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Quantitative assessment of Tumor-TIL spatial relationships is increasingly important in both basic science and clinical aspects of 

breast cancer research. We have developed and evaluated convolutional neural network (CNN) analysis pipelines to generate 

combined maps of cancer regions and tumor infiltrating lymphocytes (TILs) in routine diagnostic breast cancer whole slide tissue 

images (WSIs). The combined maps provide 1) insight about the structural patterns and spatial distribution of lymphocytic infiltrates 

and 2) facilitate improved quantification of TILs. We evaluated both tumor and TIL analyses using three CNN networks - Resnet-34, 

VGG16 and Inception v4, and demonstrated that the results compared favorably to those obtained by the best published methods. We 

have produced open-source tools and a public dataset consisting of tumor/TIL maps for 1,015 TCGA invasive breast cancer images. 

The maps can be downloaded for further downstream analyses.  

 

 
 

Among women worldwide, invasive breast cancer is the 

most common cancer and the second most common cause 

of cancer-related deaths [1], despite decreasing mortality 

rates in recent years due to early diagnosis and current 

therapeutic options that significantly prolong survival. 

Invasive breast cancers are a heterogeneous category of 

disease phenotypes [2], [3] that are histologically classified 

into subtypes based on growth patterns; the expression of 

estrogen (ER), progesterone (PR), human epidermal 

growth factor receptor 2 (HER2); and the Ki-67 

proliferation index. 

 

The role of tumor infiltrating lymphocytes (TILs) in 

invasive breast cancer has become increasingly important 

as a biomarker that can predict clinical outcomes, as well 

as treatment response in the neoadjuvant and adjuvant 

setting [4], [5], [6], [7],[8], [9], [10], [11]. TILs are a readily 

available biomarker and their evaluation is likely to expand 

with the emergence of immunotherapy. Elevated 

concentrations of TILs in HER2-positive [12] and triple-

negative (ER-/PR-/HER2-) [13] breast cancers are 

associated with prolonged overall and disease-free 

survival; whereas elevated concentrations of TILs in 

luminal HER2-negative breast cancer have been associated 

with poor overall survival [4]. TILs can also serve as a 

predictive biomarker since a significant part of the 

cytotoxic effects of systemic chemotherapy and radiation 

therapy are actually mediated by activating the immune 

system to kill cancer cells instead of directly targeting the 

tumor cells [14]. Targeted therapies against HER2 and 

vascular endothelial growth factor (VEGF) are mediated by 

both antibody-dependent and complement-mediated 

cytotoxicity in cancer cells through lymphocytes and other 

immune cells in the tumor microenvironment [15]. Recent 

studies suggest potential for synergistic effects between 

targeted and immune therapies in multiple disease sites 

[16], [17]. 
 

 Current practice routinely includes manual assessments of 

hematoxylin and eosin (H&E) stained tissue sections by 

surgical pathologists to identify and classify invasive 

breast cancer. Such diagnostic evaluation provides insight 

about clinical management, treatment selection, survival, 

and recurrence. Since H&E tissue sections are readily 

available, there is a sustainable opportunity to provide 

potentially actionable data about TILs without the need for 

additional tissue samples -- e.g., immunohistochemical 

(IHC) testing. H&E tissue also permits the interpretation of 

the lymphocyte infiltrate within and proximal to the tumor 

in the context of histology to provide insight about the 

spatial relationships between tumor regions and TILs. The 

published guidelines for the histologic assessment of TILs 

in invasive breast cancer [18], [19], [20] require 

pathologists to select the region of tumor and to delineate 
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stromal areas in order to assess the percentage of TILs 

(%TILs) in stromal regions as a continuous variable from 

0-100% within the boundaries of the entire tumor that is 

used to classify the lymphocyte infiltrate as low, 

intermediate, and high, respectively. However, this 

evaluation is intrinsically qualitative and often subject to 

inter-observer variability, so previous work has articulated 

these concerns [21] in an attempt to clearly state the need 

for automated methods to evaluate %TILs in H&E tissue 

sections of breast cancer. Computationally calculating 

%TILs intrinsically provides spatial information about how 

TILs are distributed in whole slide images (WSIs), where 

it is likely that the distinction between intratumoral and 

stromal TIL infiltrates is important. While there have been 

some relatively small studies examining intratumoral and 

stromal TILs [22], the predictive power of the spatial 

distribution of TILs within tumor and tumor-associated 

stroma needs to be better elucidated. Automated evaluation 

of TILs in H&E WSIs fundamentally requires tumor 

segmentation linked with the detection of lymphocyte 

infiltrates. Automation of H&E tumor-TIL analyses will 

make it possible to carry out large-scale correlative studies 

that quantitatively characterize TIL distributions in well-

characterized clinical populations. Computer analysis of 

high-resolution images of whole slide tissue specimens can 

enable a data driven and quantitative characterization of 

TIL patterns.  

 

With the recent success of deep learning [23] and the 

availability of public datasets [24], [25], [26], [27], several 

research groups have proposed deep learning based 

algorithms to detect or segment cancer/tumor regions in 

breast cancer WSIs [28], [29], [30], [31]. Previous methods 

developed classification models from customized 

convolutional neural networks [28], [29] or from limited 

training data [30], [31]. 

 

In our work, we use standard state-of-the-art deep learning 

models along with a large-scale dataset to detect invasive 

breast cancer regions in WSIs. Our approach automates 

breast cancer detection at intermediate- to high-resolution 

in order to generate detailed probability-based heatmaps of 

the tumor bed. It achieves an F1-score of 0.82, a positive 

predictive value (PPV) of 79%, and negative predictive 

value (NPV) of 98% in terms of pixel-by-pixel evaluation 

in an unseen and independent test dataset consisting of 195 

WSIs from the Cancer Genome Atlas (TCGA) repository. 

These performance numbers are better than those achieved 

by the models in the previous works. 

  

Moreover, our study combines tumor detection with 

lymphocyte detection to identify tumor-TIL patterns in a 

large number of publicly accessible WSIs. We trained TIL 

prediction models using training datasets from a previously 

published deep learning approach [32] to generate high 

resolution TIL maps. We then combined the cancer 

detection results with the TIL results. The combined results 

represent regions of tumor with intra- and peri-tumoral 

TILs in publicly available 1,015 WSIs from the TCGA 

repository. We expect that the availability of high-

resolution spatial Tumor-TIL maps will allow quantitative 

estimation and characterization of the relationship between 

tumor cells and TILs. The ability to quantify and visualize 

the spatial relationships between tumor and TILs can be a 

very practical and useful way to further elucidate intriguing 

observations in previous studies. It will also further our 

collective understanding of the biological behavior of 

invasive breast cancers within the context of cancer-

immune interactions in the tumor microenvironment. 

 

MATERIALS AND METHODS 

Ethics Statement 

 

We used high-resolution WSIs from the Surveillance, 

Epidemiology, and End Results (SEER: 

https://seer.cancer.gov/) cancer registry system and from 

TCGA (https://portal.gdc.cancer.gov/) to train and 

evaluate the deep learning models and generate cancer 

region maps. The WSIs from TCGA are de-identified and 

publicly available for research use. The WSIs from SEER 

came from a pilot program examining the feasibility of and 

best practices for a Virtual Tissue Repository (VTR Pilot). 

As all data in the VTR Pilot, including the whole slide 

images, had been deidentified prior to receipt, the NIH 

Office of Human Subjects Research Protection determined 

that the study was excluded from NIH IRB review. Each of 

the SEER registries supplying the deidentified WSIs has 

obtained IRB approval from their respective institution(s). 

The Stony Brook IRB has classified the dataset as being a 

non-human subjects research dataset. 
 
Datasets 
 

The training, validation, and test datasets for the breast 

cancer detection models consisted of image patches 

extracted from 102, 7, and 89 SEER WSIs, respectively. 

All of the images were scanned at 40x magnification and 

manually segmented by an expert pathologist into cancer 

and non-cancer regions using a web-based application [33]. 

Additionally, we evaluated the deep learning models with 

195 TCGA WSIs (referred to here as Ttcga), which had been 

manually annotated in work done by Cruz-Roa et al. [29]. 

The details of the training, validation and test datasets for 

tumor region segmentation are presented in Table 1. The 

trained models were applied to 1,015 diagnostic WSIs from 

TCGA invasive breast cancer cases.  

 

The same set of 1,015 WSIs was also analyzed using the 

TIL classification models trained with data generated by 

Saltz et al. [32]. These data consisted of 86,154 and 653 

image patches for training and validation, respectively. We 

created a test dataset of 327 patches extracted from TCGA 

invasive breast cancer WSIs to evaluate the trained TIL 
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models. The details of the training, validation, and test 

datasets for TIL classification are presented in Table 2. 

 

 
Srouce Purpose Patches (N) TIL-positive TIL-negative 

TCGA Training 86,154 21,773 64,381 

Validation 653 295 357 

Testing 327 174 153 

TABLE 2 
Data statistics of the Lymphocytes dataset provided in Saltz et al. [32] 

 
Patch Extraction for Breast Cancer Detection Models 

 

We extracted image patches at the highest image resolution 

within and outside the manually segmented cancer regions 

using an open source library called OpenSlide [34]. 

Patches with a size of 350 x 350 pixels at 40x magnification 

(equivalent to 88µm x 88µm) resulted in the best 

classification performance and were used to create the 

training datasets. Each patch was labeled cancer-positive 

(i.e., it intersected or was in a cancer/tumor region) or 

cancer-negative (i.e., it was outside cancer/tumor regions). 

Figure 1 shows an example of the pathologist’s 

annotations. The region inside the red line represents the 

cancer region. The figure also shows the sample patches 

extracted from the cancer and non-cancer regions.  

 

Previous work has shown that it is beneficial to have more 

negative samples than positive samples in a training dataset 

for image classification in digital pathology [29], [35], 

[36], [37]. A good ratio of negative to positive patches will 

increase the generalization of a convolutional neural 

network (CNN) model and decrease false positive rate. We 

experimented with a range of ratios of cancer-negative 

patches to cancer-positive patches with the same validation 

dataset. The final training, validation, and test datasets are 

presented in Table 1. 

 
Convolutional Neural Networks 

 

We investigated and adapted multiple state-of-the-art deep 

learning architectures, namely the VGG 16-layer [38], the 

Resnet 34-layer [39], and the Inception-v4 network [40]. 

These are state-of-the-art CNNs which are widely used in 

a wide range of application domains. VGG16 and Resnet34 

are designed to process 224x224-pixel patches. Inception-

v4 accepts 299x299-pixel image patches. Our tumor 

dataset consists of 350x350-pixel patches at 40x 

magnification and the Lymphocyte training datasets 

contain 100x100-pixel patches at 20x magnification. Input 

patches in these datasets were resized to the desired input 

size for each network. In addition, for Resnet34 and 

Source Purpose ID WSIs (N) Patches (N) Cancer-positive (N) Cancer-negative (N) 

 Training Dtr 102 333,604 99,889 233,715 

SEER Validation Dval 7 10,224 4,953 5,271 

 Testing Tseer 89 - - - 

TCGA Testing Ttcga 195 - - - 

TABLE 1 
Data statistics of the training, validation and testing datasets for the breast cancer detection models. 

 

 

Fig. 1. Annotation example from pathologist (Figures A and B) and image patches extracted from WSIs. Red lines in figures A and B 
were manually drawn by expert pathologist to enclose the cancer regions. Regions outside the annotated regions are non-cancer 
regions. Patches surrounded in red boxes are positive samples which contain invasive cancer cells. Patches surrounded in green 
boxes are negative samples which do not contain invasive cancer cells. 
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Inception-v4, we changed the dimension of the output layer 

from 1,000 classes to two classes, because each patch in 

our case is labeled positive or negative.  

 

For VGG16, we reduced the size of the intermediate 

features of the classification layer from 4,096 to 1,024 and 

only kept the first four layers in the classification layer. 

This modification reduced the number of trainable 

parameters of this network from 138 million to 41 million. 

Our modifications to the classification layers of the CNN 

architectures are presented in Table 3. We implemented the 

CNN networks using pyTorch 0.4 [44]. 

 

Earlier work [41], [42] showed that refining a CNN pre-

trained on the ImageNet dataset [43] is a good approach to 

boosting image classification performance in digital 

pathology. We refined the pre-trained CNN models with 

our training data. We used the same training procedure for 

all of the networks. At the beginning of the training, the 

weights of the networks were initially fixed except for the 

classification layer. The networks were trained in this state 

for N epochs (N is three for the Cancer models and N is 

five for the Lymphocyte models) with a batch size of B (B 

is 256 for the Cancer models and B is 128 for the 

Lymphocyte models), an initial learning rate of 0.01, a 

momentum of 0.9 and a weight decay of 0.0001. After N 

epochs, the training process turned on updates to the 

initially fixed weights. The network was then trained for 

total of 20 epochs, updating all the weights. The training 

process used a stochastic gradient descent method [45] in 

order to minimize a cross entropy loss function. 

  

The color profiles of WSIs may vary from image to image 

because of variations in staining and image acquisition 

[46], [47],[48]. We normalized the R, G, and B channels of 

each patch to a mean of 0.0 and standard deviation of 1.0. 

Additionally, we employed data augmentation to further 

reduce the effects of color/intensity variability and data 

acquisition artifacts. The data augmentation operations 

included random rotation between 0 and 22.5 degrees, 

random vertical and horizontal flipping, perturbations in 

patch brightness, contrast, and saturation. In the prediction 

(test) phase, no data augmentation was applied except for 

the normalization of the color channels. Each patch was 

assigned a value between 0.0 and 1.0 by the trained model, 

indicating the probability of the patch being positive.  
 
 
 

Experiments 

 

In our experimental evaluation, we used accuracy, F1-

score, and area under the ROC (Receiver Operating 

Characteristic) curve (AUC) as performance metrics. 

Accuracy is the ratio of correctly classified patches to the 

total number of patches in the ground truth test dataset. 

Because a dataset is not always balanced between classes, 

we used the F1-score that considers both precision and 

recall to compute a score. Mathematically, F1-score is 

equal to 2*(precision*recall)/(precision + recall). Lastly, 

we used AUC to evaluate the prediction performance of the 

models at different threshold settings. AUC shows the 

relationship between the True Positive Rate (TPR) and 

False Positive Rate (FPR) of a model. It is a widely used 

metric to assess model performance for binary 

classification tasks. 

 

Tables 4 and 5 show the cancer region segmentation and 

TIL classification performances of the different CNNs, 

respectively (please see the Results section for details). The 

best models were applied to the 1,015 WSIs from TCGA 

invasive breast cancer cases to generate what we call 

prediction probability maps for cancer regions and TILs. A 

prediction probability map is constructed by uniformly 

partitioning a WSI into image patches in each image 

dimension. The image patches are analyzed by a trained 

model and assigned a label probability between 0.0 and 1.0. 

For cancer region segmentation, the label of a patch was 

either cancer-positive (i.e., the patch predicted to be within 

or intersect a cancer region) or cancer-negative (i.e., the 

patch is predicted to be outside the cancer regions in the 

WSI). For TIL classification, the label of a patch was either 

TIL-positive (i.e., the patch was predicted to contain 

lymphocytes) or TIL- negative. We implemented a Web-

based application to visualize and interact with the 

prediction probability maps as heatmaps (please see Figure 

2 and the Methods section). 
 
Post-processing Step for Cancer Heatmaps 

 

Most patch-based classification algorithms [49], [50] 

predict the label of a patch independent of other patches in 

an image. They do not take into account the characteristics 

and labels of neighbor patches. Invasive cancer regions in 

breast cancer tend to be close to each other. In other words, 

the probability of a patch to be cancer-positive is correlated 

with its surrounding patches. To incorporate this 

information in our analysis pipeline, we employed a 

VGG16 Resnet34 Inception-v4 

Original Modified Original Modified Original Modified 
Linear(25088, 4096) 
ReLU → Dropout 
Linear(4096, 4096) 
ReLU → Dropout 
Linear(4096, 1000) 

Linear(25088, 4096) 
ReLU → Dropout 
Linear(1024,2) 
 

Linear(512,1000) Linear(512,2) Linear(1536,1000) Linear(1536,2) 

TABLE 3 

Modifications to the classification layers of the CNNs 
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simple, yet effective, aggregation approach as a post-

processing step. This approach takes per-patch 

classification probability values, converts them into a 

probability map, called H, and produces an aggregated 

probability map, called A. The classification probability 

value of a patch in A is computed by an aggregation 

operation over neighbor patches within a specific distance 

of the patch in H. The relationship between A and H can be 

formulated as follows: 

 
Here, H(m,n) is the probability values of a patch at location 

(m,n) in H. A(i, j) is the probability value of the aggregated 

patch at location (i,j) in A. f is the aggregation function over 

a set of patches in a window of  

 
and w is the window size. In our aggregation approach, all 

patches within the window will have the same prediction 

score after the aggregation operation. x is the Floor 

operation which takes x as an input and returns the largest 

integer that is less than or equal to x. We explored different 

aggregation function such as Average, Median, and Max. 

The experiments were carried out using Tseer. The best 

aggregation method from these experiments was used to 

generate aggregated probability maps for Ttcga. 

Empirically, we found that the Max function and a window 

of 4x4 resulted in the best performance with Tseer. We 

applied these settings to post-process predictions in Ttcga. 

 
Combined Tumor-TIL Maps 

 

We merged each pair of cancer and lymphocyte heatmaps 

into a single heatmap as an RGB image. The R channel 

stores the lymphocyte probabilities quantized to 0-255; the 

G channel stores the cancer probabilities quantized to 0-

255; and the B channel stores 0 or 255 to indicate if a patch 

is glass background or tissue, respectively.  
 
Software Support for Analysis Workflow 

 

We have employed software called QuIP [51] and 

caMicroscope [33] to support the data management and 

visualization requirements in our study. A typical whole 

slide tissue image can be several Gigabytes (GBs) in size. 

Even a modest cohort of a hundred subjects can result in 

one Terabyte (TB) of image data. It is a non-trivial task to 

efficiently store, manage and index a dataset of this size 

and to provide interactive capabilities for visualization of 

images and analysis results for evaluation, validation, and 

additional downstream analyses. Examination of the 

analysis results, i.e., the probability maps, requires their 

interactive interrogation through visual analytic tools that 

link the probability maps with the underlying images. Our 

software converts probability maps into heatmaps for 

visualization purposes. We have developed a web-based 

application, called FeatureMap, and a database, called 

PathDB, in QuIP. PathDB manages and indexes metadata 

about whole slide tissue images and metadata about 

heatmaps. It links the heatmaps with the images for query 

and retrieval. FeatureMap implements a browser-based 

multivariate visualization library that is sufficiently 

lightweight to run on a mobile device. It interacts with 

PathDB to query and retrieve heatmaps, display them as 

low-resolution images so that a user can rapidly go through 

multiple images and probability maps. The low-resolution 

image representations of the probability maps are linked to 

full-resolution images and high-resolution heatmaps. The 

user can switch to the high-resolution view for more 

detailed and interactive examination of a probability map 

and the source image. 

 
RESULTS 

Evaluation of Cancer Detection Models 

 

We trained three cancer detection and segmentation 

models, C-VGG16, C-Resnet34 and C-Incepv4, by using 

VGG16, Resnet34 and Inception-v4, respectively. We 

compared the performances of the models to each other as 

well as to another network, called ConvNet, which was 

developed by Cruz-Roa et al. [28], [29]. ConvNet was 

trained on a different training dataset, called HUP and 

UHCMC/CWRU [28], in the previous work. In order to use 

our training datasets, we implemented ConvNet using 

Pytorch [44] by precisely following the network 

description in the original paper [28]. We call our 

implementation ConvNet-ours. 

 

We computed an average F1-score across all the test 

images by varying the threshold value from 0.0 to 1.0 in 

steps of 0.01. At each threshold value, prediction 

probability maps were computed for the 195 test images by 

the model under evaluation. The patch labels were assigned 

by applying the threshold value to the corresponding 

probability maps. The label maps and the ground-truth 

masks [29] were then used to compute average F1- score, 

positive predictive value (PPV), negative predictive value 

(NPV), true positive rate (TPR), true negative rate (TNR), 

false positive rate (FPR), and false negative rate (FNR). 

Table 3 shows the performance comparison between our 

models, the original ConvNet model [28], [29], and our 

implementation of the ConvNet model (ConvNet-ours). 

We report the performance of ConvNet- ours both with and 

without applying our post-processing step (see the 

Methods section), because the original ConvNet model did 

not include a post-processing step. Table 4 shows that the 

post-processing step improves the average F1-score from 

0.75 to 0.77 and PPV from 0.69 to 0.73. Moreover, 

ConvNet-ours slightly outperforms the original ConvNet 

model in all metrics.  
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Figure 3 shows probability maps from the C-Resnet34 

model for a set of representative WSIs in Ttcga. The shades 

of Red in the map images indicate the probability of a patch 

being cancer-positive as predicted by the model. Visual 

inspection of the maps and the respective WSIs showed 

that the model was able to detect and segment cancer 

regions well. 

 

Evaluation of Lymphocyte Classification Models 

 

We trained three lymphocyte detection models: L-VGG16, 

L- Resnet34, and L-Incepv4, using VGG16, Resnet34, and 

Inception- v4, respectively. We created a training dataset, 

containing 2,912 image patches from invasive breast 

cancer WSIs only, from the original TIL training dataset in 

work done by Saltz et al. [32]. The 86,154 patches in the 

original training dataset had been selected from multiple 

cancer types. Our experiments showed that the smaller 

training dataset resulted in more accurate classification 

models than the full original dataset. 

 

We tested the trained models with a set of image patches 

extracted from TCGA invasive breast cancer WSIs. Table 

5 shows the performance comparison between our models 

with the model developed in the previous work [32]. Our 

new models consistently outperformed the previous model 

in all of the performance metrics. 

 

Our experimental evaluation showed that the cancer region 

segmentation and lymphocyte classification models 

achieved very good performance with respect to the F1-

score, accuracy, and AUC metrics and performed better 

than the previous models. We applied the best of these 

models to 1,015 TCGA invasive breast cancer WSIs and 

 

Fig. 2. User interface of our web-based application to study the spatial relationship between cancer regions and lymphocyte regions. Figure 
on the left shows the TILs heatmap where invasive breast cancer detection denoted in yellow with superimposed lymphocyte detection 
denoted in red. Figure on the right is the caMicroscope [33] that displays the regions of the WSI. Users can click on the TILs map to zoom 
in the corresponding regions on the caMicroscope. 

 
Method F1-score PPV NPV TPR TNR FPR FNR 

ConvNet [29] 0.76 +− 0.20 0.72 +− 0.22 0.97 +− 0.05 0.87 +− 0.16 0.92 +− 0.08 0.08 +− 0.08 0.13 +− 0.16 

ConvNet-ours 0.75 +− 0.18 0.69 +− 0.22 0.96 +− 0.09 0.87 +− 0.18 0.91 +− 0.09 0.09 +− 0.07 0.12 +− 0.16 

ConvNet-ours* 0.77 +− 0.21 0.73 +− 0.23 0.97 +− 0.09 0.87 +− 0.23 0.92 +− 0.09 0.08 +− 0.09 0.13 +− 0.22 
 

C-VGG16 0.80 +− 0.20 0.78 +− 0.20 0.97 +− 0.05 0.88 +− 0.21 0.94+− 0.06 0.06+−0.06 0.12+−0.21 

C-Resnet34 0.82 +− 0.18 0.79 +− 0.20 0.98 +− 0.04 0.89 +− 0.18 0.95 +− 0.05 0.05 +− 0.05 0.11 +− 0.18 

C-Incepv4 0.81+−0.19 0.79+−0.20 0.97+−0.05 0.88+−0.19 0.94+−0.06 0.06+−0.06 0.12+−0.19 

TABLE 4 

Performance comparison of the Cancer Detection task between the ConvNet [29] and our models. ConvNet-ours: Our implementation 
of the ConvNet [29] that was trained on the SEER dataset. The ConvNet-ours results are reported without applying the post-processing 
method (please see the Methods section for a description of the post-processing method). ConvNet-ours∗: Our implemented version of 
the ConvNet [29] that was trained on SEER dataset. The ConvNet-our* results are reported after the post-processing step is executed. 
The last three rows show the performances of our CNNs. All the models were trained on the SEER dataset (Dtr ) and evaluated on 195 
TCGA WSIs (Ttcga). 
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generated Tumor, TIL, and combined Tumor-TIL maps. 

We will make these maps publicly available (see the Data 

Availability section). Figure 5 shows example Tumor-TIL 

combined maps overlaid on WSIs as heatmaps. The figure 

visualizes the spatial relationships between lymphocytes 

and tumor regions. The lymphocyte patches in these 

examples show TILs and tumor-associated lymphocytes 

(TALs) that surround the cancer regions. These visual 

representations of TILs, TALs, and cancer regions provide 

valuable information for further analyses. 

 
Method F1-score Accuracy AUC 

Saltz et al. [32] 0.770 74.9% 0.808 

L-VGG16 0.891 88.4% 0.943 
L-Resnet34 0.893 89.0% 0.950 

L-Incepv4 0.879 87.5% 0.938 

TABLE 5 
Performance comparison of the Lymphocytes detection task between 

Saltz et al. [32] and our models. 

 
Assessment of Inter-rater and Machine Versus Human 

Scoring of TIL Patches 

 

We performed a direct comparison of TIL predictions by 

the trained models with labeling of patches by experienced 

pathologists by scoring 8x8 ”super-patches” for TIL 

content. Three pathologists assessed 500 super-patches as 

having low, medium, or high TIL content. Machine derived 

scores were assigned to a super-patch by counting TIL-

positive patches in the super-patch; thus, the scores range 

from 0 to 64. To assess concordance between the human 

pathologists, we used the polychoric correlation 

coefficient, designed for comparing ordinal variables [52]. 

For comparison of continuous valued TIL counts estimated 

by the deep learning models versus those ordinal scores by 

the experienced pathologists (as having low, medium, or 

high TIL content), we used the polyserial coefficient. Table 

6 shows the performance comparison between human 

raters with the models developed. We noticed a somewhat 

consistent improvement in the quality of concordance 

between human experts and machine-predictions, even 

perhaps slightly better than human-human concordance. 

Also, the deep learning models permit a lower variability 

relative to human raters, as evidenced by the width of the 

corresponding confidence intervals. Also the concordance 

between the summarized scores (using median) across 

pathologists vis-a-vis machine-derived predictions 

generally improves relative to concordance measures of 

individual experts against the machine predictions. As is 

seen in Figure 4, the median machine-derived score is quite 

distinct between the three ordinal bins. 

 

Fig. 3. Prediction map of representative slides from Ttcga. Figures A-D are WSIs with ground truth generated by our expert pathologists. 
Figures E-H show the corresponding prediction heatmap generated by our Cancer detection algorithm, C-Resnet34, prior to applying 
any aggregation methods. Figures I-L show the corresponding prediction map after applying Max aggregation function with window size 
of 4 then applying threshold of 0.6 to exclude prediction scores that are less than 0.6. Figures M-P show results of our algorithm in terms 
of TP (green), FN (red), FP (yellow), and TN (blue) regions. 
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Fig. 4. Comparison of TIL scores of super-patches between 
pathologists and computational stain. x axis: median scores from 
three pathologists assessing 500 super-patches as having low, 
medium, or high lymphocyte infiltrate. y axis: scores from deep 
learning predictions on a scale from 0 to 64. 

 

DISCUSSION 

 

Studies have shown tumor-infiltrating lymphocytes (TILs) 

can be used as a biomarker to predict clinical outcomes, 

including treatment response, in invasive breast cancer 

patients [9], [10], [11]. With the emergence of 

immunotherapy in breast cancer, the evaluation of the 

concentration of TILs as a readily available biomarker. As 

shown in Figure 3, the cancer detection algorithm shows 

that the cancer region occupies approximately 50-60% of 

the total tissue area in the WSI. The lymphocyte detection 

algorithm shows high probability areas with TILs. The 

tumor-TIL method provides insight about scattered TILs 

that occupy approximately 20-30% of the cancer region, 

consistent with a low TIL% categorization with additional 

spatial information that shows a sparse multi-focal 

distribution. Combined breast cancer tumor-TIL maps like 

the one shown in this example have been generated for 

1,015 TCGA breast cancer WSIs and will be made publicly 

available in our custom web-based application. 

 

The evaluation of TILs in invasive breast cancer is likely 

to expand due to the accumulating evidence showing how 

TILs can be used to predict treatment response in the 

settings of neoadjuvant and adjuvant chemotherapy. 

However, the routine evaluation of TILs has not achieved 

widespread adoption even though the established 

methodology by the International Immuno-Oncology 

Biomarker Working Group [18] is relatively 

straightforward, uncomplicated, and based on the 

examination of TILs on standard H&E-stained tissue 

sections. Figure 3 readily identifies TILs and a focal area 

with peritumoral TALs as a surrogate computational 

biomarker that is similar to how IHC is routinely utilized 

by pathologists to highlight cells and structures. However, 

IHC is not routinely performed to identify and classify 

subsets of TILs  in breast cancer due to the time constraints 

of pathologists, desire to preserve diagnostic tissue, and 

additional costs, whereas this kind of insight can be made 

readily available in a low-cost and scalable manner to 

achieve the goals of the International Immuno-Oncology 

Biomarker Working Group. With emerging methods like 

our breast cancer tumor-TIL detection tool, pathologists 

will be able to add the evaluation of TILs to the standard 

IHC panel to determine ER, PR, HER2 expression status. 

 

In previous work, several research groups carried out 

image analyses focused on detection of metastatic breast 

cancer [53], [54], [55] and mitosis [56], [57], [58] using 

highly curated but relatively small datasets from algorithm 

evaluation challenges [24], [25], [26], [27]. Cruz-Roa et al. 

2017 and 2018 [28], [29] used deep learning approaches 

for detecting invasive breast cancer in WSIs. The deep 

learning models were trained using WSIs from the Hospital 

of the University of Pennsylvania (HUP) and from 

University Hospitals Case Medical Center/Case Western 

Reserve University (UHCMC/CWRU) and evaluated with 

195 WSIs from TCGA. Kwok [30] and Dong et al. [31] 

proposed methods to classify breast cancer regions in WSIs 

using datasets provided by the ICIAR2018 Grand 

Challenge on Breast Cancer Histology Images [27]. The 

ICIAR2018 dataset contains 2 subsets of training data: Part 

A consists of 400 images of 2048x1536 pixels at 0.42 µm 

0.42 µm resolution and Part B is made up 10 WSIs with 

manual annotations from pathologists. Kwok [30] 

implemented a 2-stage training approach where a basic 

CNN network is trained in the first stage to mine hard 

examples on data from part B. These examples were then 

used to train a deep learning model in the second stage. 

Dong et al. [31] employed deep reinforcement learning to 

decide whether regions of interest should be processed for 

segmentation at high or low image resolutions. Most 

recently, Amgad, M. et al., 2019 [59] proposed a fully 

convolutional framework for semantic segmentation of 

Rater Human VGG16 Resnet34 Incepv4 

A R1:0.62[0.48,0.76] 0.85 [0.81,0.88] 0.82[0.78,0.86] 0.85 [0.82,0.88] 
R1 R2:0.74[0.64,0.85] 0.73[0.68,0.79] 0.73[ 0.67,0.79] 0.72 [0.66,0.78] 
R2 A:0.73 [0.62,0.84] 0.73[0.68,0.79] 0.74[0.69,0.80] 0.76 [0.70,0.81] 

Median N/A 0.77[0.70,0.83] 0.74 [0.67,0.81] 0.76[0.70,0.83] 

TABLE 6 
Inter-rater concordance (between human raters: A, R1 and R2) and human vs. machine models. The point e of the 

correlation coefficients and confidence intervals are provided. 
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histology images via structured crowdsourcing. This was 

 

Fig. 5. Cancer and lymphocyte probability maps along with map of cancer and lymphocyte labels generated through analysis of 
representative slides from Ttcga (A: TCGA-A2-A0CL-01Z-00-DX1, B: TCGA-A2-A04X-01Z-00-DX1, C: TCGA-A2-A0CW-01Z-00-DX1). 
Figures in a given row are results generated from the WSI depicted in the first column. Figures A-C depict WSIs with ground truth 
generated by our expert pathologist. Figures D-F depict the corresponding cancer probability maps generated by our cancer detection 
models, C-Resnet34. Figures G-I depict the corresponding lymphocyte probability maps generated by the Lymphocyte classification 
models, L-Resnet34. Figures J-L depict a combined heatmap of cancer and lymphocytes. Invasive breast cancer detection denoted in 
yellow with superimposed lymphocyte detection denoted in red. The legends of figures J-L are L, C, and T which refer to lymphocyte, 
cancer, and tissue region, respectively. 

 

 

Fig. 6. Enlarged example of a cancer and lymphocyte probability map and cancer along with map of cancer and lymphocyte labels for 
TCGA WSI (case ID: TCGA-E9-A248-01Z-00-DX1) generated by our algorithms, C-Resnet34 and L-Resnet34. A: WSI of an invasive 
breast cancer H&E tissue section. The viable tumor region is annotated by a pathologist with a red line. B and C are lymphocyte probability 
map and cancer probability map predicted by our algorithm, respectively. The probabilities are in range from 0 to 1. D: Invasive breast 
cancer detection denoted in yellow with superimposed lymphocyte detection denoted in red. Grey areas outside of the yellow tumor 
region denote non-tumor connective and adipose tissues. 
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the first work using crowdsourcing in pathology task which 

involved a total of 25 participants at different expertise 

levels from medical students to expert pathologists to 

generate training data for a deep learning algorithm. The 

authors solely focused on segmenting triple-negative breast 

cancer (TNBC), an aggressive genomic subtype that 

comprises 15% of breast cancer cases, into five distinct 

classes: Tumor, Stroma, Inflammatory Infiltration, 

Necrosis and Other. Using a training dataset of 151 

representative region of interests (ROI, mean ROI size of 

1.18mm2) selected from 151 H&E TCGA WSIs with 

detailed curated annotations, a fully convolutional 

VGG16-FCN-8 network was able to achieve an AUC of 

0.941 for Tumor region.  

 

The current methods for assessing TILs in individual 

patients are still subjective, laborious, and may be difficult 

to quantify. More rigorous, objective, and efficient 

methods are needed. This is especially true for precision 

medicine applications since the tumor microenvironment 

in breast cancer is heterogeneous and composed of 

malignant cells, premalignant lesions, adjacent normal 

tissue, stroma, immune cell infiltrates, vessels, nerves, and 

fat. Therefore, to help further our understanding of breast 

cancer biology for research and clinical applications, we 

developed a tumor-TIL spatial mapping tool to 

automatically detect breast cancer in H&E stained WSIs to 

quantitatively estimate and characterize the relationship 

between tumor cells and TILs. 

 

In the current state, the breast tumor-TIL maps can be used 

to identify spatial patterns of distributions of TILs within 

intra- and peritumoral regions of invasive cancer, as well 

as lymphocyte infiltrates in adjacent tissues beyond the 

borders of the tumor. This tool can also be adapted for 

practical uses that include improving the reproducibility 

and precision in reporting tumor size and features of the 

tumor boundary for radiologic-pathologic correlation. As a 

potential clinical application to quantify TILs and identify 

spatial patterns of distribution of TILs, this tool can help 

guide management and select treatment in conjunction 

with existing molecular subtyping platforms to predict 

survival and recurrence since TILs are being shown to be 

reliable prognostic and predictive biomarkers in invasive 

breast cancer. Another potential application of this tool is 

to screen candidates who may benefit from immunotherapy 

in primary, refractory, and recurrent disease since such 

treatments are not expected to be useful if a significant 

amount and distribution of TILs are not present. 

 

Most existing software algorithms for TILs assessments 

are proprietary, expensive, and cannot be customized by 

the user. Therefore, we are making our invasive breast 

cancer TCGA tumor- TIL dataset publicly available with 

an interface to visually interact with the data. The interface 

permits quantification of TILs in tumor areas and the 

ability to rapidly spot check and evaluate true-positive and 

false-positive predictions by the deep learning models. The 

invasive breast cancer TCGA-TIL maps are displayed side-

by-side with an interactive H&E slide viewer to permit a 

high level of exploration within the entire data set. We also 

intend to further combine this tumor-TIL method to 

characterize tumor immune heterogeneity and spatially 

characterize local patterns of the lymphocytic infiltrate in 

different parts of the tumor, e.g. center of the tumor, 

invasive margins, and metastases. The tumor- TIL 

heatmaps can also be combined with other types of digital 

pathology-based image analyses that extract object-level of 

information, such as size, shape, color, texture, etc. 

(collectively known as Pathomics), to generate an 

unprecedented quantitative examination of invasive breast 

cancer. Such analytic data can complement traditional 

histopathologic evaluation that can be correlated with 

clinical information, radiologic imaging, molecular 

studies, survival, and treatment response. We believe that 

the availability of Tumor-TIL maps along with software 

that allows interactive viewing of the computational 

analysis will improve reproducibility and precision in 

reporting tumor size, tumor boundary features, TILs 

assessment, and extraction of relevant nuclear and cellular 

features. These improvements will in turn enhance clinical 

and pathology decision support in guiding management, 

treatment selection, and predicting survival and recurrence, 

in conjunction with existing molecular subtyping 

platforms. 

 

The need to quantify spatial inter-relationships between 

tumor regions and infiltrating lymphocytes is becoming 

increasingly important in invasive breast cancer. Tumor-

TIL maps generated from H&E images can be employed to 

carry out a wide range of correlative studies in the context 

of clinical trials, epidemiological investigations, and 

surveillance studies. Our methods leverage open source 

convolutional neural networks; the programs we have 

developed are also being made public and freely available. 

In summary, our study has produced a reliable and robust 

methodology, datasets of TIL and cancer region 

predictions, and programs that can be employed to carry 

out tumor-TIL tissue image analyses of invasive breast 

cancers. In future studies, we will further refine our 

methodology and tools to differentiate between invasive 

and in situ premalignant lesions and explore methods that 

can facilitate faster predictions for practical real-time 

clinical applications. 

 
DATA AVAILABILITY 
 

The SEER images used in the training dataset were gathered in 

a work carried out with the SEER consortium and will be made 

publicly available in the future as part of a separate pilot project.  

The invasive breast cancer images are publicly available and 

provided by TCGA (http://cancergenome.nih.gov/ and the 

Genomic Data Commons (GDC) Data Portal in 

https://portal.gdc.cancer.gov/). The Cancer and TILs heatmaps 

for TCGA can be found at 
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https://stonybrookmedicine.box.com/v/tcga-brca-til-tumor-

results 

 

ACKNOWLEDGEMENTS 

 

This work was supported in part by 1U24CA180924-01A1, 

3U24CA215109-02, and 1UG3CA225021-01 from the 

National Cancer Institute, R01LM011119-01 and 

R01LM009239 from the U.S. National Library of 

Medicine. This work used the Extreme Science and 

Engineering Discovery Environment (XSEDE), which is 

supported by National Science Foundation grant number 

ACI-1548562. Specifically, it used the Bridges system, 

which is supported by NSF award number ACI-1445606, 

at the Pittsburgh Supercomputing Center (PSC). NCI 

Surveillance Research Program overseeing the Virtual 

Tissue Repository (VTR) Pilot Program, from which 

participating SEER cancer registries (Greater California, 

Connecticut, Hawaii, Iowa, Kentucky, and Louisiana) 

supplied the whole slide images utilized in algorithm 

development and testing. The SEER VTR Pilot Program is 

supported by the Division of Cancer Control and 

Population Sciences at the National Cancer Institute of the 

National Institutes of Health. 

 

AUTHOR CONTRIBUTIONS 

 

Conceptualization, J.S, T.K, R.G, H.L, A.L.V.D, D.S, D.F, 

T.Z, R.B; Methodology, J.S, T.K, H.L, A.R, L.H, S.A, D.S; 

Data Curation, R.G; Running Experiments, H.L, S.A; 

Writing – Original Draft, H.L, R.G, T.K, J.S.A, A.S; 

Writing – Review & Editing, H.L, R.G, T.K, J.S, A.R., 

A.L.V.D; Formal Analysis, J.S, R.G, A.R., A.L.V.D; 

Training Convolutional Neural Networks R.G, H.L; 

Supervision, J.S, T.K, D.S; Visualization, H.L, J.S.A, E.B; 

Software, T.K, E.B, J.S.A, A.S. 

 
REFERENCES 

 
1. R. L. Siegel, K. D. Miller, and A. Jemal, “Cancer   statistics, 2019,” 

CA: a cancer journal for clinicians, vol. 69, no. 1, pp. 7–34, 2019. 
2. W. F. Anderson and R. Matsuno, “Breast cancer heterogeneity: a 

mixture of at least two main types?” 2006. 
3. K. Heselmeyer-Haddad, L. Y. B. Garcia, A. Bradley, C. Ortiz-

Melendez, W.-J. Lee, R. Christensen, S. A. Prindiville, K. A. 

Calzone, P. W. Soballe, Y. Hu et al., “Single-cell genetic analysis of 

ductal carcinoma in situ and invasive breast cancer reveals 

enormous tumor heterogeneity yet conserved genomic imbalances 

and gain of myc during progression,” The American journal of 
pathology, vol. 181, no. 5, pp. 1807–1822, 2012. 

4. C. Denkert, G. von Minckwitz, S. Darb-Esfahani, B. Lederer, B. I. 

Heppner, K. E. Weber, J. Budczies, J. Huober, F. Klauschen, J. 
Furlanetto et al., “Tumour-infiltrating lymphocytes and prognosis in 

different subtypes of breast cancer: a pooled analysis of 3771 

patients treated with neoadjuvant therapy,” The lancet oncology, 
vol. 19, no. 1, pp. 40–50, 2018. 

5. S. Loi, N. Sirtaine, F. Piette, R. Salgado, G. Viale, F. Van Eenoo, G. 

Rouas, P. Francis, J. Crown, E. Hitre et al., “Prognostic and 
predictive value of tumor-infiltrating lymphocytes in a phase iii 

randomized adjuvant breast cancer trial in node-positive breast 

cancer comparing the addition of docetaxel to doxorubicin with 

doxorubicin-based chemotherapy: Big 02-98,” J Clin Oncol, vol. 31, 
no. 7, pp. 860–867, 2013. 

6. Y. Mao, Q. Qu, Y. Zhang, J. Liu, X. Chen, and K. Shen, “The value 

of tumor infiltrating lymphocytes (tils) for predicting response to 
neoadjuvant chemotherapy in breast cancer: a systematic review and 

meta-analysis,” PloS one, vol. 9, no. 12, p. e115103, 2014. 

7. G. Pruneri, A. Vingiani, V. Bagnardi, N. Rotmensz, A. De Rose, 
Palazzo, A. Colleoni, A. Goldhirsch, and G. Viale, “Clinical validity 

of tumor-infiltrating lymphocytes analysis in patients with triple-

negative breast cancer,” Annals of oncology, vol. 27, no. 2, pp. 249–
256, 2015. 

8. C. Denkert, S. Loibl, A. Noske, M. Roller, B. Muller, M. Komor, J. 

Budczies, S. Darb-Esfahani, R. Kronenwett, C. Hanusch et al., 
“Tumor-associated lymphocytes as an independent predictor of 

response to neoadjuvant chemotherapy in breast cancer,” J Clin 

Oncol, vol. 28, no. 1, pp. 105–113, 2010. 
9. C. Denkert, S. Wienert, A. Poterie, S. Loibl, J. Budczies, S. Badve, 

Z. Bago-Horvath, A. Bane, S. Bedri, J. Brock et al., “Standardized 

evaluation of tumor-infiltrating lymphocytes in breast cancer: 
results of the ring studies of the international immuno-oncology 

biomarker working group,” Modern Pathology, vol. 29, no. 10, p. 

1155, 2016. 
10. S. Loi, S. Michiels, R. Salgado, N. Sirtaine, V. Jose, D. Fumagalli, 

P.-L. Kellokumpu-Lehtinen, P. Bono, V. Kataja, C. Desmedt et al., 

“Tumor infiltrating lymphocytes are prognostic in triple negative 
breast cancer and predictive for trastuzumab benefit in early breast 

cancer: results from the finher trial,” Annals of oncology, vol. 25, 
no. 8, pp. 1544–1550, 2014. 

11. B. I. Heppner, M. Untch, C. Denkert, B. M. Pfitzner, B. Lederer, W. 

Schmitt, H. Eidtmann, P. A. Fasching, H. Tesch, C. Solbach et al., 
“Tumor-infiltrating lymphocytes: a predictive and prognostic 

biomarker in neoadjuvant-treated her2-positive breast cancer,” 

Clinical Cancer Research, vol. 22, no. 23, pp. 5747–5754, 2016. 
12. R. Salgado, C. Denkert, C. Campbell, P. Savas, P. Nuciforo, C. 

Aura, E. de Azambuja, H. Eidtmann, C. E. Ellis, J. Baselga et al., 

“Tumor infiltrating lymphocytes and associations with pathological 
complete response and event-free survival in her2-positive early-

stage breast cancer treated with lapatinib and trastuzumab: a 

secondary analysis of the neoaltto trial,” JAMA oncology, vol. 1, 
no. 4, pp. 448–455, 2015. 

13. S. Adams, R. J. Gray, S. Demaria, L. Goldstein, E. A. Perez, L. N. 

Shulman, S. Martino, M. Wang, V. E. Jones, T. J. Saphner et al., 
“Prognostic value of tumor-infiltrating lymphocytes in triple-

negative breast cancers from two phase iii randomized adjuvant 

breast cancer trials: Ecog 2197 and ecog 1199,” Journal of clinical 
oncology, vol. 32, no. 27, p. 2959, 2014. 

14. N. West, S. Kost, S. Martin, K. Milne, B. Nelson, P. Watson et al., 

“Tumour-infiltrating foxp3+ lymphocytes are associated with 
cytotoxic immune responses and good clinical outcome in oestrogen 

receptor negative breast cancer,” British journal of cancer, vol. 108, 

no. 1, p. 155, 2013. 
15. S. E. Strome, E. A. Sausville, and D. Mann, “A mechanistic 

perspective of monoclonal antibodies in cancer therapy beyond 

target-related effects,” The oncologist, vol. 12, no. 9, pp. 1084–
1095, 2007. 

16. P. Sharma and J. P. Allison, “Immune checkpoint targeting in cancer 

therapy: toward combination strategies with curative potential,” 
Cell, vol. 161, no. 2, pp. 205–214, 2015. 

17. P. Gotwals, S. Cameron, D. Cipolletta, V. Cremasco, A. Crystal, B. 

Hewes, B. Mueller, S. Quaratino, C. Sabatos-Peyton, L. Petruzzelli 
et al., “Prospects for combining targeted and conventional cancer 

therapy with immunotherapy,” Nature Reviews Cancer, vol. 17, no. 

5, p. 286, 2017. 
18. M. V.  Dieci, N. Radosevic-Robin, S. Fineberg, G. Van den Eynden, 

N. Ternes, F. Penault-Llorca, G. Pruneri, T. M. D’Alfonso, S. 

Demaria, C. Castaneda et al., “Update on tumor-infiltrating 
lymphocytes (tils) in breast cancer, including recommendations to 

assess tils in residual disease after neoadjuvant therapy and in 

carcinoma in situ: a report of the international immuno-oncology 
biomarker working group on breast cancer,” in Seminars in cancer 

biology, vol. 52. Elsevier, 2018, pp. 16–25. 

https://stonybrookmedicine.box.com/v/tcga-brca-til-tumor-results
https://stonybrookmedicine.box.com/v/tcga-brca-til-tumor-results


 12 

19. R. Salgado, C. Denkert, S. Demaria, N. Sirtaine, F. Klauschen, G. 
Pruneri, S. Wienert, G. Van den Eynden, F. L. Baehner, F. Pe´nault- 

Llorca et al., “The evaluation of tumor-infiltrating lymphocytes 

(tils) in breast cancer: recommendations by an international tils 
working group 2014,” Annals of oncology, vol. 26, no. 2, pp. 259–

271, 2014. 

20. C. Denkert, S. Wienert, A. Poterie, S. Loibl, J. Budczies, S. Badve, 
Z. Bago-Horvath, A. Bane, S. Bedri, J. Brock et al., “Standardized 

evaluation of tumor-infiltrating lymphocytes in breast cancer: 

results of the ring studies of the international immuno-oncology 
biomarker working group,” Modern Pathology, vol. 29, no. 10, p. 

1155, 2016. 

21. F. Klauschen, K.-R. Mu¨ller, A. Binder, M. Bockmayr, M. Ha¨gele, 
P. Seegerer, S. Wienert, G. Pruneri, S. de Maria, S. Badve et al., 

“Scoring of tumor-infiltrating lymphocytes: From visual estimation 

to machine learning,” in Seminars in cancer biology. Elsevier, 2018. 
22. I. Catacchio, N. Silvestris, E. Scarpi, L. Schirosi, A. Scattone, and 

Mangia, “Intratumoral, rather than stromal, cd8+ t cells could be a 

potential negative prognostic marker in invasive breast cancer 
patients,” Translational oncology, vol. 12, no. 3, pp. 585–595, 2019. 

23. I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT 

press, 2016. 
24. B. E. Bejnordi, M. Veta, P. J. Van Diest, B. Van Ginneken, N. 

Karssemeijer, G. Litjens, J. A. Van Der Laak, M. Hermsen, Q. F. 

Manson, M. Balkenhol et al., “Diagnostic assessment of deep 
learning algorithms for detection of lymph node metastases in 

women with breast cancer,” Jama, vol. 318, no. 22, pp. 2199–2210, 
2017. 

25. P.  Ba´ndi,  O.  Geessink,  Q.  Manson,  M.  van  Dijk,  M.  Balkenhol, 

M. Hermsen, B. E. Bejnordi, B. Lee, K. Paeng, A. Zhong et al., 
“From detection of individual metastases to classification of lymph 

node status at the patient level: the camelyon17 challenge,” IEEE 

Transactions on Medical Imaging, 2018. 
26. G. Litjens, P. Bandi, B. Ehteshami Bejnordi, O. Geessink, M. 

Balkenhol, P. Bult, A. Halilovic, M. Hermsen, R. van de Loo, R. 

Vogels et al., “1399 h&e-stained sentinel lymph node sections of 
breast cancer patients: the camelyon dataset,” GigaScience, vol. 7, 

no. 6, p. giy065, 2018. 

27. G. Aresta, T. Arau´jo, S. Kwok, S. S. Chennamsetty, M. Safwan, V. 
Alex, B. Marami, M. Prastawa, M. Chan, M. Donovan et al., “Bach: 

Grand challenge on breast cancer histology images,” arXiv preprint 

arXiv:1808.04277, 2018. 
28. A. Cruz-Roa, H. Gilmore, A. Basavanhally, M. Feldman, S. 

Ganesan, N. N. Shih, J. Tomaszewski, F. A. Gonza´lez, and A. 

Madabhushi, “Accurate and reproducible invasive breast cancer 
detection in whole slide images: A deep learning approach for 

quantifying tumor extent,” Scientific reports, vol. 7, p. 46450, 2017. 

29. A. Cruz-Roa, H. Gilmore, A. Basavanhally, M. Feldman, S. 
Ganesan, N. Shih, J. Tomaszewski, A. Madabhushi, and F. 

Gonza´lez, “High throughput adaptive sampling for whole-slide 

histopathology image analysis (hashi) via convolutional neural 
networks: Application to invasive breast cancer detection,” PloS 

one, vol. 13, no. 5, p. e0196828, 2018. 

30. S. Kwok, “Multiclass classification of breast cancer in whole-slide 
images,” in International Conference Image Analysis and 

Recognition. Springer, 2018, pp. 931–940. 

31. N. Dong, M. Kampffmeyer, X. Liang, Z. Wang, W. Dai, and E. 
Xing, “Reinforced auto-zoom net: Towards accurate and fast breast 

cancer segmentation in whole-slide images,” in Deep Learning in 

Medical Image Analysis and Multimodal Learning for Clinical 
Decision Support. Springer, 2018, pp. 317–325. 

32. J. Saltz, R. Gupta, L. Hou, T. Kurc, P. Singh, V. Nguyen, D. 

Samaras, K. R. Shroyer, T. Zhao, R. Batiste et al., “Spatial 
organization and molecular correlation of tumor-infiltrating 

lymphocytes using deep learning on pathology images,” Cell 

reports, vol. 23, no. 1, p. 181, 2018. 
33. J. Saltz, A. Sharma, G. Iyer, E. Bremer, F. Wang, A. Jasniewski, T. 

DiPrima, J. S. Almeida, Y. Gao, T. Zhao et al., “A containerized 

software system for generation, management, and exploration of 
features from whole slide tissue images,” Cancer research, vol. 77, 

no. 21, pp. e79–e82, 2017. 

34. A. Goode, B. Gilbert, J. Harkes, D. Jukic, and M. Satyanarayanan, 
“OpenSlide: A vendor-neutral software foundation for digital 

pathology,” Journal of Pathology Informatics, vol. 4, no. 1, p. 27, 

2013. [Online]. Available: 
http://www.jpathinformatics.org/article.asp?issn=2153-3539; 

year=2013;volume=4;issue=1;spage=27;epage=27;aulast=Goode;t

=6 
35. [Y. B. Hagos, A. G. Me´rida, and J. Teuwen, “Improving breast 

cancer detection using symmetry information with deep learning,” 

in Image Analysis for Moving Organ, Breast, and Thoracic Images. 
Springer, 2018, pp. 90–97. 

36. Y. Liu, T. Kohlberger, M. Norouzi, G. E. Dahl, J. L. Smith, A. 

Mohtashamian, N. Olson, L. H. Peng, J. D. Hipp, and M. C. Stumpe, 
“Artificial intelligence–based breast cancer nodal metastasis 

detection: Insights into the black box for pathologists,” Archives of 

pathology & laboratory medicine, 2018. 
37. B. Lee and K. Paeng, “A robust and effective approach towards 

accurate metastasis detection and pn-stage classification in breast 

cancer,” in MICCAI, 2018. 
38. K. Simonyan and A. Zisserman, “Very deep convolutional networks 

for large-scale image recognition,” in ICLR, 2015. 

39. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for 
image recognition,” in Proceedings of the IEEE conference on 

computer vision and pattern recognition, 2016, pp. 770–778. 

40. C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-
v4, inception-resnet and the impact of residual connections on 

learning,” in Thirty-First AAAI Conference on Artificial 
Intelligence, 2017. 

41. Y. Xu, Z. Jia, Y. Ai, F. Zhang, M. Lai, I. Eric, and C. Chang, “Deep 

convolutional activation features for large scale brain tumor 
histopathology image classification and segmentation,” in 

Acoustics, Speech and Signal Processing (ICASSP), 2015 IEEE 

International Conference on. IEEE, 2015, pp. 947–951. 
42. L. Hou, K. Singh, D. Samaras, T. M. Kurc, Y. Gao, R. J. Seidman,   

and J. H. Saltz, “Automatic histopathology image analysis with 

cnns,” Proceedings of the New York Scientific Data Summit 
(NYSDS), 2016. 

43. O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. 

Huang, Karpathy, A. Khosla, M. Bernstein et al., “Imagenet large 
scale visual recognition challenge,” International Journal of 

Computer Vision, vol. 115, no. 3, pp. 211–252, 2015. 

44. A. Paszke, S. Gross, S. Chintala, and G. Chanan, “Pytorch,” 2017. 
45. Y. Bengio, A. Courville, and P. Vincent, “Representation learning: 

A review and new perspectives,” IEEE transactions on pattern 

analysis and machine intelligence, vol. 35, no. 8, pp. 1798–1828, 
2013. 

46. M. Macenko, M. Niethammer, J. S. Marron, D. Borland, J. T. 

Woosley, X. Guan, C. Schmitt, and N. E. Thomas, “A method for 
normalizing histology slides for quantitative analysis,” in 

Biomedical Imaging: From Nano to Macro, 2009. ISBI’09. IEEE 

International Symposium on. IEEE, 2009, pp. 1107–1110. 
47. E. Reinhard, M. Adhikhmin, B. Gooch, and P. Shirley, “Color 

transfer between images,” IEEE Computer graphics and 

applications, vol. 21, no. 5, pp. 34–41, 2001. 
48. A. Vahadane, T. Peng, S. Albarqouni, M. Baust, K. Steiger, A. M. 

Schlitter, A. Sethi, I. Esposito, and N. Navab, “Structure-preserved 

color normalization for histological images,” in Biomedical Imaging 
(ISBI), 2015 IEEE 12th International Symposium on. IEEE, 2015, 

pp. 1012– 1015. 

49. L. Hou, D. Samaras, T. M. Kurc, Y. Gao, J. E. Davis, and J. H. Saltz, 
“Patch-based convolutional neural network for whole slide tissue 

image classification,” in Proceedings of the IEEE Conference on 

Computer Vision and Pattern Recognition, 2016, pp. 2424–2433. 
50. X. Zhu, J. Yao, F. Zhu, and J. Huang, “Wsisa: Making survival 

prediction from whole slide histopathological images,” in IEEE 

Conference on Computer Vision and Pattern Recognition, 2017, pp. 
7234–7242. 

51. J. Saltz, A. Sharma, G. Iyer, E. Bremer, F. Wang, A. Jasniewski, T. 

DiPrima, J. S. Almeida, Y. Gao, T. Zhao et al., “A containerized 
software system for generation, management, and exploration of 

features from whole slide tissue images,” Cancer research, vol. 77, 

no. 21, pp. e79–e82, 2017. 



 13 

52. F. Drasgow, “Polychoric and polyserial correlations,” Encyclopedia 
of statistical sciences, vol. 9, 2004. 

53. D. Wang, A. Khosla, R. Gargeya, H. Irshad, and A. H. Beck, “Deep 

learning for identifying metastatic breast cancer,” arXiv preprint 
arXiv:1606.05718, 2016. 

54. K. Nazeri, A. Aminpour, and M. Ebrahimi, “Two-stage 

convolutional neural network for breast cancer histology image 
classification,” in International Conference Image Analysis and 

Recognition. Springer, 2018, pp. 717–726. 

55. A. Golatkar, D. Anand, and A. Sethi, “Classification of breast cancer 
histology using deep learning,” in International Conference Image 

Analysis and Recognition. Springer, 2018, pp. 837–844. 

56. S. Albarqouni, C. Baur, F. Achilles, V. Belagiannis, S. Demirci, and 
N. Navab, “Aggnet: deep learning from crowds for mitosis detection 

in breast cancer histology images,” IEEE transactions on medical 

imaging, vol. 35, no. 5, pp. 1313–1321, 2016. 
57. M. Veta, P. J. Van Diest, S. M. Willems, H. Wang, A. Madabhushi, 

Cruz-Roa, F. Gonzalez, A. B. Larsen, J. S. Vestergaard, A. B. Dahl 

et al., “Assessment of algorithms for mitosis detection in breast 
cancer histopathology images,” Medical image analysis, vol. 20, no. 

1, pp. 237– 248, 2015. 

58. S. Rao, “Mitos-rcnn: A novel approach to mitotic figure detection 
in breast cancer histopathology images using region based 

convolutional neural networks,” arXiv preprint arXiv:1807.01788, 

2018. 
59. M. Amgad, H. Elfandy, H. H. Khallaf, L. A. Atteya, M. A. Elsebaie, 

L. S. A. Elnasr, R. A. Sakr, H. S. Salem, A. F. Ismail, A. M. Saad      
et al., “Structured crowdsourcing enables convolutional 

segmentation of histology images,” Bioinformatics, 2019. 


