
TopoGAN: A Topology-Aware Generative
Adversarial Network

– Supplementary Material –

Fan Wang[0000−0002−5402−5065], Huidong Liu, Dimitris Samaras, and Chao Chen

Stony Brook University, Stony Brook, NY 11794, USA
{fanwang1,huidliu,samaras}@cs.stonybrook.edu

chao.chen.1@stonybrook.edu

We provide additional discussion of technical details (Section A), experiment
details and more qualitative results (Section B). These are not included in the
paper due to space constraints.

A Additional Technical Details for the Method

We provide technical details that are not included in the manuscript due to space
constraints. In Section A.1, we formally introduce the definitions of topology and
persistent homology. In Section A.2, we add details of comparing diagrams and
comparing sets of diagrams. In Section A.3, we add detailed derivations of the
gradient with regard to the synthetic images.

A.1 Homology, Persistent Homology and Computation

We focus on homology over finite fields GF(2), and leave the more general set-
tings to a more comprehensive text [10, 4]. Given a topological space, e.g., a
mask y, each connected component corresponds to a 0-dimensional homology
class. Each hole corresponds to a 1-dimensional homology class, i.e., an equiva-
lent class of cycles (loops) such that the difference between any two of them is
the boundary of a patch within y. To formalize the definitions, we start with a
discretization of the image domain, Ω.

We assume a cubical complex consisting of 0-, 1-, and 2-dimensional elements.
0-dimensional elements (vertices) correspond to pixels. 1-dimensional elements
are horizontal and vertical edges connecting adjacent pixels. 2-dimensional el-
ements are squares bounded by 2 horizontal edges and 2 vertical edges. A p-
chain is a set of p-dimensional elements. The set of all possible p-chains is called
the p-dimensional chain group, denoted as Cp. Assume Np is the number of p-
dimensional elements, the cardinality of Cp is 2Np . We can represent each p-chain
as a binary vector of length Np, using 1’s or 0’s to indicate whether a particular
p-dimensional element does/does not belong to the chain. The sum of any two
p-chains is the sum of the two corresponding binary vectors over GF(2) field op-
erations: 1+1 = 0, 1+0 = 1, and 0+0 = 0. This is equivalent to the exclusive-or
operation of the two chains treated as two sets of p-dimensional elements.



2 Fan Wang et al.

A boundary operator, ∂p, maps a p-dimensional element to a (p−1)-chain con-
taining its boundary elements. The boundary of an edge includes the two vertices
adjacent to it. The boundary of a square includes the 4 edges bounding it. This
can be naturally extended to the boundary of a p-chain: ∂p(c) =

∑
σ∈c ∂p(σ). The

boundary operator is equivalent to multiplying the chain vector with a boundary
matrix, ∂p(c) := Dp ·c. A p-dimensional boundary matrix is an Np−1×Np binary
matrix. The (i, j)’s entry is 1 if and only if the i-th (p− 1)-dimensional element
belongs to the boundary of the j-th p-dimensional element. The 1-dimensional
boundary matrix, D1, is essentially the incidence matrix of the underlying graph.
The boundary operator is a linear operator mapping Cp into Cp−1.

A p-cycle is a p-chain whose boundary is empty. A p-boundary is a p-chain
which is the boundary of some (p+ 1)-chain. Formally, the set of p-cycles, called
the cycle group, denoted as Zp, is the kernel of ∂p. The set of p-boundaries, called
the boundary group, denoted as Bp, is the image of ∂p+1. It can be verified that
a boundary is a cycle, and Bp is a proper subgroup of Zp. We can now formally
define the homology group as the quotient group,

Hp :=
Zp
Bp
.

Each element of the homology group, called a homology class, is an equivalent
class of cycles so that their difference is only a boundary. Formally, for any
h ∈ Hp,

h = {z0 + b | b ∈ Bp},

for some z0 ∈ Zp. Intuitively, when p = 0, a homology class corresponds to a
connected component or a set of connected components. When p = 1, a homology
class corresponds to a hole or a set of holes. The Betti number of dimension p,
βp, is the dimension of the homology group, i.e., the maximum number of classes
that are linear independent from each other. Essentially, β0 and β1 count the
number of connected components and the number of holes, respectively.

Persistent homology and its computation. In persistent homology, we use
a scalar function to filter the whole image domain Ω. Here we use the distance
transform, fy, as the input scalar function. Recall a sublevel set is part of the do-
main whose function value is below a given threshold,Ωtfy = {x ∈ Ω | fy(x) ≤ t}.
The sublevel sets with the monotonically growing thresholds form a nested se-
quence called the filtration:

∅ = Ωt0fy ⊆ Ω
t0
fy
⊆ · · · ⊆ Ωtmfy = Ω, where −∞ = t0 < t1 < · · · < tm = +∞.

Since there is an inclusion map from Ωtify to Ω
ti+1

fy
, there exists a well-behaved

mapping (homomorphism) between their homology groups.

Hp(Ω
t0
fy

)→ Hp(Ω
t1
fy

)→ · · · → Hp(Ω
tm
fy

).

Denote by F i,jp the induced mapping of homology group of the i-th sublevel set

to the homology group of the j-th sublevel set, F i,jp : Hp(Ω
ti
fy

)→ Hp(Ω
tj
fy

). There



TopoGAN: A Topology-Aware Generative Adversarial Network 3

exists a homology class created at ti and killed at tj if and only if

P i,jp :=
imF i,j−1p ∩ kerF j−1,jp

imF i−1,j−1p ∩ kerF j−1,jp

= 1.

This means a point is added to the persistence diagram at (ti, tj).

Computation. To compute the persistence diagram from an input function fy,
we first assign a function value to all elements of the cubical complex. The value
of each vertex (pixel) is its corresponding fy value. The function value of an
edge is the maximum function value of its two adjacent vertices. The function
value of a square is the maximum function value of the four associated vertices.
To compute, we first sort the rows and columns of the boundary matrix Dp

monotonically according to the function values of the vertices/edges/squares.
For the sorted matrix, we run a matrix reduction algorithm from left to right.
The algorithm is similar to a Gaussian elimination algorithm, except that it does
not permit row or column perturbations.

For column i, we denote by low(i) the row index of the lowest nonzero entry.
We check if any previous column, i′ < i, has its lowest entry the same as low(i).
If yes, we add column i′ to column i. As a result, the lowest nonzero entry of
column i is cleared (becomes 0). We recalculate low(i) and continue. we repeat
this procedure until the whole column becomes 0 or low(i) becomes unique, i.e.,
no previous column has the same lowest nonzero row index. The resulting lowest
nonzero entry, (low(i), i), corresponds to a persistent homology class that is
created when σlow(i) is added to the filtration, and is killed when σi is added. We
add a point to the persistence diagram with coordinates being the corresponding
function values, (fy(σlow(i)), fy(σi)).

The computational complexity of the persistence diagram is O(N3), in which
N = N0 +N1 +N2 counts the number of elements in the cubical complex. Note
N is linear to the number of pixels. Therefore the algorithm is cubic to the image
size in the worst case. In practice, it is reasonably efficient. Please find the time
cost of the algorithm in Section B.2.

A.2 Distance Between Diagrams and Comparing Sets of Diagrams

The original definition between two persistence diagrams is the p-Wasserstein
distance between the two point sets within R2:

Wp(dgm1,dgm2) = min
σ∈Σ

 ∑
x∈dgm1

‖x− σ(x)‖p
 1

p

.

Here σ is a one-to-one correspondence between the two diagrams and Σ is the
set of all possible such correspondences. When p =∞, the distance is called
the bottleneck distance. It has been proven that the bottleneck distance and the
more general p-Wasserstein distance are stable, i.e., the difference between two
diagrams is uppderbounded by the difference between the two underlying scalar



4 Fan Wang et al.

functions (distance transforms in our case) [2, 3]. It is important to note that
each diagram is extended to include all points in the diagonal line, ∆ := {(b, d) |
b = d}. A nontrivial point in dgm1 can be matched to either a nontrivial point
in dgm2 or its closest point on the diagonal line.

In our paper, we project all diagrams to their birth time axis and focus on
matching w.r.t. birth time only. We also share a similar setting: we match di-
agram points to nontrivial ones as well as trivial ones. In particular, we match
all points in a synthetic diagram to either points of the corresponding real di-
agram, or to the trivial points (b = 1). Since we are generally less interested
in removing almost-holes, we only take into consideration the ones matched to
the nontrivial points in the real diagram and use their matching distance as
the distance W1(dgms

i ,dgmr
j). Computing optimal matching in 1D is not ex-

pensive. The complexity is quasilinear to the number of nontrivial points in the
diagram. Please note that this is only for the 1-dimensional topology (holes).
For 0-dimensional topology (connected components), we will project everything
to the death time and carry out similar matching computations.

Comparing sets of diagrams. To define a loss, we need to compare different
persistence diagram distributions. In the manuscript, we chose to use optimal
transport to find matching between synthetic and real diagrams, and define the
loss as the total matching distance. We do this with both computation and
optimization efficiency in mind. Below we discuss some other possible options
and explain why they are not adopted.

The space of persistence diagrams, endowed with the p-Wasserstein distance,
is well behaved statistically [9]. One can define and compute the Fréchet mean
and variance of a distribution of persistence diagrams given sufficient sample
diagrams [13]. However, we are not using this method as the computation is
very expensive and it is not likely to be the best choice. It involves starting
with a mean diagram and iteratively evaluate and optimize its distance with
all sample diagrams. Evaluating the distance of the mean diagram with each
sample diagram involves one round of the Hungarian method, which is cubic to
the diagram size, but can be slightly faster as the points are embedded in 2D [7].
Also the result is only a locally optimal choice (the Fréchet mean of persistence
diagrams is not necessarily unique).

An alternative idea is to consider the two diagram distributions in the repro-
ducing kernel Hilbert space and compare them via Maximum Mean Discrepancy
(MMD) [5]. Various persistent diagram kernels [1, 12, 8] can be used. Whatever
kernel is used, MMD will be evaluated on all pairs of diagrams. Its gradient will
try to match each synthetic diagram to all real diagrams. The different matching
directions will cancel each other out, resulting in optimization inefficiency.

Meanwhile, we use MMD to evaluate GAN performance in terms of topology
(Section 3.4 in the manuscript). When choosing an evaluation metric, we are
less concerned about the computational and optimization efficiency. Thus, We



TopoGAN: A Topology-Aware Generative Adversarial Network 5

𝒑

𝒒
ss

r

Fig. 1. p is the pixel that is closest to sx and g(p) < 0.5. Find a neighbor pixel of p,
say q, such that g(q) > 0.5 and p, q and sx are along a straight line. We fit a sigmoid
function crossing (p, g(p)) and (q, g(q)). We need to find the coordinate of r such that
its sigmoid function value is 0.5.

choose the unbiased MMD:

MMDu(Dsyn,Dreal)2 =
1

n(n− 1)

n∑
i,j=1,j 6=i

〈Φ(dgms
i ), Φ(dgms

j)〉H

+
1

n(n− 1)

n∑
i,j=1,i6=j

〈Φ(dgmr
i ), Φ(dgmr

j)〉H −
2

n2

n∑
i,j=1

〈Φ(dgms
i ), Φ(dgmr

j)〉H (1)

Here 〈Φ(dgm∗i ), Φ(dgm∗j )〉 are the kernel distance between the corresponding
synthetic/real diagrams.

A.3 Calculation of the gradient w.r.t. G(zi)

We add additional details about the gradient of the loss w.r.t. the i-th synthetic
image, whose mask is yi. For simplicity we denote g = G(zi). Recall the birth
time of an almost-hole (point x in the diagram) is the distance transform function
value at the saddle point sx, bx = fyi(sx). It suffices to focus on the function value

at sx,
∂fyi (sx)

∂g . Note the synthetic image g is different from the synthetic mask yi,
which is the sublevel set of g thresholded at value 0.5. When we take a gradient
step to decrease the distance transform function value at a saddle point sx, we
are essentially shrinking/growing the mask yi at its closest boundary point, r,
along the normal direction of the boundary of yi (see Fig. 1). To achieve the
goal, we need to change the function values of g near this point. In particular,
we find two pixels p and q whose function values can uniquely determine the
location of r. This gives us the opportunity to rewrite the distance between sx
and r as a function of g(p) and g(q). Then the gradient can be calculated.

Denote by p the pixel within yi that is closest to sx. Let q be the neigh-
bor pixel of p that is closest to sx. Obviously q /∈ yi. Their function values
g(p) < 0.5 < g(q). We approximate r by the intersection of the line (p, q) and
the boundary of yi. Since g is only sampled at pixels, we interpolate it between
p and q using a sigmoid function (red curve in Fig. 1). The location of r (which
sits in between q and p) can be exactly solved as:

r = p+
q − p
‖q − p‖

ln

[
g(q)− g(p)

g(q) · e−‖q−p‖ − g(p)

]
.



6 Fan Wang et al.

We then take the partial derivative of fyi(sx) = ‖sx−r‖ w.r.t. g(q) and g(p). This

gives us the derivative
∂fyi (sx)

∂g . In practice, the calculation will be significantly
simplified if we assume p, q, r and sx are colinear.

0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8

WGAN-GP WGAN-SN TopoGAN

Epoch

ISBI12

0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

WGAN-GP WGAN-SN TopoGAN

Epoch

Maps

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1
WGAN-GP WGAN-SN TopoGAN

Epoch

CREMI
To

p
o

lo
gi

ca
l G

A
N

 lo
ss

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8
WGAN-GP WGAN-SN TopoGAN

Epoch

Facades

To
p

o
lo

gi
ca

l G
A

N
 lo

ss
To

p
o

lo
gi

ca
l G

A
N

 lo
ss

To
p

o
lo

gi
ca

l G
A

N
 lo

ss

98

106

114

122

130

138

146

154

162

170 WGAN-GP WGAN-SN TopoGAN

Epoch

Retina

To
p

o
lo

gi
ca

l G
A

N
 lo

ss

Fig. 2. We report the averaged topological GAN loss during training on different
datasets. Blue curve: WGAN-GP; orange curve: WGAN-SN; purple curve: TopoGAN.

B Additional Experiment Details

We first provide details of how TopoGAN is implemented and trained in Section
B.1. In Section B.2, we explore how TopoGAN behaves when the weight of
topological GAN loss changes and the effects of GAN architecture on TopoGAN.
TopoGAN proves to be architecture agnostic when we replace the backbone
networks with ResNets. At the end of Section B.2, we share details about the
time consumption of topological GAN loss computation. In the manuscript, we
have shown how TopoGAN can help in a downstream segmentation task. In



TopoGAN: A Topology-Aware Generative Adversarial Network 7

20.5

21

21.5

22

22.5

23

Weight of topo loss

FI
D

206.99
.
.
.
.

0.001×𝟐−𝟏 0
0.13

0.14

0.15

Weight of topo loss

u
n

b
ia

se
d

 M
M

D

0
0.01

0.06

0.11

0.16

0.21

0.26

0.31

0.36

0.41

Weight of topo loss

B
e

tt
is

co
re

6.498
.
.
.

00.001×𝟐−𝟏 0.001×𝟐−𝟏

Fig. 3. Evaluation of TopoGANs trained with different loss weights on the CREMI
dataset. From left to right, the loss weights are: 0.001, 0.001/2, 0.001/22, 0.001/23,
0.001/24, and 0. We report mean of FID, unbiased MMD, and Betti score out of a
3-fold cross validation.

Section B.3, we provide detailed descriptions of our segmentation pipeline and
its training strategy. We also discuss the segmentation results. This section is
concluded with more qualitative results from CREMI, ISBI12, and Maps for
reference.

B.1 TopoGAN implementation and training

TopoGAN is built on top of WGAN-GP. We follow the standard training pro-
cedure of WGAN-GP. We use α = 0.0002, β1 = 0, and β2 = 0.99 as the Adam
hyperparameters and 10 as gradient penalty coefficient. Deep convolutional gen-
erative adversarial networks [11] (DCGANs) are adopted as the backbone net-
work architectures for TopoGAN. For each dataset, all networks are trained from
scratch with a batch size of 32 to an equal number of epochs. We use a CPU
implementation of linear programming (Python Optimal Transport LP solver)
to solve for optimal transport. The complexity of optimal transport is O(n2.5)
where n is the number of images.

During TopoGAN training, the topological GAN loss is not applied to the
generator until training of WGAN-GP stabilizes. This is to improve efficiency
and ensure that the topology loss is applied to almost-complete images. We
discard topological structures with lifespan under 1.0 with a filter on persistence
diagrams. At an iteration of generator training, a batch of synthetic images are
matched to the randomly selected half of the whole training set with optimal
transport for topology loss computation with Eq. (4) in the manuscript. We
match half of the training set for efficiency purposes. We use 0.0005 as the the
weight of the topological GAN loss throughout the entire experiment.

B.2 Ablation study of the topological GAN loss

Fig. 2 depicts how the topological GAN loss changes during training. We report
the loss averaged over all batches for each epoch. With explicit distance min-
imization in topological space, TopoGAN consistently shows smaller topology
loss than baseline GANs.



8 Fan Wang et al.

Table 1. Evaluation of TopoGANs trained with different weights of topological GAN
loss on the CREMI dataset. Mean and standard deviation of a 3-fold cross validation
is reported for FID, unbiased MMD, and Betti score.

FID unbiased MMD Betti score

0.001 206.990±0.787 0.146±0.005 6.498±0.173
0.001/2 20.967±0.195 0.134±0.019 0.015±0.001
0.001/22 21.385±0.115 0.138±0.002 0.068±0.004
0.001/23 21.008±0.666 0.140±0.017 0.128±0.007
0.001/24 21.403±0.500 0.136±0.002 0.160±0.005

0 21.646±0.138 0.142±0.014 0.236±0.003

Table 2. Comparisons of TopoGAN against baseline GANs w.r.t. FID, unbiased MMD,
and Betti score on the CREMI dataset. We use ResNets as backbone architectures for
all GANs.

FID unbiased MMD Betti score

WGAN-GP 17.085±0.113 0.091±0.006 0.141±0.007
WGAN-SN 88.496±0.259 0.498±0.021 0.740±0.007
TopoGAN 14.560±0.045 0.049±0.009 0.062±0.003

The weight of topological GAN loss. We use different weights of topological
GAN loss to study how it affects GAN training. We test weights of 0.001, 0.001/2,
0.001/22, 0.001/23, 0.001/24 and 0 in our experiment. TopoGANs trained with
different loss weights on CREMI dataset are finally evaluated with three metrics:
FID, unbiased MMD, and Betti score. For all metrics, lower number indicates
better performance. The results are summarized in Table 1 and visualized in
Fig. 3. Note that when the weight is 0 the model degrades to WGAN-GP.

We empirically set the weight of topological GAN loss as 0.001/2 and reported
experiment results in the manuscript. When the weight is too large (0.001),
the generator is heavily biased and the discriminator fails to pull the generator
back afterwards. Therefore we have large numbers for all metrics (FID, unbiased
MMD, and Betti score). As the weight gradually decreases from 0.001, all three
metrics first decrease to the minimum at 0.001/2 (the chosen loss weight in the
manuscript) and then increase as expected and achieve their maximum when
the loss weight reaches 0.

TopoGAN architecture. To explore the effects of GAN architectures on To-
poGAN, we replace DCGANs used as backbone architectures in the manuscript
with ResNets for all GANs and report performance of TopoGAN, WGAN-GP,
WGAN-SN on CREMI in Table. 2. All GANs are trained for equal number
of epochs. TopoGAN still outperforms WGAN-GP and WGAN-SN on all three
metrics with ResNets as architecture which suggests architecture agnostic nature
of TopoGAN.



TopoGAN: A Topology-Aware Generative Adversarial Network 9

Topological GAN loss computation cost. The time performance in this
section is reported from a computer with Intel Core i7-9700K and 8GB RAM.
The loss computation is performed on a CPU. The persistence diagrams of the
training data can be pre-computed and pre-loaded during training. Therefore,
we do not account for this time when calculating the topological GAN loss. Com-
puting persistence diagrams (either dimension 0 or dimension 1) for a 64 × 64
grayscale image takes roughly 0.022 seconds. For a 128× 128 grayscale image, it
takes about 0.055 seconds. Note the time taken to compute persistence diagrams
depends heavily on the images. Images containing a significantly larger number
of topological structures may take longer. Calculating 1-dimension W1 distance
for a pair of persistence diagrams consumes approximately 0.00012 seconds. Loss
computation for a pair of diagrams including W1 distance, optimal transport,
and other routines takes about 0.0002 seconds for 0-dimension topological struc-
tures and 0.00035 seconds for 1-dimension structures. As an example, computing
topological GAN loss for a batch of 32 CREMI images with a database containing
600 images, takes roughly 7.424 seconds (0.022×32+32×600×0.00035 = 7.424).

B.3 Application to a downstream task – segmentation

We provide additional experiment details of the downstream segmentation task
(results reported in Section 4 of the manuscript). Fig. 4 illustrates our segmen-
tation pipeline. A texture network (pix2pix) is first trained with real training
data. This network is then applied to paint texture on masks generated by To-
poGAN and other baseline GANs. A mask and its corresponding texture image
are referred to as a synthetic data pair. We compare the segmentation perfor-
mances of UNets trained with synthetic data pairs from TopoGAN, WGAN-GP,
WGAN-SN and with real training data. We also train segmentation networks
with real training data augmented with synthetic data from each GAN method.
The segmentation networks are evaluated on real test data w.r.t. three metrics:
(1) pixel accuracy, (2) Dice score, and (3) Adapted Rand Index (ARI). We report
mean and standard deviation of the above metrics from a 3-fold cross validation
in Table 3. A total of 21 segmentation networks are trained for each dataset (3
trained with real data, 9 trained with synthetic data, and 9 trained with real
plus synthetic data for each GAN method).

From Table 3, segmentation networks trained with real data augmented with
synthetic data from TopoGAN achieve best results across all three datasets and
metrics. However, TopoGAN outperforms the baseline GANs by only a small
margin. In terms of qualitative results, continuous boundaries generated by To-
poGAN are destroyed in the textured masks output from pix2pix (see Figs. 6,
7, and 8). The texturing process weakens the advantage TopoGAN possesses
to generate continuous edges and complete loops which potentially explains the
marginal improvement.

Segmentation network training. As Maps and Facade do not have ground
truth segmentation data, we apply our segmentation pipeline to CREMI, ISBI12,



10 Fan Wang et al.

and Retina. A pix2pix is trained for each dataset with paired data (texture im-
ages + segmentation masks) and we use ResNet [6] with 9 blocks as architecture
for pix2pix. The default training parameters are kept intact with batch size of
8. Each UNet is trained for 40 epochs with batch size as 32 and learning rate as
0.005 without image resizing on synthetic or real data. For data augmentation
(GP+real data, SN+real data, Topo+real data in Table 3), UNets are first pre-
trained for 40 epochs with the synthetic data. The pretrained UNets are then
fine-tuned on real training data for another 20 epochs. All networks are finally
evaluated on the real test data.

GAN
generate

Fake 
mask

Pix2pix
(B to A)

train

predict

UNet 1
(A to B)

Real training data

A B

Segmentation results

UNet 2
(A to B)

train

Real testing data

train

Segmentation results

Textured 
mask

predictpredict

Fig. 4. Pipeline of our segmentation pipeline. We train a texture network (pix2pix)
and a segmentation network (UNet) with paired real training data. The trained pix2pix
takes as inputs the generated masks and outputs textured masks. Masks and textured
masks are then used to train UNets. All segmentation networks are evaluated on real
test data w.r.t three metrics: Pixel accuracy, Dice score, and Adapted Rand Index
(ARI).



TopoGAN: A Topology-Aware Generative Adversarial Network 11

Fig. 5. Real masks and textures of CREMI for reference. Textures correspond to the
last two rows of masks. In the real textures, boundaries are clear and loops are complete.



12 Fan Wang et al.

Fig. 6. Fake masks and textures of CREMI from TopoGAN. Textures correspond to the
last two rows of masks. Note in the textured masks by pix2pix, continuous boundaries
in original masks are destroyed and disconnected. The same set of noise is used to
generate results for TopoGAN, WGAN-GP, and WGAN-SN.



TopoGAN: A Topology-Aware Generative Adversarial Network 13

Fig. 7. Fake masks and textures of CREMI from WGAN-GP. Textures correspond
to the last two rows of masks. The same set of noise is used to generate results for
TopoGAN, WGAN-GP, and WGAN-SN.



14 Fan Wang et al.

Fig. 8. Fake masks and textures of CREMI from WGAN-SN. Textures correspond
to the last two rows of masks. The same set of noise is used to generate results for
TopoGAN, WGAN-GP, and WGAN-SN.



TopoGAN: A Topology-Aware Generative Adversarial Network 15

Fig. 9. Real masks and textures of ISBI12 for reference. Textures correspond to the last
two rows of masks. In the real textures, boundaries are clear and loops are complete.



16 Fan Wang et al.

Fig. 10. Fake masks and textures of ISBI12 from TopoGAN. Textures correspond
to the last two rows of masks. The same set of noise is used to generate results for
TopoGAN, WGAN-GP, and WGAN-SN.



TopoGAN: A Topology-Aware Generative Adversarial Network 17

Fig. 11. Fake masks and textures of ISBI12 from WGAN-GP. Textures correspond
to the last two rows of masks. The same set of noise is used to generate results for
TopoGAN, WGAN-GP, and WGAN-SN.



18 Fan Wang et al.

Fig. 12. Fake masks and textures of ISBI12 from WGAN-SN. Textures correspond
to the last two rows of masks. The same set of noise is used to generate results for
TopoGAN, WGAN-GP, and WGAN-SN.



TopoGAN: A Topology-Aware Generative Adversarial Network 19

Fig. 13. Real masks and textures of Maps for reference. Textures correspond to the
last two rows of masks.



20 Fan Wang et al.

Fig. 14. Fake masks and textures of Maps from TopoGAN. Textures correspond to the
last two rows of masks. The same set of noise is used to generate results for TopoGAN,
WGAN-GP, and WGAN-SN.



TopoGAN: A Topology-Aware Generative Adversarial Network 21

Fig. 15. Fake masks and textures of Maps from WGAN-GP. Textures correspond to the
last two rows of masks. The same set of noise is used to generate results for TopoGAN,
WGAN-GP, and WGAN-SN.



22 Fan Wang et al.

Fig. 16. Fake masks and textures of Maps from WGAN-SN. Textures correspond to the
last two rows of masks. The same set of noise is used to generate results for TopoGAN,
WGAN-GP, and WGAN-SN.



TopoGAN: A Topology-Aware Generative Adversarial Network 23

Table 3. Pixel accuracy, dice score, and adapted rand index (ARI) of segmentation
networks on real test data. For each dataset, we train a total of 21 segmentation
networks with real training data, synthetic pairs from TopoGAN and two baselines,
and synthetic pairs augmented with real data. We report mean and standard deviation
from a 3-fold cross validation.

Accuracy Dice score ARI

C
R
E
M

I

Real data 0.857±0.007 0.896 ±0.004 0.514±0.019
WGAN-GP 0.757±0.020 0.820±0.018 0.269±0.038
WGAN-SN 0.766±0.022 0.827±0.019 0.286±0.044
TopoGAN 0.791±0.010 0.851±0.011 0.330±0.017

GP+real data 0.856±0.010 0.897±0.008 0.512±0.029
SN+real data 0.859±0.009 0.900±0.004 0.517±0.029

Topo+real data 0.864±0.008 0.902±0.006 0.532±0.024

IS
B
I1

2

Real data 0.900±0.015 0.932±0.011 0.625 ±0.039
WGAN-GP 0.893±0.005 0.927±0.005 0.597±0.011
WGAN-SN 0.848±0.010 0.902±0.008 0.435±0.027
TopoGAN 0.903±0.006 0.933±0.006 0.633±0.014

GP+real data 0.918±0.007 0.943±0.007 0.688±0.018
SN+real data 0.913±0.008 0.905±0.054 0.673±0.019

Topo+real data 0.921±0.009 0.944±0.008 0.695±0.024

R
et

in
a

Real data 0.810±0.013 0.883±0.010 0.272±0.012
WGAN-GP 0.827±0.017 0.891±0.012 0.346±0.055
TopoGAN 0.830±0.017 0.892±0.013 0.357±0.049

GP+real data 0.842±0.017 0.899±0.010 0.409±0.065
Topo+real data 0.852±0.022 0.906±0.014 0.427±0.084



24 Fan Wang et al.

References

1. Carriere, M., Cuturi, M., Oudot, S.: Sliced wasserstein kernel for persistence dia-
grams. In: Proceedings of the 34th International Conference on Machine Learning-
Volume 70. pp. 664–673. JMLR. org (2017)

2. Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Stability of persistence diagrams.
Discrete & Computational Geometry 37(1), 103–120 (2007)

3. Cohen-Steiner, D., Edelsbrunner, H., Harer, J., Mileyko, Y.: Lipschitz functions
have l p-stable persistence. Foundations of computational mathematics 10(2), 127–
139 (2010)

4. Edelsbrunner, H., Harer, J.: Computational topology: an introduction. American
Mathematical Soc. (2010)

5. Gretton, A., Borgwardt, K., Rasch, M., Schölkopf, B., Smola, A.: A kernel two-
sample test. Journal of Machine Learning Research 13, 723–773 (Mar 2012)

6. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 770–778 (2016)

7. Kerber, M., Morozov, D., Nigmetov, A.: Geometry helps to compare persistence
diagrams. Journal of Experimental Algorithmics (JEA) 22, 1–4 (2017)

8. Kusano, G., Hiraoka, Y., Fukumizu, K.: Persistence weighted gaussian kernel for
topological data analysis. In: International Conference on Machine Learning. pp.
2004–2013 (2016)

9. Mileyko, Y., Mukherjee, S., Harer, J.: Probability measures on the space of persis-
tence diagrams. Inverse Problems 27(12), 124007 (2011)

10. Munkres, J.R.: Elements of algebraic topology, addinson (1984)
11. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learn-

ing with deep convolutional generative adversarial networks (2015),
http://arxiv.org/abs/1511.06434, cite arxiv:1511.06434Comment: Under re-
view as a conference paper at ICLR 2016

12. Reininghaus, J., Huber, S., Bauer, U., Kwitt, R.: A stable multi-scale kernel for
topological machine learning. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. pp. 4741–4748 (2015)

13. Turner, K., Mileyko, Y., Mukherjee, S., Harer, J.: Fréchet means for distributions
of persistence diagrams. Discrete & Computational Geometry 52(1), 44–70 (2014)


