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Abstract. In this project we explore stroke based rendering(SBR), which
is one of the fundamental research topics in Non-Photorealistic Render-
ing. We explore SBR by re-implementing the paper[1]. We created a user-
friendly stroke based rendering software using OpenGL and Microsoft
Foundation Class(MFC) Library that produces images with human-like
painting styles.The major novelty of our software is that it enables user to
intuitively control the output style. More than just following the pipeline
proposed in [1], we also improved the stroke sampling and saliency com-
putation methods used in[1] to produce more visual amusing visual ef-
fects. Our experiments show that our implementation is not only robust
to input pictures of different input sizes but also capable of processing
user-input efficiently and conveniently.

Keywords: Stroke Based Painterly Rendering, Non-Photorealistic Ren-
dering, Painterly Rendering

1 Introduction

Simulating the common practice of human painters who create paintings with
brush strokes is a hard problem because it is an subjective process that can
be affected by many factors. Emotions, expressive styles and more are keys for
the visualization of the painting work but they hard to model mathematically
or to control automatically. Moreover, the barrier between artistic feeling and
numerical parameters used in computer graphics make it difficult for users to
create the desired styles.

In order to bridge the gap between expressive styles and computer graphics
technology, we adopt eight intuitive parameters proposed by [1] that users can
control to achieve the desired painting styles. Compared to parameters such
as stroke distribution that is hard for users with no graphics background to
understand, the proposed eight parameters are intuitive controls since they are
widely used in perceptual dimensions. The eight parameters, which are proposed
in [1], are listed below:

– Density: Stroke density is proportional to the number of strokes inside a unit
image area.

– Non-Uniformity: The degree of unevenness of the spatial density of strokes.
A high non-uniformity level means strokes are very dense in some places but
very sparse elsewhere.
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– Local Isotropy: The degree of similarity of stroke orientations in a neighbor-
hood inside an image region. A high local isotropy level means neighboring
strokes are usually near-parallel, exhibiting a smoothed style with low con-
trast in orientation.

– Coarseness: The average size of strokes. Generally, the larger the stroke sizes
are, the coarser the rendered painting image is.

– Size Contrast: The local variance of size, represented by the size differences
between each stroke and its neighboring strokes.

– Lightness Contrast: The differences in lightness of color between each stroke
and its neighbors.

– Chroma Contrast: The differences in chroma of color between each stroke
and its neighbors.

– Hue Contrast: The differences in hue of color between each stroke and its
neighbors.

For our project, in addition to a full implementation of the method that
is proposed in [1], we further improve the stroke process in the following aspects:

– We sample strokes non-uniformly based on Weibull distribution instead of
1D histogram matching on image grids. Weibull distribution elegantly incor-
porated the density and non-uniformity parameters in the non-uniform
sampling process. It also avoids the information loss and the problem that
samples might be overlapped on edges of grids in [1].

– Instead of simply computing saliency map of the input image by edge and
ridge detection using steerable filters[2], we use a spectral residual approach[3]
to detect image saliency that better approximate human vision mechanism.

This paper is organized as follows: section 2 explores the literature related
to our stroke painterly rendering algorithm; section 3 goes through the basic
components building up our algorithm; in section 4 we show experimentally that
our proposed implementation produces high quality painterly rendered images;
we conclude our work in section 5.

2 Related Work

Commonly researchers in this field model the stroke based rendering problem
into two main steps: brush modeling and stroke placement. Research in both
of these fields has achieved encouraging progress. We review these work in section
2.1 and section 2.2. Saliency map is closely related to stroke based rendering for
it emphasizes on human’s interest, which is an important subjective element
to consider in painterly rendering, we review the work of saliency modeling in
section 2.3

2.1 Brush modeling

For brush modeling, Strassmann [4] is among the earliest to study painterly
graphical elements. After that, various improved methods [5–12] have been pro-
posed. Currently it is considered as a solved problem. In this paper we simply
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adopt the example-based method of [11], and use a dictionary containing around
6 textured brush strokes.

2.2 Stroke placement

For stroke placement, there are greedy and optimization-based methods [13].
In a greedy strategy, at each step, the algorithm determines the current stroke
according to certain objectives and image/semantic features. The optimization-
based methods compute the entire sequence of strokes together to achieve opti-
mal global energies or desired statistics. Theoretically, optimization-based meth-
ods have the potential to outperform greedy ones, since they can explicitly
model the interactions among strokes. These interactions, or high-order statis-
tics among the strokes, essentially control the spatial contrasts mentioned above.
Our method belongs to the optimization-based class, and it improves previous
work in two main aspects. (1) It has a parameter design which explicitly em-
phasizes contrasts or high-order statistics, while parameters in most previous
methods only correspond to either individual strokes or global features thus lack
the power to reflect effects such as complementary colors in neighboring strokes.
(2) Our method decomposes the energies/statistics into separately optimized
terms corresponding to different perceptual dimensions. This not only simplifies
computation, making it much faster than joint optimization [14] and MCMC
sampling [15], but also enables flexible and friendly user customization.

2.3 Saliency Modeling

A good model of image saliency is a necessary for a successful painterly render-
ing because image saliency indicated where the strokes should be placed to em-
phasize human interests. Researchers have explored different methods to model
image saliency for the past decades[16–19]. The saliency map provides a better
description of key regions in images rather than simply using edge detectors [20]
or human gaze [21] directly to model image saliency.

The literatures on saliency detection contain nearly 65 vision attention mod-
els in the last 25 years. We explain here why in our paper we use a spectral
residual approach [3] to model image saliency. The reason is that first of all,
compared to learning based method that takes large amount of training data
and time, this is simpler, more efficient with comparable results. Second, ex-
periment shows spectral residual approach strike a balance between high-level
saliency features(i.e. human faces) and low level saliency features(i.e. color con-
trast).

3 Painting Algorithm

In this section we present our painting algorithm. Our painting algorithm accepts
a single 2D image and eight intuitive parameters described in section 1, and
produces a 2D painterly rendering of that input image. There are five stages to
our algorithm, which in execution order are:
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1. Image preprocessing. The segmentation map, saliency map and orientation
field of the input image are computed.

2. Stroke sampling based on saliency map. We sample strokes based on the
saliency map of the input image. Generally speaking, the more salient a
pixel is, the more likely the stroke is placed on that pixel.

3. Stroke graph construction. The strokes are asymmetrically connected based
on their spatial relationships, producing a stroke neighborhood graph. Then
it is updated iteratively using stochastic reaction diffusion [22] to smooth
the neighboring properties.

4. Stroke color and size properties are first of all initialized based on stroke
positions and input image. Then they are updated using stochastic reaction
diffusion in a similar way to the previous step by considering neighboring
properties given stroke graph.

5. Brush models are picked form brush library and initialized accordingly based
on stroke properties and finally placed on white canvas to produce a painterly
rendering.

The whole algorithm is illustrated in Fig.1. Each step is detailed in the fol-
lowing chapter.

3.1 Image Preprocessing

In this step an input image is processed to generate the saliency map, segmen-
tation map and orientation field.

Orientation Field For orientation field computation, we simply compute the
gradient orientation of each pixel.

Segmentation Map For the segmentation map, we use the Simple Linear
Iterative Clustering (SLIC) propose in [23]. It is considered as the state of art
unsupervised algorithm to segment superpixels. SLIC performs a local clustering
of pixels in 5D space defined by the L, a, b values of the CIELAB colorspace and
x, y coordinates of the pixels. SLIC generates superpixels based on similarity of
the 5D representation of each pixel. The distance is defined as follows:

dlab =
√

(lk − li)2 + (ak − ai)2 + (bi − bk)2 (1)

dxy =
√

(xk − xi)2 + (yk − yi)2 (2)

Dik = dlab + dxy ∗ (m/S) (3)

Where Dik is the sum of the lab distance and the xy plane distane normalized
by the grid intervals S.

The cluster process starts by find the pixel which is a local minimal on
gradient map to avoid edges points. The mean of all pixels in the cluster is
used as new cluster center. At the end of iteration, connectivity is enforced by
relabeling disjoint segments with the labels of the largest neighboring cluster.

In our implementation we fix the ratio m
S to 0.5 so that the interval is not

affecting final clustering results.
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Fig. 1: The pipeline of the stroke processes. Green color and dashed arrows high-
light the eight perceptual dimensions that users specify for each image region to
the system (slidebars indicate their settings for the regions of apples). P, θ, S and
C (black nodes in front of gray background) are the positions, orientations, sizes
and colors of strokes to compute, respectively, with which we can render the final
painting image or its fast preview. Gray segments in the stroke neighborhood
graph (at the bottom) are connections between nodes in different image regions.
.

Saliency Map Instead of using only edge detector as indicators of salient re-
gions of input image, we use the spectral residual algorithm proposed by [3].
According to Hou, information of the original image can be interpreted as the
sum of the innovation and prior knowledge. The innovation stands for the inter-
esting part with possible targets, whereas the prior parts stands for redundant
or irrelevant information related to the background, where we will place fewer
strokes.

Given an input image I(x), the log spectrum L(f) can be defined as

L(f) = log(F (I(x))) (4)

where F represents the Fourier Transformation. Therefore, spectral residual R(f)
can be defined as:

F (f) = L(f)−A(f) (5)
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where A(f) = h(f) ∗ L(f) and h(f) is a local averaging filter. Using inverse
Fourier Transformation we can construct the saliency map in spatial domain.

3.2 Stroke Sampling

In this paper, instead of using the three-step stroke sampling method propose in
[1]. We sample directly on pixels to avoid the error brought by grid approximation
and possible overlapped sampling on grid edges. We first of all compute the
probability for each pixel given by Weibull distribution:

F (x; k, λ) = 1− e(x/λ)
k

(6)

where x is the raw saliency value, and k > 0 and λ > 0 are the shape and
scale parameters of the Weibull function. It can be seen form Equation 6 that
λ naturally models the density and k models local iostropy(as opposed to 1D
histogram mapping and region based random sampling).

We then sample the pixels with a probability given by the cumulative distri-
bution function of Weibull distribution as in equation 6.

Note that we also did a non-maximum suppression to remove overlapped
strokes. The threshold of overlap area is determined by the minimum size of
strokes. With this step we can freely sample redundantly at first to ensure that
the strokes will cover the whole canvas.

3.3 Stroke Graph Construction

Stroke Graph Initialization We initialize the stroke graph following [1].
Namely, we construct a Markov stroke neighborhood graph, whose nodes are
the strokes at sampled positions, and edges connecting each node with up to
four neighbors. we compute the neighborhood structure according to the dis-
tances between strokes and their orientations:

1. Initializing each strokes orientation θ to its reference value θ∗ in a reference
orientation field prepared in advance. In our case the orientation field is
initialized by the image gradient.

2. Constructing local two-dimensional Cartesian coordinates on each stroke.
The origin is anchored at each stroke center, and the orthogonal straight
lines xy = 0 are aligned with gradient direction and normal to gradient
direction.

3. Connecting the four edges from the stroke to its nearest neighbor in each
of the four quadrants. Nearest neighbors too far away (over a predefined
distance threshold) are ignored, and strokes near region boundaries or image
edges may not have neighbors in every quadrant (i.e., some neighbors may
belong to other superpixels thus excluded from the neighborhood), so we
allow less than four neighbors in such cases.

As soon as the stroke orientations are finally computed in the next step, the
structure of the stroke neighborhood graph should be updated with refreshed
neighborhood connections before we compute the other attributes.

An illustration of this algorithm is shown in Fig. 2



CSE 528 Project Report 7

Fig. 2: Edge connections in the stroke neighborhood graph. A strokes neighbor-
hood includes its nearest neighbor in each of the four quadrants, if there exists
one within the predefined distance threshold inside the image region. In this
figure, the neighborhood of stroke a is a set N(a) = {b, c, d}, and stroke e is
excluded because it is not inside the same image region as a.

Stroke Graph Update We update the stroke graph by updating the orien-
tation of each stroke and re-connect them under updated-orientations. As men-
tioned above, we update stroke graph before other properties because it also
changes the graph topology.

We use stochastic reaction diffusion equations to update current stroke ori-
entation based on neighboring properties, in which the diffusion smooths the
attributes among neighboring strokes to reduce the contrasts (or enhances the
contrasts if we use negative diffusion rates, as explained below), and the reac-
tion preserves information from the source image. We detail below how we apply
stochastic reaction-diffusion equations to update stroke orientations. For other
properties, they use essentially the same form.

The stochastic reaction-diffusion is applied to orientation as follows:

dθ

dt
= R(θ) + λθD(θ) + εθ (7)

The equation above is used to propagate information across the stroke neigh-
borhood graph to compute the orientations iteratively, in which εθ is a small
stochastic noise added to each iteration to simulate natural randomness. Since
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θ is periodic over intervals of 2π, we adopt the orientation diffusion [24] term

D(θ) =
∑
n

wn ∗ sin(θn − θ) (8)

where θn are orientations of neighboring strokes of the one currently being
updated, and wn are weights inversely proportional to the spatial distances of
these strokes. The local reaction term

R(θ) = sin(θ∗ − θ) (9)

applies the persistent external force from the reference orientation field θ∗. The
diffusion rate λθ is set to the level of local isotropy specified by user input.

After a few iterations θ is close to convergence, and we update the edge
connections of the stroke neighborhood graph using the computed stroke orien-
tations. The reaction-diffusion and graph updating are both very fast since the
number of strokes is usually much smaller than that of image pixels.

3.4 Initialization and Update of Other Properties

The initialization and update of color(lightness, chroma, hue) and stroke size are
basically the same as the preocess initialization and updating orientation. The
reaction-diffusion of stroke colors includes two parts, for the aperiodic lightness
and chroma, and the periodic hue, respectively. The process can be represented
as follows:

dl/dt = (l∗ − l) + λl
∑
n

wn(ln − l) + εl (10)

dk/dt = (k∗ − k) + λk
∑
n

wn(kn − k) + εk (11)

dh/dt = sin(h∗ − h) + λh
∑
n

wnsin(hn − h) + εh (12)

The stroke size has 2 parameters: width and length. We initialize width and
length based on stroke’s gradient [dx, dy]. If dx is smaller than dy, width will
be initialized to be the base size defined by coarseness while the length is dy/dx
times the length of width and vice versa. The reaction-diffusion of stroke size is,
however, a little bit more complex. In addition to the similar stochastic reaction
diffusion precess:

ds/dt = (s∗ − s) + λs
∑
n

wn(sn − s) + εs (13)

We further restrict the size to be in a predefined range so that extreme situations
will not happen. The reference size maps are generated from the salience map,
but here the salience is firstly reversed (since intuitively, large salience corre-
sponds to smaller brush stroke), the intuitive parameter coarseness is used to
model the average size of strokes.
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3.5 Brush Model Selection

When all the update are finished, the final step is to place the brushes on the
canvas. Different from [1] that uses a commercial brush library of 200 brushes
with varying shapes and texture appearances, which are collected from profes-
sional artists. These brushes are aimed at reflecting the material properties and
feelings in several perceptual dimensions or attributes, for example, dry versus
wet, hard versus soft, and long versus short, as well as four shape and appear-
ance categories (point, curve, block, and texture). We do NOT have the access
to the large brush library since they were commercialized. We created our own
small library with 6 brushes.

In order to minimize the effect of inadequate number of brushes. We randomly
select brushes from the library and resize them to the stroke size based on: (i)
size contrast,(ii) the graident magnitude. The 6 brushes are visualized in Fig. 3

Fig. 3: Six brush models used in our algorithm

4 Experiments

4.1 Programming Language & Setups

This whole project is implemented in C++. The operating system is Windows
10. The development IDE is Visual Studio with MFC support. Only basic com-
ponents of OpenCV such as image container and color conversion were used in
our implementation. The image display pipeline was implemented using OpenGL
for the sake of being familiar with graphics programming. All the following
steps, if not mentiond explicitly, were implemented by the author from
scratch.

All the visualizations are implemented using OpenGL. Visualization inter-
faces from OpenCV or Visual Studio were avoided. The OpenGL version of image
visualization is implemented as follows:

Note that the parallel programming for placing strokes on image was not
implemented in OpenGL because of time budget. It would be much faster if
parallel stroke placement is used.
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4.2 Experiment Parameters

We use input image with size around 400 by 400. In theory our algorithm can
take any image size as input, the only difference is that it takes longer time to
process the whole image.

Given an input image, several parameters needed to be pre-defined. The first
one is the number of superpixels on the input image. We set the number of
regions to be 20 so that dominant objects will be always be segmented out while
avoiding the discontinuity of stroke graphs due to over-segmentation.

The second parameter the iterations for each reaction diffusion. We used the
same parameters as used in [1]. Normally 100 iterations is a good number for all
the properties.

The third parameter is the stroke size ratio. In order to avoid the misleading
visual effect that the algorithm seems just simply blurs the image, we select the
initial width height ratio to be 1:5.

There are also other parameters such as the scale of random noise added
during stochastic reaction diffusion process, the distance threshold to decide if a
stroke is a neighbor of current stroke and the rules to overlap brushes. They are
relatively not detrimental to the final visual results. We simply use reasonable
parameters in the context of input image size.

4.3 GUI

The GUI is shown in Fig. 4. The move of ”density” and ”non-uniformity” sidebar
will lead directly to a visualization.

4.4 Qualitative Results

The intermediate process, namely, the stroke positions are visualized in Fig.?? in
order to show different density and non-uniformity parameters and their effects.

Some of the results are shown in Fig.6. As one may notice, the dog case is
actually difficult because it requires many different level of details to view the
eyes and so on. More examples can be seen in Fig .??

4.5 Timing

Given an input image of size around 400 by 400, on a Intel i5 dual core machine
with 8G memory it is roughly real time to sample around 4K strokes using
Weibull distribution without parallel programming. The total time from stroke
initialization to all iterations done for all properties is roughly 5 seconds. There
is high reason to do believe with proper parallel programming, the software will
work in real time.
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Fig. 4: GUI interface

5 Conclusion

We have implemented [1] with modification on saliency computation and control
density sampling. Our implementation work well on given parameter settings in
real time. There are some minor issues we want to address here and we plan to
solve them in our future work. The first issue is that due to the large number
of parameters used in this method, tuning work becomes difficult, especially the
linear change of parameters may not be obvious in terms of results. One possible
future work is to find the initial parameters automatically. Another future work
is to implement the whole pipeline in parallel to make it real time.
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Fig. 5: Top row from left to right sampling from low density to high density.
Bottom row from left to right: sampling from low non-unifomity to high non-
uniformity
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Fig. 6: Different parameter settings and different results. Top row: Difference in
local isotropy; second row: difference in coarseness; third row: difference in size
contrast; fourth row: difference in lightness. Best viewed in color.
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Fig. 7: More results.
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Appendix : Major Implementation Blocks

1. A brush library that renders 6 brushes (myBrushes.cpp)
2. A MFC framework that enable GUI.(GraphicProjectDlg.cpp)
3. A stroke class that records current status of stroke(myStroke.cpp)
4. A status class recording current status of the storkelist(StrokeProcessState.cpp)
5. Weibull Sampling (NUS.cpp)
6. Image rendering 1: brush placement using OpenGL (painting.cpp)
7. Image rendering 2: Core OpenGL function for image loading and image

showing. (glmy showimage.cpp)
8. Parameter setting and converting to a reasonable range (parambox.cpp)
9. Saliency computation (computeSaliency.cpp)

10. Utility functions (utils.cpp)
11. Superpixel computation (Slicsuperpixel.cpp)
12. A bunch of visualization function for debug(vis.cpp)


