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Abstract

We propose a novel deep learning method for shadow
removal. Inspired by physical models of shadow formation,
we use a linear illumination transformation to model the
shadow effects in the image that allows the shadow image
to be expressed as a combination of the shadow-free image,
the shadow parameters, and a matte layer. We use two deep
networks, namely SP-Net and M-Net, to predict the shadow
parameters and the shadow matte respectively. This sys-
tem allows us to remove the shadow effects on the images.
We train and test our framework on the most challenging
shadow removal dataset (ISTD). Compared to the state-of-
the-art method, our model achieves a 40% error reduction
in terms of root mean square error (RMSE) for the shadow
area, reducing RMSE from 13.3 to 7.9. Moreover, we create
an augmented ISTD dataset based on an image decompo-
sition system by modifying the shadow parameters to gen-
erate new synthetic shadow images. Training our model on
this new augmented ISTD dataset further lowers the RMSE
on the shadow area to 7.4.

1. Introduction
Shadows are cast whenever a light source is blocked by

an object. Shadows often confound computer vision algo-
rithms such as segmentation, tracking, or recognition. The
appearance of shadow edges is hard to distinguish from
edges due to material changes [27]. Dark albedo material
regions can be easily misclassified as shadows [18]. Thus
many methods have been proposed to identify and remove
shadows from images.

Early shadow removal work was based on physical
shadow models [1]. A common approach is to formulate the
shadow removal problem using an image formation model,
in which the image is expressed in terms of material proper-
ties and a light source-occluder system that casts shadows.
Hence, a shadow-free image can be obtained by estimat-
ing the parameters of the source-occluder system and then
reversing the shadow effects on the image [10, 14, 13, 28].
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Figure 1: Shadow Removal via Shadow Image Decom-
position. A shadow-free image Ishadow-free can be expressed
in terms of a shadow image Ishadow, a relit image Irelit and a
shadow matte α. The relit image is a linear transformation
of the shadow image. The two unknown factors of this sys-
tem are the shadow parameters (w, b) and the shadow matte
layer α. We use two deep networks to estimate these two
unknown factors.

These methods relight the shadows in a physically plausible
manner. However, estimating the correct solution for such
illumination models is non-trivial and requires considerable
processing time or user assistance[39, 3].

On the other hand, recently published large-scale
datasets [25, 34, 32] allow the use of deep learning methods
for shadow removal. In these cases, a network is trained
in an end-to-end fashion to map the input shadow image
to a shadow-free image. The success of these approaches
shows that deep networks can effectively learn transforma-
tions that relight shadowed pixels. However, the actual
physical properties of shadows are ignored, and there is no
guarantee that the networks would learn physically plausi-
ble transformations. Moreover, there are still well known
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issues with images generated by deep networks: results tend
to be blurry [15, 40] and/or contain artifacts [23]. How
to improve the quality of generated images is an active re-
search topic [16, 35].

In this work, we propose a novel method for shadow
removal that takes advantage of both shadow illumination
modelling and deep learning. Following early shadow re-
moval works, we propose to use a simplified physical il-
lumination model to define the mapping between shadow
pixels and their shadow-free counterparts.

Our proposed illumination model is a linear transforma-
tion consisting of a scaling factor and an additive constant -
per color channel - for the whole umbra area of the shadow.
These scaling factors and additive constants are the param-
eters of the model, see Fig. 1. The illumination model
plays a key role in our method: with correct parameter es-
timates, we can use the model to remove shadows from im-
ages. We propose to train a deep network (SP-Net) to au-
tomatically estimate the parameters of the shadow model.
Through training, SP-Net learns a mapping function from
input shadow images to illumination model parameters.

Furthermore, we use a shadow matting technique [3, 13,
39] to handle the penumbra area of the shadows. We in-
corporate our illumination model into an image decompo-
sition formulation [24, 3], where the shadow-free image
is expressed as a combination of the shadow image, the
parameters of the shadow model, and a shadow density
matte. This image decomposition formulation allows us to
reconstruct the shadow-free image, as illustrated in Fig. 1.
The shadow parameters (w, b) represent the transformation
from the shadowed pixels to the illuminated pixels. The
shadow matte represents the per-pixel linear combination
of the relit image and the shadow image, which results to
the shadow-free image. Previous work often requires user
assistance[12] or solving an optimization system [20] to ob-
tain the shadow mattes. In contrast, we propose to train a
second network (M-Net) to accurately predict shadow mat-
tes in a fully automated manner.

We train and test our proposed SP-Net and M-Net on the
ISTD dataset [34], which is the largest and most challeng-
ing available dataset for shadow removal. SP-Net alone (no
matting) outperforms the state-of-the-art [12] in shadow re-
moval by 29% in terms of RMSE on shadow areas, from
13.3 to 9.5 RMSE. Our full system with both SP-Net and
M-Net further improves the overall results by another 17%,
which yields a RMSE of 7.9.

Our proposed method can realistically modify the
shadow effects in the images. First we estimate the shadow
parameters and shadow matte from an image. We then add
the shadows back into the shadow-free image with a set of
modified shadow parameters. As we change the parameters,
the shadow effects change accordingly. In this manner, we
can synthetize additional shadow images that serve as aug-

mented training data. Training our system on ISTD plus our
newly synthesized images further lowers the RMSE on the
shadow areas by 6%, compared to our model trained on the
original ISTD dataset.

The main contributions of this work are:

• We propose a new deep learning approach for shadow
removal, grounded by a simplified physical illumina-
tion model and an image decomposition formulation.

• We propose a method for shadow image augmentation
based on our simplified physical illumination model
and the image decomposition formulation.

• Our proposed method achieves state-of-the-art shadow
removal results on the ISTD dataset.

The pre-trained model, shadow removal results, and
more details can be found at: www3.cs.stonybrook.
edu/˜cvl/projects/SID/index.html

2. Related Works

Shadow Illumination Models: Early research on
shadow removal is motivated by physical modelling of il-
lumination and color [10, 9, 11, 6]. Barrow & Tenenbaum
[1] define an intrinsic image algorithm that separates im-
ages into the intrinsic components of reflectance and shad-
ing. Guo et al. [13] simplify this model to represent the rela-
tionship between the shadow pixels and shadow-free pixels
via a linear system. They estimate the unknown factors via
pairing shadow and shadow-free regions. Similarly, Shor &
Lischinki [28] propose an illumination model for shadows
in which there is an affine relationship between the lit and
shadow intensities at a pixel, including 4 unknown parame-
ters. They define two strips of pixels: one in the shadowed
area and one in the lit area to estimate their parameters.
Finlayson et al.[8] create an illuminant-invariant image for
shadow detection and removal. Their work is based on an
insight that the shadowed pixels differ from their lit pixels
by a scaling factor. Vicente et al. [31, 33] propose a method
for shadow removal where they suggest that the color of the
lit region can be transferred to the shadowed region via his-
togram equalization.

Shadow Matting: Matting, introduced by Porter & Duff
[24], is an effective tool to handle soft shadows. However,
it is non-trivial to compute the shadow matte from a single
image. Chuang et al. [3] use image matting for shadow edit-
ing to transfer the shadows between different scenes. They
compute the shadow matte from a sequence of frames in a
video captured from a static camera. Guo et al. [13] and
Zhang et al. [39] both use a shadow matte for their shadow
removal frameworks, where they estimate the shadow matte
via the closed-form solution of Levin et al. [20].

www3.cs.stonybrook.edu/~cvl/projects/SID/index.html
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Deep-Learning Based Shadow Removal: Recently
published large-scale datasets [32, 34, 25] enable train-
ing deep-learning networks for shadow removal. The
Deshadow-Net of Qu et al. [25] is trained to remove shad-
ows in an end-to-end manner. Their network extracts multi-
context features across different layers of a deep network
to predict a shadow matte. This shadow matte is differ-
ent from ours as it contains both the density and color off-
set of the shadows. The ST-CGAN proposed by Wang et
al. [34] for both shadow detection and removal is a condi-
tional GAN-based framework [15] for shadow detection and
removal. Their framework is trained to predict the shadow
mask and shadow-free image in an unified manner, they use
GAN losses to improve performance.

Inspired by early work, our framework outputs the
shadow-free image based on a physically inspired shadow
illumination model and a shadow matte. We, however, esti-
mate the parameters of our model and the shadow matte via
two deep networks in a fully automated manner.

3. Shadow and Image Decomposition Model

3.1. Shadow Illumination Model

Let us begin by describing our shadow illumination
model. We aim to find a mapping function T to trans-
form a shadow pixel Ishadow

x to its non-shadow counterpart:
Ishadow-free
x = T (Ishadow

x , w) where w are the parameters of
the model. The form of T has been studied in depth in pre-
vious work as discussed in Sec. 2.

In this paper, similar to the model of Shor & Lischin-
ski [28], we use a linear function to model the relationship
between the lit and shadowed pixels. The intensity of a lit
pixel is formulated as:

Ishadow-free
x (λ) = Ld

x(λ)Rx(λ) + La
x(λ)Rx(λ) (1)

where Ishadow-free
x (λ) is the intensity reflected from point x

in the scene at wavelength λ, L and R are the illumination
and reflectance respectively, Ld is the direct illumination
and La is the ambient illumination.

To cast a shadow on point x, an occluder blocks the di-
rect illumination and a portion of the ambient illumination
that would otherwise arrive at x. The shadowed intensity at
x is:

Ishadow
x (λ) = ax(λ)L

a
x(λ)Rx(λ) (2)

where ax(λ) is the attenuation factor indicating the remain-
ing fraction of the ambient illumination that arrives at point
x at wavelength λ. Note that Shor & Lischinski further as-
sume that ax(λ) is the same for all wavelengths λ to sim-
plify their model. This assumption implies that the environ-
ment light has the same color from all directions.

From Eq.1 and 2, we can express the shadow-free pixel
as a linear function of the shadowed pixel:

Ishadow-free
x (λ) = Ld

x(λ)Rx(λ) + ax(λ)
−1Ishadow

x (λ) (3)

We assume that this linear relation is preserved through-
out the color acquisition process of the camera [7]. There-
fore, we can express the color intensity of the lit pixel x as
a linear function of its shadowed value:

Ishadow-free
x (k) = wk × Ishadow

x (k) + bk (4)

where Ix(k) represents the value of the pixel x on the im-
age I in color channel k (k ∈ R,G,B color channel), bk is
the response of the camera to direct illumination, and wk is
responsible for the attenuation factor of the ambient illumi-
nation at this pixel in this color channel. We model each
color channel independently to account for possibly differ-
ent spectral characteristics of the material in shadow as well
as the sensor.

We further assume that the two vectors w =
[wR, wG, wB ] and b = [bR, bG, bB ] are constant across all
pixels x in the umbra area of the shadow. Under this as-
sumption, we can easily estimate the values ofw and b given
the shadow and shadow-free image using linear regression.
We refer to (w, b) as the shadow parameters in the rest of
the paper.

In Sec. 4, we show that we can train a deep-network to
estimate these vectors from a single image.

3.2. Shadow Image Decomposition System

We plug our proposed shadow illumination model into
the following well-known image decomposition system
[3, 24, 30, 36]. The system models the shadow-free im-
age using the shadow image, the shadow parameter, and the
shadow matte. The shadow-free image can be expressed as:

Ishadow-free = Ishadow · α+ I relit · (1− α) (5)

where Ishadow and Ishadow-free are the shadow and shadow-
free image respectively, α is the matting layer, and I relit is
the relit image. We define α and I relit below.

Each pixel i of the relit image I relit is computed by:

I relit
i = w · Ishadow

i + b (6)

which is the shadow image transformed by the illumination
model of Eq. 4. This transformation maps the shadowed
pixels to their shadow-free values.

The matting layer α represents the per-pixel coefficients
of the linear combination of the relit image and the input
shadow image that results into the shadow-free image. Ide-
ally, the value of α should be 1 at the non-shadow area and
0 at the umbra of the shadow area. For the pixels in the
penumbra of the shadow, the value of α gradually changes
near the shadow boundary.
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Figure 2: Shadow Removal Framework. The shadow parameter estimator network SP-Net takes as input the shadow image
and the shadow mask to predict the shadow parameters (w, b). The relit image I relit is then computed via Eq. 6 using the
estimated parameters from SP-Net. The relit image, together with the input shadow image and the shadow mask are then
input into the shadow matte prediction network M-Net to get the shadow matte layer α. The system outputs the shadow-
free image via Eq. 5, using the shadow image, the relit image, and the shadow matte. SP-Net learns to predict the shadow
parameters (w, b), denoted as the regression loss. M-Net learns to minimize the L1 distance between the output of the system
and the shadow-free image (reconstruction loss).

The value of α at pixel i based on the shadow image,
shadow-free image, and relit image, follows from Eq. 5 :

αi =
Ii

shadow-free − Iirelit

Ii
shadow − Iirelit (7)

We use the image decomposition of Eq. 5 for our shadow
removal framework. The unknown factors are the shadow
parameters (w, b) and the shadow matte α. We present our
method that uses two deep networks, SP-Net and M-Net,
to predict these two factors in the following section. In
Sec.5.3, we propose a simple method to modify the shad-
ows for an image in order to augment the training data.

4. Shadow Removal Framework
Fig. 2 summarizes our framework. The shadow param-

eter estimator network SP-Net takes as input the shadow
image and the shadow mask to predict the shadow param-
eters (w, b). The relit image I relit is then computed via Eq.
6 with the estimated parameters from SP-Net. The relit im-
age, together with the input shadow image and the shadow
mask is then input into the shadow matte prediction network
M-Net to get the shadow matte α. The system outputs the
shadow-free image via Eq. 5.

4.1. Shadow Parameter Estimator Network

In order to recover the illuminated intensity at the shad-
owed pixel, we need to estimate the parameters of the lin-
ear model in Eq. 4. Previous work has proposed different
methods to estimate the parameters of a shadow illumina-
tion model [28, 12, 13, 11, 8, 6]. In this paper, we train SP-
Net, a deep network model, to directly predict the shadow
parameters from the input shadow image.

To train SP-Net, we first generate training data. Given a
training pair of a shadow image and a shadow-free image,
we estimate the parameters of our linear illumination model
using a least squares method [4]. For each shadow image,
we first erode the shadow mask by 5 pixels in order to de-
fine a region that does not contain the partially shadowed
(penumbra) pixels. Mapping these shadow pixel values to
the corresponding values in the shadow-free image, gives
us a linear regression system, from which we calculate w
and b. We compute parameters for each of the three RGB
color channels and then combine the learned coefficients to
form a 6-element vector. This vector is used as the targeted
output to train SP-Net. The input for SP-Net is the input
shadow image and the associated shadow mask. We train
SP-Net to minimize the L1 distance between the output of
the network and these computed shadow parameters.

We develop SP-Net by customizing a ResNeXt [37]
model that is pre-trained on ImageNet [5]. Notice that while
we use the ground truth shadow mask for training, during
testing we estimate shadow masks using the shadow detec-
tion network proposed by Zhu et al.[41].

4.2. Shadow Matte Prediction Network

Our linear illumination model (Eq. 4) can relight the pix-
els in the umbra area (fully shadowed). The shadowed pix-
els in the penumbra (partially shadowed) region are more
challenging as the illumination changes gradually across
the shadow boundary [14]. A binary shadow mask can-
not model this gradual change. Thus, using a binary mask
within the decomposition model in Eq. 5 will generate an
image with visible boundary artifacts. A solution for this is
shadow matting where the soft shadow effects are expressed
via the values of a blending layer.
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Figure 3: A comparison of the ground truth shadow mask and our shadow matte. From the left to right: The input
image, the relit image computed from the parameters estimated via SP-Net, the ground truth shadow mask, the final results
when we use the shadow mask, the shadow matte computed using our M-Net, and the final shadow-free image when we use
the shadow matte to combine the input and relit image. The matting layer handles the soft shadow and does not generate
visible boundaries in the final result. (Please view in magnification on a digital device to see the difference more clearly.)

In this paper, we train a deep network, M-Net, to pre-
dict this matting layer. In order to train M-Net, we use
Eq. 5 to compute the output of our framework where the
shadow matte is the output of M-Net. Then the loss function
that drives the training of M-Net is the L1 distance between
output image and ground truth training shadow-free image,
marked as “reconstruction loss” in Fig. 2. This is equivalent
to computing the actual value of the shadow matte via Eq.
7 and then training M-Net to directly output this value.

Fig. 3 illustrates the effectiveness of our shadow mat-
ting technique. We show in the figure two shadow removal
results which are computed using a ground-truth shadow
mask and a shadow matte respectively. This shadow matte
is computed by our model. One can see that using the bi-
nary shadow mask to form the shadow-free image creates
visible boundary artifacts as it ignores the penumbra. The
shadow matte from our model captures well the soft shadow
and generates an image without shadow boundary artifacts.

We design M-Net based on U-Net [26]. The M-Net in-
puts are the shadow image, the relit image, and the shadow
mask. We use the shadow mask as input to M-Net since the
matting layer can be considered as a relaxed shadow mask
where each value represents the strength of the shadow ef-
fect at the location rather than just the shadow presence.

5. Experiments
5.1. Dataset and Evaluation Metric

We train and evaluate on the ISTD dataset [34]. ISTD
consists of image triplets: shadow image, shadow mask,
and shadow-free image, captured from different scenes.
The training split has 1870 image triplets from 135 scenes,
whereas the testing split has 540 triplets from 45 scenes.

We notice that the testing set of the ISTD dataset needs
to be adjusted since the shadow images and the shadow-
free images have inconsistent colors. This is a well known
issue mentioned in the original paper [34]. The reason is
that the shadow and shadow-free image pairs were captured

Shad. Image Original GT Corrected GT

Figure 4: An example of our color correction method.
From left to right: input shadow image, provided shadow-
free ground truth image (GT) from ISTD dataset, and the
GT image corrected by our method. Comparing to the input
shadow image on the non-shadow area only, the root-mean-
square distance of the original GT is 12.9. This value on our
corrected GT becomes 2.9.

at different times of the day which resulted in slightly dif-
ferent environment lights for each image. For example, Fig.
4 shows a shadow and shadow-free image pair. The root-
mean-square difference between these two images in the
non-shadow area is 12.9. This color inconsistency appears
frequently in the testing set of the ISTD dataset. On the
whole testing set, the root-mean-square distance between
the shadow images and shadow-free images in the non-
shadow area is 6.83, as computed by Wang et al.[34].

In order to mitigate this color inconsistency, we use lin-
ear regression to transform the pixel values in the non-
shadow area of each shadow-free image to map into their
counterpart values in the shadow image. We use a linear
regression for each color-channel, similar to our method
for relighting the shadow pixels in Sec. 4.1. This sim-
ple transformation transfers the color tone and brightness
of the shadow image to its shadow-free counterpart. The
third column of Fig. 4 illustrates the effect of our color-
correction method. Our proposed method reduces the root-
mean-square distance between the shadow-free image and
the shadow image from 12.9 to 2.9. The error reduction for
the whole testing set of ISTD goes from 6.83 to 2.6.



5.2. Shadow Removal Evaluation

We evaluate our method on the adjusted testing set of
the ISTD dataset. For metric evaluation we follow [34]
and compute the RMSE in the LAB color space on the
shadow area, non-shadow area, and the whole image, where
all shadow removal results are re-sized into 256 × 256 to
compare with the ground truth images at this size. Note
that in contrast to other methods that only output shadow
free images at that resolution, our shadow removal system
works for input images of any size. Since our method re-
quires shadow masks, we use the model proposed by Zhu
et al.[41] pre-trained on the SBU dataset [32] for detect-
ing shadows. We take the model provided by the author
and fine-tune it on the ISTD dataset for 3000 epochs. This
model achieves 2.2 Balance Error Rate on the ISTD test-
ing set. To remove the shadow effect in the image, we first
use SP-Net to compute the shadow parameters (w, b) using
the input image and the shadow mask computed from the
shadow detection network. We use (w, b) to compute a re-
lit image which is input to M-Net, together with the input
image and the shadow mask to output a matte layer. We ob-
tain the final shadow removal result via Eq. 5. In Table 1,
we compare the performance of our method with the recent
shadow removal methods of Guo et al.[13], Yang et al.[38],
Gong et al.[12], and Wang et al.[34]. All numbers are com-
puted on the adjusted testing images so that they are directly
comparable. The first row shows the numbers for the input
shadow images, i.e. no shadow removal performed.

We first evaluate our shadow removal performance us-
ing only SP-Net, i.e. we use the binary shadow mask com-
puted by the shadow detector to form the shadow-free im-
age from the shadow image and the relit image. The binary
shadow mask is obtained by simply thresholding the out-
put of the shadow detector with a threshold of 0.95. As
shown in column “SP-Net” (third from the right) in Fig. 8,
SP-Net correctly estimates the shadow parameters to relight
the shadow area. Even with visible shadow boundaries, SP-
Net alone outperforms the previous state-of-the-art, reduc-
ing the RMSE on the shadow area by 29%, from 13.3 to
9.5.

We then evaluate the shadow removal results using both
SP-Net and M-Net, denoted as “SP+M-Net” in Tab. 1 and
Fig. 8. As shown in Fig. 8, the results of M-Net do not con-
tain boundary artifacts. In the third row of Fig. 8, SP-Net
overly relights the shadow area but the shadow matte com-
puted from M-Net effectively corrects these errors. This is
because M-Net is trained to blend the relit and shadow im-
ages to create the shadow-free image. Therefore, M-Net
learns to output a smaller weight for a pixel that is overly lit
by SP-Net. Using the matte layer of M-Net further reduces
the RMSE on the shadow area by 17%, from 9.5 to 7.9.

Overall, our method generates better results than other
methods. Our method does a better job at estimating the

Input Wang et al.[34] Ours GT

Figure 5: Comparison of shadow removal between our
method and ST-CGAN [34]. ST-CGAN tends to produce
blurry images, random artifacts, and incorrect colors of the
lit pixels while our method handles all cases well.

overall illumination changes compared to the model of
Gong et al., which tends to overly relight shadow pixels,
as shown in Fig. 8. Our method does not show color incon-
sistencies within the relit area contrary to all other methods.
Fig. 5 qualitatively compares our method and ST-CGAN,
which illustrates common issues present in images gener-
ated by deep networks [15, 40]. ST-CGAN generally gen-
erates blurry images and introduces random artifacts. Our
method, albeit not perfect, handles all cases well.

Our method fails to recover the shadow-free pixels prop-
erly as shown in Fig. 6. The first row, shows how our
method overly relights the shadowed area while in the sec-
ond row, the color of the lit area is incorrect.

Finally, we trained and evaluated two alternative designs
that do not require shadow masks as input: (1) The first is an
end-to-end shadow-removal system where we jointly train a
shadow detector together with our proposed SP-Net and M-
Net. This framework is harder to train due to the increase
in the number of network parameters. (2) The second is a
version of our framework that does not input the shadow
masks into both SP-Net and M-Net. Hence, SP-Net and M-
Net need to learn to localize the shadow areas implicitly.



Table 1: Shadow removal results of our networks com-
pared to state-of-the-art shadow removal methods on
the adjusted ground truth. (∗) The method of Gong et
al.[12] is an interactive method that defines the shadow/non-
shadow regions via user inputs, thus generates minimal er-
ror on the non-shadow area. The metric is RMSE (the lower,
the better). Best results are in bold.

Methods Shadow Non-Shadow All

Input Image 40.2 2.6 8.5

Yang et al. [38] 24.7 14.4 16.0
Guo et al. [13] 22.0 3.1 6.1
Wang et al.[34] 13.4 7.7 8.7
Gong et al. [12] 13.3 2.6* 4.2

SP-Net (Ours) 9.5 3.2 4.1
SP+M-Net (Ours) 7.9 3.1 3.9

Our Method with Alternative Settings

With a Shad. Detector 8.4 5.0 5.5
No Input Shadow Mask 8.3 4.9 5.4

Input Ours GT

Figure 6: Failure cases of our method. In the first row, our
method overly lights up the shadow area. In the second row,
our method generates incorrect colors.

As can be seen in the two bottom rows of Tab. 1, both de-
signs achieved slightly worse shadow removal results than
our main setting.

5.3. Dataset Augmentation via Shadow Editing

Many deep learning work focus on learning from more
easily obtainable, weakly-supervised, or synthetic data [2,
19, 21, 22, 29, 18, 17]. In this section, we show that we
can modify shadow effects using our proposed illumination
model to generate additional training data.

Given a shadow matte α, a shadow-free image, and pa-

Syns. Image Real Image Syns. Image
wsyn = w × 0.8 wsyn = w × 1.7

Figure 7: Shadow editing via our decomposition model.
We use Eq. 8 to generate synthetic shadow images. As we
change the shadow parameters, the shadow effects change
accordingly. We show two example images from the ISTD
training set where in the middle column are the original im-
ages and in the first and last column are synthetic.

Table 2: Shadow removal results of our networks train
on the augmented ISTD dataset. The metric is RMSE
(the lower, the better). Training our framework on the augu-
mented ISTD dataset drops the RMSE on the shadow area
from 7.9 to 7.4.

Methods Train. Set Shad. Non-Shad. All

SP-Net Aug. ISTD 9.0 3.2 4.1
SP+M-Net Aug. ISTD 7.4 3.1 3.8

rameters (w, b), we can form a shadow image by:

Ishadow = Ishadow-free · α+ Idarkened · (1− α) (8)

where Idarkened has undergone the shadow effect associated
to the set of shadow parameters (w, b). Each pixel i of
Idarkened is computed by:

Idarkened
i = (Ishadow-free

i − b) · w−1 (9)

For each training image, we first compute the shadow
parameters and the matte layer via Eqs. 4 and 7. Then, we
generate a new synthetic shadow image via Eq. 8 with a
scaling factor wsyn = w × k. As seen in Fig. 7, a lower
w leads to an image with a lighter shadow area while a
higher w increases the shadow effects instead. Using this
method, we augment the ISTD training set by simply choos-
ing k = [0.8, 0.9, 1.1, 1.2] to generate a new set of 5320
images, which is four times bigger than the original train-
ing set. We augment the original ISTD dataset with this
dataset. Training our model on this new augmented ISTD
dataset improves our results, as the RMSE drops by 6%,
from 7.9 to 7.4, as reported in Tab. 2.



Input Guo et al. Yang et al. Gong et al. Wang et al. SP-Net SP+M-Net Ground
[13] [38] [12] [34] (Ours) (Ours) Truth

Figure 8: Comparison of shadow removal on ISTD dataset. Qualitative comparison between our method and previous
state-of-the-art methods: Guo et al.[13], Yang et al.[38], Gong et al.[12], and Wang et al.[34]. “SP-Net” are the shadow
removal results using the parameters computed from SP-Net and a binary shadow mask. “SP+M-Net” are the shadow
removal results using the parameters computed from SP-Net and the shadow matte computed from M-Net.

6. Conclusions

In this work, we have presented a novel framework for
shadow removal in single images. Our main contribution
is to use deep networks as the parameters estimators for
an illumination model. Our approach has advantages over
previous approaches. Comparing to the traditional meth-
ods using an illumination model for removing shadows, our
deep networks can estimate the parameters for the model
from a single image accurately and automatically. Compar-
ing to deep learning methods that perform shadow removal
via an end-to-end mapping, our shadow removal framework
outputs images with high quality and no artifact since we
do not use the deep network to output the per-pixel values.
Our model clearly achieves state-of-the-art shadow removal

results on the ISTD dataset. Our current approach can be
extended in a number of ways. A more physically plausi-
ble illumination model would help the framework to output
more realistic images. It would also be useful to develop
a deep-learning based framework for shadow editing via a
physical illumination model.
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