO attempts to eliminate dangling pointers on free like
the aforementioned pointer graph-based temporal memory
safety solutions. However, there is one big difference. BOGO
does not maintain additional metadata (e.g., pointer graph)
for temporal memory safety. Instead, it reuses MPXmetadata
as is, and scans the BTs to invalidate dangling pointers.
FullScan. Consider an example in Figure 2(a). On free(c), a
naive FullScan checks all BTs, finds aliased pointer a, and in-
validates BTE[a] so that later use of dangling pointer awould
result in an MPX exception. However, searching the whole
MPX BTs can lead to unacceptable performance degradation
due to the large search space, thus care must be taken to
minimize the cost.
PartialScan. To bound the scan cost on free, BOGO tracks
a small set of hot, recently used BTPs (Bound Table Pages)
using a page protection mechanism, keeps them in the Hot
BTP Queue (HPQ), and performs PartialScan that looks for
dangling pointers only on the hot BTPs in the current HPQ.
Figure 2(b) shows an example. Suppose the bounds of

pointers a, b, and c are stored in different BTPs: BTP[a],
BTP[b], and BTP[c]. Further assume that the size of HPQ
is 2. Each page fault on the first pointer access causes the
corresponding BTP to be inserted into HPQ. When HPQ
becomes full on the BTP[c] page fault (at the statement c=a),
BOGO evicts the cold (least recently added) BTP[a] from the
HPQ and inserts the hot BTP[c] into the HPQ. Then, free(c)

checks dangling pointers only against BTP[b] and BTP[c] in
the current HPQ, a small subset of all BTPs.
However, this PartialScan may lead to a false negative

(i.e., missing a use-after-free error) when a dangling pointer
happens to be in a cold BTP. In Figure 2(b), as BTP[a] is not in
HPQ, BTE[a] was not scanned/invalidated by free(c), even
though a and c are aliased. Thus, the following dereference
of the dangling pointer, *a, remains undetected.
PageFaultScan. BOGO introduces PageFaultScan to guar-
antee sound temporal memory safety. When a BTP is evicted
from HPQ, BOGO marks the cold BTP not-readable and
not-writable so that the later access to the cold BTP can
be trapped by a page fault. Note that when a pointer is deref-
erenced, MPX always accesses its BTE for the spatial memory
safety check, resulting in a page fault. Meanwhile, on free,
BOGO also tracks the freed addresses in the Freed Address
Queue (FAQ) if they are partially checked only over hot BTPs:
i.e., by PartialScan, not by FullScan. Upon a page fault of a
cold BTP, BOGO checks against freed addresses in FAQ to see
whether there exists any dangling pointer to the addresses in
the cold BTP. Then, BOGO recovers page access permissions
of the BTP and puts it into the HPQ.

Using the same example, Figure 2(c) illustrates that BOGO
guarantees the detection of all use-after-free errors using
both PartialScan and PageFaultScan. Though PartialScan on
free(c) did not invalidate the bound of BTE[a], the deref-
erence of pointer a would result in a page fault on which
PageFaultScan can detect the use-after-free error by scan-
ning the BTP[a] for the freed address c stored in FAQ.

4 BOGO Approach Details
This section presents how BOGO tracks hot BTPs to bound
the scan cost on free (§4.1); how PartialScan and PageFault-
Scan can ensure no false negative (§4.2); and how to achieve
redundancy-free and false-positive-free PageFaultScan (§4.3).

4.1 Hot Bound Table Page Tracking
Figure 3 (Lines 2-12) shows how BOGO makes use of a page
protection mechanism to track hot BTPs at a low cost. Upon
a BTP fault, BOGO restores the read/write permissions (Line
3) and puts this “hot” (most recently accessed) BTP into the
bounded Hot BTP Queue (HPQ) (Line 9). When the HPQ is
full, BOGO evicts the “coldest” (least recently added) BTP in
a FIFO manner, and makes it not-readable and not-writable
(Lines 9-12). The latter part of this section discusses the rest
of the BTP fault handler.

4.2 PartialScan +PageFaultScan
=Low Overhead+No False Negative

On free, BOGO scans BTs and invalidates the BTE of dan-
gling pointers. Figure 3 (Lines 14-21) presents how BOGO
instruments free. BOGO can safely rely on PartialScan and
PageFaultScan as long as it can hold free addresses in the
FAQ. In some cases, the FAQ can be configured to be large
enough to avoid FullScan. In other cases, if the FAQ becomes
full, BOGO falls back to FullScan that checks all the free ad-
dresses in FAQ over all the BTs (Line 20). We discuss FullScan
optimization in §5.2. After FullScan, BOGO may reset FAQ
(Line 21) as there are no longer pending temporal memory
safety checks to perform. Any unused BTs can be safely re-
claimed at this point. This approach trades performance for
soundness.

For performance, BOGO favors PartialScan (Line 18) that
looks up dangling pointers only over hot BTPs in the HPQ.
To ensure soundness (see the difference between Figure 2(b)
and Figure 2(c)), the free addresses that are checked via Par-
tialScan are collected in the Free Address Queue (FAQ) along
with the free time3 (Line 16). These free addresses remain in
the FAQ until the next FullScan (Line 20-21), and meanwhile
they are checked over the (cold) BTPs resulting in page faults
via PageFaultScan (Line 4-8). The evict_time and free_time

will be discussed in the next section.

4.3 PageFaultScan+RedundancyPredication
= Low Overhead + No False Positive

Though PageFaultScan ensures no false negatives, it may
lead to a false positive. Consider the following code:
a=malloc(8); b=malloc(64); c=a; free(c);
a=malloc(8); *b; c=b; free(b); *a;

The pointer a was once a dangling pointer after free(c),
but is reassigned by the second a=malloc(8) of the same size,
rendering *a legal. However, if this malloc reuses a freed
object for locality, which is the case for modern allocators,
PageFaultScan may raise a false alarm.
Figure 4(a) illustrates the case with the heap snapshot

change over time. At time t1, a=malloc(8) returns 0x10 and
sets BTE[a]. At t3, BTP[a] is evicted from HPQ. At t4 on
3This is an abstract time that we implement as the FAQ index, to avoid the
cost of using real timestamps.

1 /* [btp] and [faddr] form a single element list
with the parameter */

2 OnBoundTablePageFault(btp)
3 mprotect(btp ,RW)
4 evict_time = get_evict_time(btp)
5 for each faddr in FAQ
6 free_time = get_free_time(faddr)
7 if (evict_time < free_time)
8 scan([btp],[faddr]) // PageFaultScan
9 evicted_btp = insert(HPQ ,btp)
10 if (evicted_btp != NULL)
11 set_evict_time(evicted_btp)
12 mprotect(evicted_btp ,NONE)
13
14 OnFree(faddr)
15 free(faddr) // actual free
16 insert(FAQ ,faddr) // index as free time
17 if (FAQ.length != MAX)
18 scan(HPQ ,[faddr]) // PartialScan
19 else
20 scan(ALL ,FAQ) // FullScan
21 reset(FAQ)
22
23 scan(btp_list ,faddr_list)
24 for each btp in btp_list
25 for each faddr in faddr_list
26 // scan and invalidate if overlaps
27 for each bte in btp
28 if(bte.base <=faddr && faddr <=bte.bound)
29 bte.base = INVALID
30 bte.bound = INVALID

Figure 3. BOGO handler algorithms.

free(c), PartialScan does not check BTP[a], and puts the
freed address (0x10) in FAQ. At t5, the second a=malloc(8)

happens to return the same location 0x10, as shown in the
third heap snapshot. At t7, BTP[a] becomes cold again. As
a result, the last *a at t9 results in a page fault on BTP[a].
PageFaultScan finds an overlap between BTE[a] and 0x10 in
FAQ. However, this is a false alarm.

One naive workaround would be not to release the mem-
ory to the system on free so that the freed object cannot be
reused for later allocation, until BOGO performs FullScan.
However, obviously, it will increase the memory footprint
significantly.
Redundancy Predication.We present a novel redundancy
prediction technique. The crux of the problem is due to redun-
dant checks. Focus on the three cases: t4 when PartialScan
adds the freed address 0x10 into the FAQ; t7 when BTP[a]

becomes cold; and t9 when PageFaultScan performs a check
on the freed address 0x10. Recall that we originally intro-
duced PageFaultScan because PartialScan did not perform a
check on cold BTPs at that time. However, in this scenario,
BTP[a] becomes cold after a PartialScan, implying that Page-
FaultScan does not need to check the freed address 0x10 on
BTP[a]. More formally speaking, it is safe for PageFaultScan
to skip the scanning of BTP for a given freed address faddr

BTE[a]ç(0x10,8)

a=malloc(8) b=malloc(64) c=a
time

Scan(b, 0x10)
Scan(c, 0x10)

Inv(c)

a=malloc(8)
HPQ{a,c}

FAQ{0x10}

Scan(a,0xff)
Scan(a,0x10); Inv(a)

Pop(b); Check(a, BTE[a])

free(c)

Pop(a)

HPQ{a} HPQ{a,b} HPQ{b,c} HPQ{b,c}
FAQ{0x10}

(a)
a b c a

Scan (a, 0x10);Inv(a)
Pop(b)

BTE[a] ç (0x10,8)
b

*b
HPQ{a,b}

FAQ {0x10}

Scan(b, 0x10)
Pop(c)

Check(b, BTE[b])

c=b

Scan(c, 0x10)
Inv(c)
Pop(a)

HPQ{b,c}
FAQ{0x10}

c
BTE[b]ç(0xff,64)

Scan(b, 0xff)
Scan(c, 0xff)
Inv(b); Inv(c)

free(b)
HPQ{b,c}

FAQ{0x10,0xff}

a

*a
(MPX exception;

false alarm)

@0x10 @0xff

a bc

@0x10 @0xff

a bc

@0x10 @0xff

a bc

@0xff

b

@0x10

a c b

@0x10

a c

@0xff

Heap Snapshot

a=malloc(8) b=malloc(64) c=a
time

a=malloc(8)
HPQ{a,c}

FAQ{0x10}

Scan(a,0xff)
Scan(a,0x10); Inv(a)

PopTime(b,t9);
Check(a, BTE[a])

free(c)
HPQ{a} HPQ{a,b} HPQ{b,c} HPQ{b,c}

FAQ{0x10}

(b)
a b c a b

*b
HPQ{a,b}

FAQ {0x10}

c=b

Scan(c, 0x10)
Inv(c)

PopTime(a,t7)

HPQ{b,c}
FAQ{0x10}

c

Scan(b, 0xff)
Scan(c, 0xff)
Inv(b); Inv(c)

free(b)
HPQ{b,c}

FAQ{0x10,0xff}

a

*a

BTE[a]ç(0x10,8)

Scan(b, 0x10)
Scan(c, 0x10)

Inv(c)
PopTime(a,t3)

Scan (a, 0x10); Inv(a)
PopTime(b,t5)

BTE[a] ç (0x10,8)

Scan(b, 0x10)
PopTime(c,t6)

Check(b, BTE[b])BTE[b]ç(0xff,64)

PopTime(?,!): BTE[?].evict_time=!; Pop(?)

?: Page fault of BTP[?]; HPQ.insert(BTP[?]) Pop(?): HPQ.evict(BTP[?]); Protect(BTP[?], NO_RW) Inv(?): BTE[?]=invalid Scan(?, @): Scan BTP[?] for @

t1 t2 t3 t4 t5 t6 t7 t8 t9

t1 t2 t3 t4 t5 t6 t7 t8 t9

Figure 4. Redundancy prediction: (a) shows a false positive case, and (b) shows how BOGO removes the redundant scans and
eliminates the false positive. Actions of BOGO appears above the bar while the status of HPQ/FAQ does underneath the code.
Each color represents a different redundant scan.

in FAQ if TimeBTPevict is greater (i.e., later) than Timefaddrfreed . We
provide the proof at the end of this section.

Based on this observation, BOGO keeps track of Timefaddrfreed

when faddr is added in FAQ (Line 16), and TimeBTPevict when
a BTP is evicted from HPQ (Line 11). On PageFaultScan,
BOGO compares their times (Lines 4-7), and avoids redun-
dant checks, leading to better performance and no false pos-
itives.

To illustrate, Figure 4(b) shows how BOGO deals with the
false positive with redundancy prediction. Since the evic-
tion time of the BTP[a] (t7) is greater than the freed time
of 0x10 (t4), PageFaultScan (t9) safely skips Scan(a,0x10)

and avoids the false alarm. For the same reason, BOGO skips
PageFaultScan at times t6, t7 for BTP[b] and BTP[c], respec-
tively. However, PageFaultScan at t5 cannot be skipped, and
it needs to check the faulted page BTP[a] with the freed ad-
dress 0x10. Note, for all the scans that can be safely skipped,
they are paired with the corresponding previous scan that
performs the same bound check. Such a pair is shown using
the same color in Figure 4(b), where three pairs exist (green,
blue, and red).

Now we prove that this redundancy elimination is safe.

Theorem 4.1. On a BTP fault, it is safe (no missing detection)
for PageFaultScan to skip the scanning of the BTP for a given
freed address faddr in FAQ if TimeBTPevict is larger than Timefaddrfreed .

Proof. We provide a direct proof sketch. Recall BOGO basi-
cally has two scan methods, PageFaultScan and the free time
PartialScan which checks HPQ. Thus, we need to prove that
either method has already scanned the BTP that satisfies the

time condition, i.e., Timefaddrfreed < TimeBTPevict . First, if the BTP
was a part of HPQ at Timefaddrfreed , the free must have scanned
the BTP obviously. Thus, this case makes it redundant to
scan the BTP in the current PageFaultScan (referred to as
currPFS).

Second, if PartialScan on free did not scan the BTP (i.e., it
was not in the HPQ at Timefaddrfreed), it must have been evicted
before; let’s refer to the time as TimeBTPpastEvict . The implication
is there must be a PageFaultScan (referred to as pastPFS)
between two evictions, and it must have happened after the
free which otherwise would have scanned the BTP, and we
get the following:

TimeBTPpastEvict < Timefaddrfreed < TimeBTPpastPFS
< TimeBTPevict < TimeBTPcurrPFS

(1)

Then, we investigate if the pastPFS scanned the BTP. As
shown above inequality, for the pastPFS, the eviction time
of the BTP (TimeBTPpastEvict) is not larger than the free time
(Timefaddrfreed). Thus, pastPFS must have scanned the BTP, mak-
ing it redundant to scan the BTP in currPFS. Consequently,
Theorem 4.1 must be true. □

In sum, with PageFaultScan and redundancy prediction,
BOGO can eliminate unnecessary scans, achieving better
performance and no false positives.

5 Optimization
5.1 No PageFaultScan Optimization
On free, when FAQ is not full, BOGO performs PartialScan
that checks hot BTPs and stores the freed address into FAQ so

p=malloc() free(p)

q=p
No	BTP	Fault

t

Figure 5. Example of sound PartialScan. No
further PageFaultScan is required.

Partial Scan Page Fault Scan Full Scan
number per-scan cost number per-scan cost number per-scan cost
of scans O(|HPQ |) of scans O(|FAQ |) of scans O(|ALL| ∗ |FAQ |)

HPQ ↑ - ↑ ↓ - - -
FAQ ↑ ↑ - - ↑ ↓ ↑

Table 3. Impacts of increasing HPQ and FAQ on the number and the cost of
Partial, Page Fault, and Full Scans.

that later PageFaultScans can detect dangling pointers that
PartialScan might miss (§4.2). This PageFaultScan backup
mechanism is necessary because dangling pointers may have
resided in cold BTPs. If BOGO can prove the absence of
dangling points in the cold BTPs, then it does not need to
add the freed address into the FAQ, bringing two benefits: 1)
to save the FAQ space (triggering FullScan slowly) and 2) to
avoid succeeding PageFaultScans against the freed address.
Consider an example in Figure 5 where there were no

BTP faults between the memory allocation and deallocation.
The absence of BTP faults implies that any potential copy
of pointer p, the necessary condition of dangling pointers,
must have happened only with those pointers whose BTEs
lie in the hot BTPs. Otherwise, a BTP fault would have been
triggered and HPQ has been altered. In this case, on free,
BOGO only needs to check the freed address with the hot
BTPs in the current HPQ, and there is no need to add it to
the FAQ for later PageFaultScans. In practice, applications
often have short-living heap objects where malloc and free

are adjacent to each other in time.
To support this optimization, BOGO maintains a small

hash table which tracks the addresses of objects that have
been allocated since the last BTP fault. BOGO stores the ad-
dress being allocated on malloc, and checks if the hash table
holds the address being deallocated on free. When there is
a match, PartialScan applies the proposed optimization by
not putting the freed address into the FAQ. BOGO resets the
hash table on a BTP fault (as a part of HPQ maintenance).

5.2 FullScan Optimization
When FAQ is full, BOGO performs FullScan over the entire
BTs (Figure 3 Line 20). A naive implementation would iterate
over the (1st-level) BD to find all the valid (2nd-level) BTs.
Scanning the huge BD leads to severe performance degra-
dation. Even for a valid BT, many of its BTPs may have not
been accessed, and thus scanning them would cause unnec-
essary page faults. To avoid scanning the BD and all BTs,
which would be an order of magnitude slower, BOGO uses a
custom syscall to get only the accessed BTPs, and scans them
directly. The syscall looks up per-process memory descriptor
for virtual memory area(VMA) reserved for MPX and returns
those pages whose accessed bit is set in the page table.

6 Dynamic Adaptation of Queue Size
BOGOmaintains two queues: HPQ and FAQ. Their sizes have
a significant impact on the number and cost of Partial, Page
Fault, and Full Scans that determine the overall performance.
This section first analyzes the cost of each scan (§6.1) and
the impacts of HPQ and FAQ sizes (§6.2). Then, we introduce
scan cost-based dynamic adaptive scheme that adjusts the
size of HPQ at runtime for optimal performance (§6.3).

6.1 Scan Cost Analysis
In general, the cost of each scan is the product of the num-
ber of BTPs to scan and the number of free addresses to
scan (Figure 3 Lines 24-30). Note that the innermost loop
in Line 27 iterates over (constant number of) 128 BTEs (of
size 32B each) in a BTP (of size 4KB). Therefore, the cost
of PartialScan is O(|HPQ |) as it scans the Hot BTPs in the
HPQ against a single pointer address being freed. The cost of
PageFaultScan is O(|FAQ |) as it checks the freed addresses
in the FAQ against a single (once cold now hot) BTP being
page faulted. Lastly, the cost of FullScan is O(|ALL| ∗ |FAQ |)
as it checks the freed addresses in the FAQ against all BTPs.

6.2 Impact of HPQ and FAQ Sizes
Table 3 summarizes the impacts of increasing the size of HPQ
and FAQ on the number and the cost of each scan, while
decreasing its sizes has an opposite effect.
Increasing HPQ. HPQ keeps track of Hot BTPs to perform
PartialScan, and thus increasing the size of HPQ would in-
crease the cost of PartialScan. The number of PartialScans
is irrelevant to the size of HPQ. To be precise, the number
depends on the free frequency and the size of FAQ (as it
determines which Partial or Full Scan to take on free). On
the other hand, increasing HPQ would decrease the number
of PageFaultScans as HPQ can hold more hot BTPs. Note
that the total cost of each scan would be proportional to the
number of scans and the per-scan cost. The size of HPQ has
opposite impacts on these two scans. Therefore, for the com-
mon cases where PartialScan and PageFaultScan are used
(without FullScan), the size of HPQ should be tuned to make
a good balance on both scans. Our sensitivity study on the
HPQ size in §9.3.4 shows that each application has a different
optimal HPQ size, motivating our adaptive scheme in §6.3.
Increasing FAQ. Unlike HPQ, the bigger FAQ, in general,
leads to better performance. First, its impacts on PartialScan
is small because the number of PartialScans varies slightly.

Second, increasing FAQ at a glance may look like harming
PageFaultScan as it iterates over the free addresses in the FAQ.
However, in reality, this is not true because PageFaultScan
stops scanning when it finds a freed address whose free
time is earlier than the eviction time of the BTP being page
faulted as discussed in §4.3 and Figure 4. In other words, the
cost of PageFaultScan even with the very large FAQ is in
effect bounded. Lastly, as the cost of FullScan is way more
expensive than the other two scans, it is better to keep its
number low by making the FAQ big enough. Therefore, in
the next section, we focus on tuning the HPQ size at runtime.

6.3 Scan Cost-based HPQ Adaptive Scheme
Based on the above observation, BOGO dynamically adjusts
the size of HPQ to balance PartialScans and PageFaultScans.
To this end, BOGO divides a program execution into regular
intervals, called quanta. Then, at runtime BOGO measures
and compares the cost (execution time) of PartialScans and
PageFaultScans in a quantum, and then decides whether to
reduce or enlarge the size of HPQ for the next quantum. If
the cost of PageFaultScan is higher than that of PartialScan,
BOGO increases the HPQ, and vice versa. This scan cost
based adaptive scheme allows BOGO to adapt application
specific characteristics (e.g., free frequencies) and the pro-
gram phase changes even within the same application. Our
experimental results in §9.3 show that BOGO with adaptive
HPQ outperforms the one with profiled-based manual con-
figuration. By default, BOGO uses the quantum of 100 ms,
sets the initial size of HPQ to be 16, and changes the HPQ
size exponentially.

7 Discussion
Free-after-free. Consider the following code:
a=malloc(8); b=a; free(a); a=malloc(8); free(b);

Suppose two mallocs are allocated to the same region.
Then, b would free a’s buffer. If one sees free(b) as the use
of b, BOGO can perform a bound check on free(b). As BOGO
invalidates the BTE[b] on free(a), it can detect such a case.
Use-after-return. This refers to dereference of deallocated
stack object [27]. BOGO can be extended to detect it by in-
validating the bounds belonging to current stackframe upon
return. Static analysis can help to avoid such a check in
many cases, thus supporting the detection at a low cost. For
instance, static analysis can tell whether there is a pointer
that points to the stackframe and escapes the function. Such
cases are expected to be rare: (1) a pointer to the current
stackframe is returned; (2) a pointer to the stackframe is
propagated across the function. It implies that for most of
returns, the scan could be avoided.
Multithreading.Metadata-based memory error detectors
may lead to false positives or false negatives when a pointer
operation and metadata updates/checks do not happen in an
atomicmanner. For solutions like CETS [42] that only lookup,

update, and check per-pointer metadata at a time, if a pro-
gram is data-race-free, atomicity could be achieved by plac-
ing instrumentation codes into the same critical section as
the original pointer operation. For a programwith data races,
this remains a challenge. On the other hand, for solutions
like DangSan [59] and BOGO, that access other pointer’s
metadata (for invalidation), the problem gets worse because
concurrentmetadata updates from independent pointersmay
form a race condition: e.g., while one scans on free, another
may update the metadata. DangSan chooses to favor per-
formance over soundness without additional support. The
current BOGO prototype shares the same limitation. How-
ever, it is possible to mark the BTPs to be scanned as non-
accessible during scanning and make a concurrent thread
wait at the page granularity (instead of stopping the world).
This design remains future work. During our experiments
with multithreaded applications (§9.5), we did not observe
false warnings (false negatives are unknown).
Custom Memory Allocator. They need to be patched to
invoke BOGO’s scan, which otherwise may lead to false neg-
atives. They can be identified by using techniques like [15].

8 Implementation
The llvm-mpx pass consists of 9240 LoC, along with 1605
LoC in LLVM framework diff. The custom syscall consists of
419 LoC in the kernel diff.

8.1 Spatial Memory Safety
We implemented llvm-mpx pass using LLVM [33] to support
spatial memory safety on MPX. It instruments at the IR level,
protecting heap, address-taken stack and global objects. It
follows the same per-pointer bound checking convention
used in SoftBound [41] and gcc-mpx. Yet, it instruments more
instructions than SoftBound: e.g., atomic, vectorization, and
invoke instructions. Moreover, llvm-mpx models the same
set of libc functions as gcc-mpx: e.g., malloc, memcpy, and
strcpy. As the address of the pointers being checked is al-
ways taken (e.g., bndldx(&p)) in the IR, pointer variables are
not promoted to registers, and llvm-mpx checks them all.
llvm-mpx keeps the BT up-to-date, which BOGO relies on,
while gcc-mpx and icc-mpx often store bound information in
the stack instead of BT.
Optimizations. llvm-mpx performs three optimizations dur-
ing the instrumentation: (1) Bound check elimination: if
memory access can be statically verified, it elidesMPX checks.
This is analogous to bound check optimization in the pio-
neering work of Gupta [28]. gcc-mpx also has the same form
of optimization. (2) Dead bound elimination: The lack of
bound checks can make the corresponding bound and the
related instructions (e.g., bndmk/bndldx/bndstx) dead if they
are not “used” by others. it identifies such dead codes by
following the use-def chain [37] and eliminates them. (3)
Bound check consolidation: if it can statically calculate the

range of the access in a loop or a vectorized code, it consoli-
dates the checks into one check and pays the overhead only
once. This is a very simple form of optimization proposed in
Gupta’s work [28] and WPBound [68].

Since the above optimizations are safe for spatial memory
safety [28, 68], they do not compromise BOGO’s temporal
memory safety guarantee. For example, optimization (1) only
deals with local arrays or globals, not the heap objects that
are the target of BOGO. Optimization (2) won’t trigger if
pointers are copied, returned, etc. (i.e., bound is “used”).
Bound narrowing. The current prototype does not imple-
ment bound narrowing [8]. When a program accesses a spe-
cific field of a struct object, the compiler can shrink the bound
to that field, rather than the full object, for the fine-grained
bounds checking. However, this causes a compatibility is-
sue breaking some SPEC 2006 applications with C idioms
due to the resulting false positives [16, 47]. Bound narrow-
ing is optional in gcc-mpx, and not supported in many other
tools [24, 39, 40, 43, 54] including SoftBound [38, 41].

8.2 Temporal Memory Safety
BOGO is built upon LLVM-4.0, glibc-2.23 and linux-4.10. The
kernel is modified to support the followings: (1) BTP permis-
sion initialization; (2) FullScan optimization (§5.2); (3) custom
mprotect avoiding touch unrelated kernel data structures;
and (4) signal delivery when a BTP is reclaimed (becomes
unavailable) so that it can be removed from HPQ, avoiding a
potential segmentation fault during scanning.

9 Evaluation
9.1 Methodology
We used three sets of benchmarks for evaluation. SPEC CPU
2006 is used in §9.3 for detailed performance evaluation. The
malloc-free benchmark [31, 46] is used in §9.4 for stress-
test. Finally, 9 real-world (multithreaded) applications are
tested in §9.5. The setup is a 4GHz quad-core Intel i7-6700K
CPU with 16GB RAM. The performance numbers are the
average of 5 runs. Except where otherwise mentioned, all
experiments are done with the following configurations: (1)
the size of FAQ is 65535 and FullScan is used when it becomes
full; (2) the initial size of HPQ is 16 with dynamic adaptive
scheme (§6.3) enabled; (3) reference input is used for SPEC.
Patching Spatial Safety Errors.With llvm-mpx, we found
the same set of bounds errors in original SPEC applications
as reported in Oleksenko et al.’s work [47] (see their Section
4.4). Thus, we patched [7] them to perform bound-error-free
performance evaluation4.
Instrumentation before or afterOptimizations. It is worth
noting that llvm-mpx pass is applied after standard optimiza-
tions including LTO (link-time optimization). That is, apply

4For soplex, we manually modified the pointer manipulations that violate
standard memory model, and made their bounds checking always succeed.
See discussion in [47] Section 4.4.

0
1
2
3
4

icc-mpx gcc-mpx llvm-mpxN
or

m
al

ize
d

O
ve

rh
ea

d Inst→O2
Inst→O2→LTO
O2→Inst
O2→LTO→Inst

Figure 6.MPX compilers overheads: geomean of SPEC 2006.
Source Application Bug manifest

Sp
at
ia
l

BugBench [36]

bc-1.06 storage.c:177 util.c:577
gzip-1.2.4 gzip.c:828
man-1.5h1 main.c:977
ncompress compress42.c:892
polymorph-0.4.0 polymorph.c:120,195,198,200,202

CVE-2004-2167 latex2rtf-1.9.15 definitions.c:155
CVE-2007-4060 corehttp-0.5.3alpha http.c:32
CVE-2011-4971 memcached-1.4.5 memmove()
CVE-2016-6289 php-7.1Git-2016-06-29 zend_virtual_cwd.c:1243
CVE-2016-6297 php-7.1Git-2016-06-30 zip_stream.c:289
CVE-2017-9928 lrzip-0.631 lrzip.c:979
CVE-2017-9929 lrzip-0.631 lrzip.c:1074
CVE-2018-5268 OpenCV-3.3.1 grfmt_jpeg2000.cpp:343
CVE-2018-6187 MuPDF-1.12.0 pdf-write.c:2901

SPEC 2006
400.perlbench perlio.c:748, sv.c:4124
450.soplex islist.h:287,357 svector.h:351
464.h264ref mv-search.c:1016

Te
m
po

ra
l NIST/Juliet [4]

102205 102226 102248 102287 102307 102311 102367
102444 102528 102609 102611 102613 102615 102617
102619 152889 102225 102247 102267 102289 102308
102321 102411 102468 102577 102610 102612 102614
102616 102618 102663 2151

CVE-2014-9661 FreeType 2.5.3 ftstream.c:182
CVE-2015-7801 optipng-0.6.4 opngoptim.c:977
CVE-2017-10686 nasm-2.14rc0 dereferences of free’d Token obj
CVE-2017-15642 sox-v14.4.2 formats.c:245

Table 4. llvm-mpx and BOGO validation.

-O2 for each bitcode file, then perform -O2 LTO to create a
single file. llvm-mpx is applied at last. The same convention of
using all possible optimizations before the instrumentation
was adopted in SoftBound [41] and others [38, 42, 56, 69].

We investigated the high runtime overhead of icc-mpx

and gcc-mpx. By scrutinizing the order of applied compiler
passes in gcc-mpx and icc-mpx, we noticed that they first
performed MPX instrumentation thus preventing other opti-
mizations. For example, gcc-mpx’s instrumentation happens
very early in the compiler pass order, i.e., the 12th among
174 passes. And those before the instrumentation are not
actually optimization passes. Therefore, all the optimizations
can be significantly restricted, e.g., dead code elimination
can be suppressed due to the inserted MPX bounds checking
code.
Figure 6 highlights the impact of the optimize-before-

instrument convention on the performance overhead of llvm-mpx;
each bar represents the average overhead of all SPEC 2006 ap-
plications which is normalized to that of baseline with no spa-
tial safety support. By following the convention, our llvm-mpx
incurs 1.26x slowdown in the 6th bar: O2→LTO→Inst.When
we instrument before optimizations like gcc-mpx and icc-mpx,
the overhead is significantly increased, i.e., 3.35x slowdown
in the 4th bar: Inst→O2→LTO.

1
1.5

2
2.5

3
40

0.
pe

rlb
en

ch
40

1.
bz

ip
2

40
3.

gc
c

42
9.

m
cf

43
3.

m
ilc

44
5.

go
bm

k
45

6.
hm

m
er

45
8.

sje
ng

46
2.

lib
qu

an
tu

m
46

4.
h2

64
re

f
47

0.
lb

m
44

4.
na

m
d

44
7.

de
al

II
45

0.
so

pl
ex

45
3.

po
vr

ay
47

1.
om

ne
tp

p
47

3.
as

ta
r

48
2.

sp
hi

nx
3

48
3.

xa
la

nc
bm

k
ge

om
ea

n

No
rm

al
ize

d
O

ve
rh

ea
d

DangSan
llvm-mpx
BOGO(static)
BOGO

14.52 6.76 7.72 18.6 16.16

Figure 7. Performance Overhead.
Application Partial Full Page Fault Application Partial Full Page Fault
400.perlbench 816926.10 0.49 2875.50 470.lbm 0.03 0 0.01
401.bzip2 0.34 0 0.04 444.namd 4.74 0 0.15
403.gcc 29474.74 0.25 201114.61 447.dealII 770810.54 9.63 0.05
429.mcf 0.03 0 18.30 450.soplex 1432.80 0 641.12
433.milc 18.41 0 0.01 453.povray 17648.83 0 5318.45
445.gobmk 1808.81 0 1386.05 471.omnetpp 73419.43 0.35 214350.09
456.hmmer 4426.50 0 0.28 473.astar 13613.71 0.10 1321.86
458.sjeng 0.01 0 0.01 482.sphinx3 38908.55 0.58 985.62
462.libquantum 0.45 0 0.01 483.xalancbmk 607803.72 0.44 0.25
464.h264ref 514.04 0 599.12

Table 5. Frequency of Partial, Full, and Page Fault Scans (per
second). The sum of Partial and Full Scans represents free
frequency.

0
0.2
0.4
0.6
0.8
1

40
0.
pe
rlb

en
ch

40
1.
bz
ip
2

40
3.
gc
c

42
9.
m
cf

43
3.
m
ilc

44
5.
go
bm

k
45
6.
hm

m
er

45
8.
sje

ng
46
2.
lib
qu

an
tu
m

46
4.
h2
64

re
f

47
0.
lb
m

44
4.
na
m
d

44
7.
de
al
II

45
0.
so
pl
ex

45
3.
po

vr
ay

47
1.
om

ne
tp
p

47
3.
as
ta
r

48
2.
sp
hi
nx
3

48
3.
xa
la
nc
bm

k

PageFaultScan PartialScan FullScan

Figure 8. BOGO Performance Overhead Breakdown.

We also found out that Oleksenko et al. [47] did not ap-
ply LTO for both gcc-mpx and icc-mpx. However, it turns
out that applying LTO after the instrumentation does not
improve the performance significantly. This is confirmed
by the small height gap between the 3rd (Inst→O2) the 4th
(Inst→O2→LTO) bars in Figure 6. We believe that the same
phenomenon will be observed in gcc-mpx and icc-mpx be-
cause LTO is restricted anyway by the inserted MPX bound
checks. Thus, we conclude that the reason for the poor per-
formance of gcc-mpx and icc-mpx is mainly due to their un-
conformity of optimize-before-instrument convention.

9.2 Security Evaluation
llvm-mpx’s Spatial Memory Safety. BOGO’s ability to de-
tect use-after-free hinges on spatial memory safety solution.
Thus, it is critical to validate whether llvm-mpx is sound. For
a fair and accurate comparison, we picked LLVM-based Soft-
Bound [41] as baseline, instead of comparing across different

compilers (e.g., llvm-mpx vs. gcc-mpx). To this end, we col-
lected the number of dynamic bounds checks performed on
a subset of tested applications with reference input; the open
source version of SoftBound [41] currently works for only 6
SPEC applications, all of which we tested. We confirmed that
llvm-mpx performs a higher number of bounds checks than
SoftBound because the former supports more instructions
(§8.1). Oleksenko et al. [47] also report that gcc-mpx leads to
a much higher instruction count than icc-mpx (∼3x vs. ∼1.5x
– see their Figure 10). To further validate llvm-mpx, we tested
real-world applications with buffer overflow bugs5. As in
Table 4, the first 5 cases are from BugBench [36] followed by
9 CVEs. llvm-mpx detected all without false positives. Note
that llvm-mpx also detected known bugs in SPEC [7].

Based on the above validation steps, we conclude that our
llvm-mpx implementation is credible thus being able to serve
as a solid basis for BOGO’s temporal safety enforcement.
BOGO’s Temporal Memory Safety.We empirically eval-
uated BOGO’s implementation for temporal memory safety.
First, we inspected BOGO’s detection capability for 32 cases
from NIST/Juliet (CWE416, Use-After-Free) [4], as listed in
Table 4. BOGO soundly detected them all. Second, BOGO
detected all use-after-free vulnerabilities in 4 tested CVEs.

9.3 SPEC CPU 2006 Benchmark
9.3.1 Performance Overhead.
Figure 7 shows the performance overhead normalized to
the baseline without memory safety. For each application,
there are four bars to compare: DangSan (temporal-only),
llvm-mpx (spatial-only), BOGO (static), and BOGO. The first
bar is for DangSan, the state-of-the-art temporal memory
safety only solution. It does not support use-after-return. We
evaluated it using the open source version from GitHub [3].
On average, DangSan incurs 1.41x slowdown. The second
bar is for llvm-mpx. On average, llvm-mpx incurs 1.26x slow-
down. The next two bars show the performance overhead
of BOGO (static) and BOGO which provide both spatial (via
llvm-mpx) and temporal memory safety. The third bar, i.e.,
BOGO (static), reports the best per-app result selected by
profiling with varying HPQ size (the sensitivity study on
HPQ is shown in §9.3.4). The last bar, i.e., BOGO, shows that
its scan cost-based dynamic adaptation of HPQ size (§6.3)
outperforms the best static configuration, i.e., BOGO (static).
We observed significant improvements for perlbench, gcc
where BOGO could dynamically adapt to the phase changes
of runtime execution behaviors. Note, the dynamic adapta-
tion scheme can offer similar or better performance without
prior profiling or knowledge of the program behavior. On av-
erage, BOGO incurs 1.6x slowdown for spatial and temporal
safety.

We then present detailed performance overhead analysis
for BOGO. First, Table 5 shows the frequencies of PartialScan,

5RIPE [64] is not used as it does not support the 64-bit system.

0
1
2
3
4

401.bzip2 429.mcf 433.milc 458.sjeng 464.h264ref 470.lbm geomean

N
or

m
al

iz
ed

O

ve
rh

ea
d SoftBound+CETS ASan BOGO

Figure 9. Performance Overhead of Full Memory Safety
Solutions.

0
1
2
3
4
5
6
7

40
0.

pe
rlb

en
ch

40
1.

bz
ip

2
40

3.
gc

c
42

9.
m

cf
43

3.
m

ilc
44

5.
go

bm
k

45
6.

hm
m

er
45

8.
sje

ng
46

2.
lib

qu
an

tu
m

46
4.

h2
64

re
f

47
0.

lb
m

44
4.

na
m

d
44

7.
de

al
II

45
0.

so
pl

ex
45

3.
po

vr
ay

47
1.

om
ne

tp
p

47
3.

as
ta

r
48

2.
sp

hi
nx

3
48

3.
xa

la
nc

bm
k

ge
om

ea
nM

em
or

y
O

ve
rh

ea
d DangSan llvm-mpx BOGO 186.6

Figure 10.Memory Overhead.

1

10

100

40
0.

pe
rlb

en
ch

40
1.

bz
ip

2
40

3.
gc

c
42

9.
m

cf
43

3.
m

ilc
44

5.
go

bm
k

45
6.

hm
m

er
45

8.
sje

ng
46

2.
lib

qu
an

tu
m

46
4.

h2
64

re
f

47
0.

lb
m

44
4.

na
m

d
44

7.
de

al
II

45
0.

so
pl

ex
45

3.
po

vr
ay

47
1.

om
ne

tp
p

47
3.

as
ta

r
48

2.
sp

hi
nx

3
48

3.
xa

la
nc

bm
k

ge
om

ea
n

No
rm

al
ize

d
O

ve
rh

ea
d

16 64 256 512 1024

Figure 11. Sensitivity study: varying HPQ, fixed-size FAQ.

1

10

100

40
0.

pe
rlb

en
ch

40
1.

bz
ip

2
40

3.
gc

c
42

9.
m

cf
43

3.
m

ilc
44

5.
go

bm
k

45
6.

hm
m

er
45

8.
sje

ng
46

2.
lib

qu
an

tu
m

46
4.

h2
64

re
f

47
0.

lb
m

44
4.

na
m

d
44

7.
de

al
II

45
0.

so
pl

ex
45

3.
po

vr
ay

47
1.

om
ne

tp
p

47
3.

as
ta

r
48

2.
sp

hi
nx

3
48

3.
xa

la
nc

bm
k

ge
om

ea
n

No
rm

al
ize

d
O

ve
rh

ea
d

2047 8191 16383 32767 65535 131071 262143

Figure 12. Sensitivity study: varying FAQ, fixed-size HPQ.

FullScan, and PageFaultScan (numbers/sec). Overall, the fre-
quency of FullScan is very small shows the benefit of Par-
tialScan+PageFaultScan. We found that naive FullScan only
approach incurs more than 10x slowdown (not shown in
Figure 7). Note that the sum of Partial and Full Scan frequen-
cies represents free frequency, and it varies significantly
across different applications (up to 817K/sec). This implies
that the SPEC benchmarks cover a broad spectrum of the
deallocation behaviors which affect BOGO’s performance
overhead. Later, we stress-test BOGO with malloc-free in-
tensive benchmarks (§9.4) and evaluate it with real-world
applications (§9.5).

Figure 8 reports BOGO’s performance overhead break-
down of time spent for three scans. Two applications incur
relatively high BOGO overhead: gcc and omnetpp. It turns out
that gcc and omnetpp have frequent Partial and Page Fault
Scans as shown in Table 5. In general, applications with
higher scan frequencies (e.g., perlbench, xalancbmk) incur
higher overhead compared to the others. gcc and omnetpp

also suffer from scanning larger dataset in HPQ and FAQ,
According to Figure 8, gcc and omnetpp spent about 50:50 on
PartialScan and PageFaultScan, showing the effectiveness
of HPQ dynamic scheme for applications with such high
overhead.

9.3.2 Other Full Memory Safety Techniques
Overheadwould add upwhen combining a temporal memory
safety solution (e.g. DangSan) with another spatial memory
safety solution (e.g., llvm-mpx). As shown in Figure 7, Dan-
gSan and llvm-mpx incur 1.41x and 1.26x slowdown, respec-
tively. When combined, the total runtime overhead would be
similar to BOGO (1.6x), yet BOGO is more memory efficient
(§9.3.3).
SoftBound+CETS [38, 42] keeps separate per-pointer meta-
data for spatial memory safety (SoftBound) and temporal
memory safety (CETS). Figure 9 highlights the performance
of BOGO compared to other full memory safety solutions for
6/19 SPEC 2006 applications; the latest open source version
of SoftBound+CETS [6] is broken for the remaining 13 ap-
plications. For those 6 applications, BOGO (1.25x slowdown)
significantly outperforms SoftBound+CETS (1.94x); (Their
paper reports 1.75x overhead for 9/19 SPEC 2006 and 8/16
SPEC 2000 applications). It seems that the open source ver-
sion might be less optimized. Although SoftBound+CETS
supports use-after-return detection, it is disabled for fair
comparison. AddressSanitizer [53] maintains per-object
metadata. Their paper reports 1.73x slowdown for SPEC
2006, higher than BOGO (1.6x). When we run it, with use-
after-return disabled, for the same 6 applications in Figure 9,
it incurs 1.57x slowdown which is still higher than BOGO
(1.25x) but lower than the SoftBound+CETS (1.94x). Address-
Sanitizer quarantines freed memory and defer actual recla-
mation to support use-after-free detection, causing memory
bloat. To avoid high memory overhead, it does actual free
periodically, thereby sacrificing soundness.

9.3.3 Memory Overhead
Figure 10 shows the memory usage of DangSan (temporal-
only), llvm-mpx (spatial-only), and BOGO. It is measured by
taking the average of resident memory (VmRSS) and nor-
malized to the baseline without memory safety. On average,
DangSan incurs 2.84x memory overhead, which is slightly
higher than what the paper reports (2.4x) [59], while llvm-
mpx and BOGO incur 1.16x and 1.17x, respectively. Thus,
BOGO adds very small memory overhead for full memory
safety. When DangSan is combined with MPX for the full

0

10

0
2
4
6
8

cfrac espresso gs make perl geomean

#o
f m

ill
io

n

fr
ee

s/
se

c

N
or

m
al

iz
ed

O

ve
rh

ea
d llvm-mpx BOGO free frequency

Figure 13. Malloc-free benchmark performance. The bar
graphs shows the normalized overhead (left y-axis). The line
graph shows the free frequency (right y-axis).
Application LOC Test method Free Freq.
aget 1K download 4GB file, 8 threads 0.45
pfscan 2K search 4GB file, 8 threads 27
pbzip2 6K compress 4GB file, 8 threads 5,280
transmission 116K download file 3.8GB 13,354
memcached 18K YCSB [18], workload ABCDEF 0.35
cherokee 102K ab [2], 8 conc. clients, 100K req. 27,509
nginx 166K ab [2], 8 conc. clients, 100K req. 115,113
apache 270K ab [2], 8 conc. clients, 100K req. 486
mysql 1,473K sysbench [5], 8 conc. clients, 100K req. 677,774

Table 6. Real-world application test methods. Top four ap-
plications are utilities/clients, while the bottom fives are
servers.

0

1

2

age
t

pfsc
an

pbzip
2

tra
nsm

iss
ion

memcach
ed

ch
eroke

e
nginx

apach
e

mysql

ge
omean

No
rm

al
ize

d
O

ve
rh

ea
d llvm-mpx BOGO

Figure 14. Real-world application performance.

safety, the total space overhead would add up. For omnetpp,
DangSan suffers from 186.62x (134.65x according to the pa-
per [59]) overhead, while BOGO incurs only 1.92x overhead
compared to llvm-mpx (1.91x). Although DangSan maintains
a huge pointer graph for performance, it still incurs 7x slow-
down for omnetpp as shown in Figure 7.

9.3.4 Sensitivity Study
Dynamic adaptation is disabled in this study. Figures 11 and
12 show the performance sensitivity studies with respect
to the sizes of HPQ and FAQ, respectively. Figure 11 shows
the result of varying HPQ with the fixed-size (65535) FAQ.
As discussed in §6.2, the size of HPQ affects PartialScan
and PageFaultScan in opposing directions. Each application
favors different sizes of HPQ. For example, omnetpp prefers
small HPQ, mcf favors larger HPQ, and gcc works best on
the middle size HPQ. This justifies BOGO’s dynamic HPQ
size adaptation, and Figure 7 confirms its effectiveness. On
the other hand, a bigger FAQ is in general preferable as it
reduces the number of FullScans. For example, omnetpp in
Figure 12 definitely favors a larger FAQ. We found that the
rest applications are not very sensitive to the size of FAQ,
though there is some fluctuation. For this reason, BOGO does
not currently adjust FAQ on the fly.

9.4 Malloc/Free Benchmark
Stress-testingBOGOwithmalloc/free intensive applications [31,
46] shows higher runtime overhead (Figure 13) than SPEC:
on average, 2.7x slowdown for BOGO, and 1.27x for llvm-mpx
only. The reason is two-fold: (1) the huge amount of mal-
loc/free (up to 5.8M/s) puts significant pressure on BOGO’s
page scan mechanism; and (2) the execution time of the
applications is very short (less than 2 seconds) even with
the largest input, and the majority of the entire execution
time is spent allocating/deallocating numerous objects. Thus,
BOGO’s activity ends up taking a significant portion. How-
ever, except for perl (5.8M/s) and espresso (3.9M/s), the over-
head of the remaining applications is under 80%, and the
overhead added by BOGO upon llvm-mpx is only 34%.

9.5 Real-World Applications
We evaluated BOGO with 9 real-world applications using the
test cases listed in Table 6. The five servers including apache

and mysql are set up with default configuration. While nginx
is a single-threaded multi-process server, all the rest 8 are
multithreaded applications. As discussed in §7, BOGO does
not guarantee soundness for multithreaded applications as
with others [41, 42, 47, 59]. Thus, this experiment is just for
performance evaluation and compatibility demonstration
purposes. We note that all instrumented applications be-
have correctly. Despite no soundness guarantee, as reported
in §9.2, BOGO (llvm-mpx) could detect a buffer overflow bug
in memcached-1.4.5. Given the workloads, the free frequency
varies up to 678K per second. As shown in Figure 14, the
runtime overhead of BOGO ranges from 1x to 1.83x, with
a geomean of 1.34x, which is less than that of more CPU-
intensive and malloc/free-frequent SPEC applications.

10 Conclusion
This paper presents BOGO, seamlessly adding temporal mem-
ory safety to the spatial memory safety on Intel MPX. BOGO
scans bound metadata to find dangling pointers, invalidates
their bounds, and detects temporal memory safety violations
as spatial safety violations. This frees BOGO from maintain-
ing separate metadata for temporal memory safety, saving
both runtime and space overhead. Our evaluation shows
that BOGO supports full memory safety at comparable run-
time overhead and much less memory overhead than other
state-of-the-art solutions. All the source code of BOGO and
llvm-mpx is available at https://github.com/lzto/bogo .

Acknowledgments
The authors would like to thank anonymous reviewers for
their valuable feedback. This paper is based upon work sup-
ported by the National Science Foundation under Grant No.
CSR-1750503 and CSR-1814430.

References
[1] [n. d.]. 2011 CWE/SANS Top 25 Most Dangerous Software Errors. ([n.

d.]). http://cwe.mitre.org/top25/.
[2] [n. d.]. ab - Apache HTTP server benchmarking tool. ([n. d.]).

https://httpd.apache.org/docs/2.4/programs/ab.html.
[3] [n. d.]. DangSan Open Source Implementation. ([n. d.]).

https://github.com/vusec/dangsan.
[4] [n. d.]. NIST Software Assurance Reference Dataset Project. ([n. d.]).

https://samate.nist.gov/SARD.
[5] [n. d.]. Scriptable database and system performance benchmark. ([n.

d.]). https://github.com/akopytov/sysbench.
[6] [n. d.]. SoftBound+CETS Open Source Implementation. ([n. d.]).

https://github.com/santoshn/softboundcets-34.
[7] [n. d.]. Spec2006 AddressSanitizer Patch. ([n. d.]).

https://github.com/google/sanitizers/ blob/master/address-
sanitizer/spec/spec2006-asan.patch.

[8] [n. d.]. Struct Bound Narrowing. ([n. d.]).
https://gcc.gnu.org/wiki/Intel MPX support in the GCC com-
piler#Narrowing.

[9] Periklis Akritidis, Manuel Costa, Miguel Castro, and Steven Hand. 2009.
Baggy Bounds Checking: An Efficient and Backwards-compatible De-
fense Against Out-of-bounds Errors. In Proceedings of the 18th Confer-
ence on USENIX Security Symposium (SSYM’09). 51–66.

[10] Todd M Austin, Scott E Breach, and Gurindar S Sohi. 1994. Efficient
detection of all pointer and array access errors. Vol. 29. ACM.

[11] Tyler Bletsch, Xuxian Jiang, Vince W Freeh, and Zhenkai Liang. 2011.
Jump-oriented programming: a new class of code-reuse attack. In
Proceedings of the 6th ACM Symposium on Information, Computer and
Communications Security. ACM, 30–40.

[12] Nathan Burow, Derrick McKee, Scott A Carr, and Mathias Payer. 2017.
CUP: Comprehensive User-Space Protection for C/C++. arXiv preprint
arXiv:1704.05004 (to appear in AsiaCCS’18) (2017).

[13] Juan Caballero, Gustavo Grieco, Mark Marron, and Antonio Nappa.
2012. Undangle: early detection of dangling pointers in use-after-free
and double-free vulnerabilities. In Proceedings of the 2012 International
Symposium on Software Testing and Analysis. ACM, 133–143.

[14] Stephen Checkoway, Lucas Davi, Alexandra Dmitrienko, Ahmad-Reza
Sadeghi, Hovav Shacham, and Marcel Winandy. 2010. Return-oriented
Programming Without Returns. In Proceedings of the 17th ACM Confer-
ence on Computer and Communications Security (CCS ’10). ACM, New
York, NY, USA, 559–572. https://doi.org/10.1145/1866307.1866370

[15] Xi Chen, Asia Slowinska, and Herbert Bos. 2016. On the Detection of
Custom Memory Allocators in C Binaries. Empirical Softw. Engg. 21, 3
(June 2016), 753–777. https://doi.org/10.1007/s10664-015-9362-z

[16] David Chisnall, Colin Rothwell, Robert NM Watson, Jonathan
Woodruff, Munraj Vadera, SimonWMoore, Michael Roe, Brooks Davis,
and Peter G Neumann. 2015. Beyond the PDP-11: Architectural sup-
port for a memory-safe C abstract machine. In ACM SIGPLAN Notices,
Vol. 50. ACM, 117–130.

[17] Tzi-cker Chiueh and Fu-Hau Hsu. 2001. RAD: A compile-time solution
to buffer overflow attacks. In Distributed Computing Systems, 2001. 21st
International Conference on. IEEE, 409–417.

[18] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan,
and Russell Sears. 2010. Benchmarking Cloud Serving Systems with
YCSB. In Proceedings of the 1st ACM Symposium on Cloud Computing
(SoCC ’10). ACM, New York, NY, USA, 143–154. https://doi.org/10.
1145/1807128.1807152

[19] Crispan Cowan, Calton Pu, Dave Maier, Jonathan Walpole, Peat Bakke,
Steve Beattie, Aaron Grier, Perry Wagle, Qian Zhang, and Heather
Hinton. 1998. Stackguard: automatic adaptive detection and prevention
of buffer-overflow attacks.. In Usenix Security, Vol. 98. 63–78.

[20] John Criswell, Andrew Lenharth, Dinakar Dhurjati, and Vikram Adve.
2007. Secure Virtual Architecture: A Safe Execution Environment for
Commodity Operating Systems. In Proceedings of Twenty-first ACM

SIGOPS Symposium on Operating Systems Principles (SOSP ’07). ACM,
New York, NY, USA, 351–366. https://doi.org/10.1145/1294261.1294295

[21] Joe Devietti, Colin Blundell, Milo M. K. Martin, and Steve Zdancewic.
2008. Hardbound: Architectural Support for Spatial Safety of the
C Programming Language. In Proceedings of the 13th International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS XIII). 103–114.

[22] Dinakar Dhurjati and Vikram Adve. 2006. Backwards-compatible
Array Bounds Checking for C with Very Low Overhead. In Proceedings
of the 28th International Conference on Software Engineering (ICSE ’06).
162–171.

[23] Dinakar Dhurjati and Vikram Adve. 2006. Efficiently detecting all
dangling pointer uses in production servers. In Dependable Systems
and Networks, 2006. DSN 2006. International Conference on. IEEE, 269–
280.

[24] Dinakar Dhurjati, Sumant Kowshik, and Vikram Adve. 2006. SAFE-
Code: Enforcing Alias Analysis for Weakly Typed Languages. In Pro-
ceedings of the 27th ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation (PLDI ’06). ACM, New York, NY, USA,
144–157. https://doi.org/10.1145/1133981.1133999

[25] Dinakar Dhurjati, Sumant Kowshik, Vikram Adve, and Chris Lattner.
2005. Memory Safety Without Garbage Collection for Embedded
Applications. ACM Trans. Embed. Comput. Syst. 4, 1 (Feb. 2005), 73–
111. https://doi.org/10.1145/1053271.1053275

[26] Gregory J Duck and Roland HC Yap. 2017. EffectiveSan: Type and
Memory Error Detection using Dynamically Typed C/C++. arXiv
preprint arXiv:1710.06125 (to appear in PLDI’18) (2017).

[27] Google. 2017. AddressSanitizerUseAfterReturn. (2017). https://github.
com/google/sanitizers/wiki/AddressSanitizerUseAfterReturn

[28] Rajiv Gupta. 1993. Optimizing array bound checks using flow analysis.
ACM Letters on Programming Languages and Systems (LOPLAS) 2, 1-4
(1993), 135–150.

[29] Trevor Jim, J Gregory Morrisett, Dan Grossman, Michael W Hicks,
James Cheney, and Yanling Wang. 2002. Cyclone: A Safe Dialect of C..
In USENIX Annual Technical Conference, General Track. 275–288.

[30] Richard WM Jones, Paul H J Kelly, Most C, and Uncaught Errors. 1997.
Backwards-compatible bounds checking for arrays and pointers in
C programs. In in Distributed Enterprise Applications. HP Labs Tech
Report. 255–283.

[31] Changhee Jung, Sangho Lee, Easwaran Raman, and Santosh Pande.
2014. Automated Memory Leak Detection for Production Use. In Pro-
ceedings of the 36th International Conference on Software Engineering.

[32] Taddeus Kroes, Koen Koning, Erik van der Kouwe, Herbert Bos, and
Cristiano Giuffrida. 2018. Delta Pointers: Buffer Overflow Checks
Without the Checks. In Proceedings of the Thirteenth EuroSys Conference
(EuroSys ’18). ACM, New York, NY, USA, Article 22, 14 pages. https:
//doi.org/10.1145/3190508.3190553

[33] Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Frame-
work for Lifelong Program Analysis & Transformation. In Proceedings
of the International Symposium on Code Generation and Optimization:
Feedback-directed and Runtime Optimization (CGO ’04). 75–.

[34] Byoungyoung Lee, Chengyu Song, Yeongjin Jang, Tielei Wang, Taesoo
Kim, Long Lu, and Wenke Lee. 2015. Preventing Use-after-free with
Dangling Pointers Nullification.. In NDSS.

[35] Zhengyang Liu and John Criswell. 2017. Flexible and Efficient Memory
Object Metadata. In Proceedings of the 2017 ACM SIGPLAN International
Symposium on Memory Management (ISMM 2017). ACM, New York,
NY, USA, 36–46. https://doi.org/10.1145/3092255.3092268

[36] Shan Lu, Zhenmin Li, Feng Qin, Lin Tan, Pin Zhou, and Yuanyuan
Zhou. 2005. Bugbench: Benchmarks for evaluating bug detection tools.
In Workshop on the evaluation of software defect detection tools, Vol. 5.

[37] S.S. Muchnick. 1997. Advanced Compiler Design Implementation. Mor-
gan Kaufmann Publishers.

[38] Santosh Nagarakatte, Milo MK Martin, and Steve Zdancewic. 2015.
Everything you want to know about pointer-based checking. In

https://doi.org/10.1145/1866307.1866370
https://doi.org/10.1007/s10664-015-9362-z
https://doi.org/10.1145/1807128.1807152
https://doi.org/10.1145/1807128.1807152
https://doi.org/10.1145/1294261.1294295
https://doi.org/10.1145/1133981.1133999
https://doi.org/10.1145/1053271.1053275
https://github.com/google/sanitizers/wiki/AddressSanitizerUseAfterReturn
https://github.com/google/sanitizers/wiki/AddressSanitizerUseAfterReturn
https://doi.org/10.1145/3190508.3190553
https://doi.org/10.1145/3190508.3190553
https://doi.org/10.1145/3092255.3092268

LIPIcs-Leibniz International Proceedings in Informatics, Vol. 32. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik.

[39] Santosh Nagarakatte, Milo M. K. Martin, and Steve Zdancewic. 2012.
Watchdog: Hardware for Safe and Secure Manual Memory Manage-
ment and Full Memory Safety. In Proceedings of the 39th Annual Inter-
national Symposium on Computer Architecture (ISCA ’12). 189–200.

[40] Santosh Nagarakatte, Milo M. K. Martin, and Steve Zdancewic. 2014.
WatchdogLite: Hardware-Accelerated Compiler-Based Pointer Check-
ing. In Proceedings of Annual IEEE/ACM International Symposium on
Code Generation and Optimization (CGO ’14). 175:175–175:184.

[41] Santosh Nagarakatte, Jianzhou Zhao, Milo M.K. Martin, and Steve
Zdancewic. 2009. SoftBound: Highly Compatible and Complete Spatial
Memory Safety for C. In Proceedings of the 2009 ACM SIGPLAN Con-
ference on Programming Language Design and Implementation (PLDI
’09). 245–258.

[42] Santosh Nagarakatte, Jianzhou Zhao, Milo MK Martin, and Steve
Zdancewic. 2010. CETS: compiler enforced temporal safety for C.
In ACM Sigplan Notices, Vol. 45. ACM, 31–40.

[43] Santosh Ganapati Nagarakatte. 2012. Practical low-overhead enforce-
ment of memory safety for c programs. Ph.D. Dissertation. University
of Pennsylvania.

[44] George C Necula, Jeremy Condit, Matthew Harren, Scott McPeak,
and Westley Weimer. 2005. CCured: Type-safe retrofitting of legacy
software. ACM Transactions on Programming Languages and Systems
(TOPLAS) 27, 3 (2005), 477–526.

[45] Nicholas Nethercote and Julian Seward. 2007. Valgrind: A Framework
for Heavyweight Dynamic Binary Instrumentation. In Proceedings of
the 2007 ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI ’07). 89–100.

[46] Gene Novark, Emery D. Berger, and Benjamin G. Zorn. 2009. Efficiently
and precisely locating memory leaks and bloat. In Proc. of the 30th
PLDI.

[47] Oleksii Oleksenko, Dmitrii Kuvaiskii, Pramod Bhatotia, Pascal Fel-
ber, and Christof Fetzer. 2017. Intel MPX Explained: An Empirical
Study of Intel MPX and Software-based Bounds Checking Approaches.
CoRR abs/1702.00719 (2017). arXiv:1702.00719 http://arxiv.org/abs/
1702.00719

[48] Marco Prandini and Marco Ramilli. 2012. Return-oriented program-
ming. IEEE Security & Privacy 10, 6 (2012), 84–87.

[49] Feng Qin, Shan Lu, and Yuanyuan Zhou. 2005. SafeMem: Exploiting
ECC-memory for detecting memory leaks and memory corruption
during production runs. In High-Performance Computer Architecture,
2005. HPCA-11. 11th International Symposium on. IEEE, 291–302.

[50] Olatunji Ruwase and Monica S Lam. 2004. A Practical Dynamic Buffer
Overflow Detector.. In NDSS, Vol. 2004. 159–169.

[51] Pawel Sarbinowski, Vasileios P Kemerlis, Cristiano Giuffrida, and Elias
Athanasopoulos. 2016. VTPin: practical VTable hijacking protection
for binaries. In Proceedings of the 32nd Annual Conference on Computer
Security Applications. ACM, 448–459.

[52] Mark Seaborn and Thomas Dullien. 2015. Exploiting the DRAM
rowhammer bug to gain kernel privileges. Black Hat (2015), 7–9.

[53] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and
Dmitriy Vyukov. 2012. AddressSanitizer: A Fast Address Sanity
Checker.. In USENIX Annual Technical Conference. 309–318.

[54] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and
Dmitry Vyukov. 2012. AddressSanitizer: A Fast Address Sanity Checker.
In Proceedings of the 2012 USENIX Conference on Annual Technical
Conference (USENIX ATC’12). USENIX Association, Berkeley, CA, USA,
28–28. http://dl.acm.org/citation.cfm?id=2342821.2342849

[55] Chengyu Song, Hyungon Moon, Monjur Alam, Insu Yun, Byoungy-
oung Lee, Taesoo Kim, Wenke Lee, and Yunheung Paek. 2016. HDFI:
Hardware-Assisted Data-flow Isolation. In Security and Privacy (SP),
2016 IEEE Symposium on. IEEE, 1–17.

[56] Yulei Sui, Ding Ye, Yu Su, and Jingling Xue. 2016. Eliminating re-
dundant bounds checks in dynamic buffer overflow detection using

weakest preconditions. IEEE Transactions on Reliability 65, 4 (2016),
1682–1699.

[57] Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn Song. 2013. Sok:
Eternal war in memory. In Security and Privacy (SP), 2013 IEEE Sympo-
sium on. IEEE, 48–62.

[58] Minh Tran, Mark Etheridge, Tyler Bletsch, Xuxian Jiang, Vincent
Freeh, and Peng Ning. 2011. On the Expressiveness of Return-into-libc
Attacks. In Proceedings of the 14th International Conference on Recent
Advances in Intrusion Detection (RAID’11). Springer-Verlag, Berlin,
Heidelberg, 121–141. https://doi.org/10.1007/978-3-642-23644-0_7

[59] Erik van der Kouwe, Vinod Nigade, and Cristiano Giuffrida. 2017. Dan-
gSan: Scalable Use-after-free Detection. In Proceedings of the Twelfth
European Conference on Computer Systems. ACM, 405–419.

[60] Victor van der Veen, Yanick Fratantonio, Martina Lindorfer, Daniel
Gruss, Clementine Maurice, Giovanni Vigna, Herbert Bos, Kaveh
Razavi, and Cristiano Giuffrida. 2016. Drammer: Deterministic
Rowhammer Attacks on Mobile Platforms. In Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security
(CCS ’16). ACM, New York, NY, USA, 1675–1689. https://doi.org/10.
1145/2976749.2978406

[61] Guru Venkataramani, Brandyn Roemer, Yan Solihin, and Milos
Prvulovic. 2007. Memtracker: Efficient and programmable support for
memory access monitoring and debugging. In High Performance Com-
puter Architecture, 2007. HPCA 2007. IEEE 13th International Symposium
on. IEEE, 273–284.

[62] Xiaoxiao Wang, Mohammad Tehranipoor, and Jim Plusquellic. 2008.
Detecting malicious inclusions in secure hardware: Challenges and
solutions. In Hardware-Oriented Security and Trust, 2008. HOST 2008.
IEEE International Workshop on. IEEE, 15–19.

[63] John Wilander and Mariam Kamkar. 2003. A Comparison of Publicly
Available Tools for Dynamic Buffer Overflow Prevention.. In NDSS,
Vol. 3. 149–162.

[64] John Wilander, Nick Nikiforakis, Yves Younan, Mariam Kamkar, and
Wouter Joosen. 2011. RIPE: Runtime Intrusion Prevention Eval-
uator. In Proceedings of the 27th Annual Computer Security Appli-
cations Conference (ACSAC ’11). ACM, New York, NY, USA, 41–50.
https://doi.org/10.1145/2076732.2076739

[65] Jonathan Woodruff, Robert NM Watson, David Chisnall, Simon W
Moore, Jonathan Anderson, Brooks Davis, Ben Laurie, Peter G Neu-
mann, Robert Norton, and Michael Roe. 2014. The CHERI capability
model: Revisiting RISC in an age of risk. In Computer Architecture
(ISCA), 2014 ACM/IEEE 41st International Symposium on. IEEE, 457–
468.

[66] Wei Xu, Daniel C DuVarney, and R Sekar. 2004. An efficient and
backwards-compatible transformation to ensure memory safety of
C programs. ACM SIGSOFT Software Engineering Notes 29, 6 (2004),
117–126.

[67] Kaiyuan Yang, Matthew Hicks, Qing Dong, Todd Austin, and Dennis
Sylvester. 2016. A2: Analogmalicious hardware. In Security and Privacy
(SP), 2016 IEEE Symposium on. IEEE, 18–37.

[68] Ding Ye, Yu Su, Yulei Sui, and Jingling Xue. 2014. WPBound: En-
forcing spatial memory safety efficiently at runtime with weakest
preconditions. In Software Reliability Engineering (ISSRE), 2014 IEEE
25th International Symposium on. IEEE, 88–99.

[69] Ding Ye, Yu Su, Yulei Sui, and Jingling Xue. 2014. WPBOUND: Enforc-
ing Spatial Memory Safety Efficiently at Runtime withWeakest Precon-
ditions. In Proceedings of the 2014 IEEE 25th International Symposium
on Software Reliability Engineering (ISSRE ’14). IEEE Computer Society,
Washington, DC, USA, 88–99. https://doi.org/10.1109/ISSRE.2014.20

[70] Suan Hsi Yong and Susan Horwitz. 2003. Protecting C programs from
attacks via invalid pointer dereferences. In ACM SIGSOFT Software
Engineering Notes, Vol. 28. ACM, 307–316.

[71] Yves Younan. 2015. FreeSentry: protecting against use-after-free vul-
nerabilities due to dangling pointers.. In NDSS.

http://arxiv.org/abs/1702.00719
http://arxiv.org/abs/1702.00719
http://arxiv.org/abs/1702.00719
http://dl.acm.org/citation.cfm?id=2342821.2342849
https://doi.org/10.1007/978-3-642-23644-0_7
https://doi.org/10.1145/2976749.2978406
https://doi.org/10.1145/2976749.2978406
https://doi.org/10.1145/2076732.2076739
https://doi.org/10.1109/ISSRE.2014.20

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Spatial Memory Safety
	2.2 Memory Protection Extension.
	2.3 Temporal Memory Safety

	3 Overview of BOGO
	4 BOGO Approach Details
	4.1 Hot Bound Table Page Tracking
	4.2 PartialScan +PageFaultScan =Low Overhead+No False Negative
	4.3 PageFaultScan+RedundancyPredication= Low Overhead + No False Positive

	5 Optimization
	5.1 No PageFaultScan Optimization
	5.2 FullScan Optimization

	6 Dynamic Adaptation of Queue Size
	6.1 Scan Cost Analysis
	6.2 Impact of HPQ and FAQ Sizes
	6.3 Scan Cost-based HPQ Adaptive Scheme

	7 Discussion
	8 Implementation
	8.1 Spatial Memory Safety
	8.2 Temporal Memory Safety

	9 Evaluation
	9.1 Methodology
	9.2 Security Evaluation
	9.3 SPEC CPU 2006 Benchmark
	9.4 Malloc/Free Benchmark
	9.5 Real-World Applications

	10 Conclusion
	Acknowledgments
	References

