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Abstract. We propose an approach to accurately predict regions of pan-
creatic cancer in whole-slide images (WSIs) by leveraging a relatively
large, but noisy, dataset. We employ a noisy label classification (NLC)
method (called the NLC model) that utilizes a small set of clean training
samples and assigns the appropriate weights to training samples to deal
with sample noise. The weights are assigned online so that the network
loss approximates the loss for the clean samples. This method results
in a 9.7% performance improvement over the baseline non-NLC method
(the Baseline-Noisy model). We use both methods in an ensemble setup
to generate labels for a large training dataset to train a classifier. This
classifier outperforms a classifier trained with manually annotated data
by 2.94%-3.74% in terms of AUC for testing patches in WSIs.
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1 Introduction

We target the problem of automatically detecting regions of pancreatic cancer
in WSIs. Segmentation of cancer regions is a fundamental operation in digital
pathology image analysis [7,9]. Pancreatic cancer segmentation is particularly
important since it can be utilized to characterize immune responses that have
been shown to affect survival outcomes and treatment response in pancreatic
cancer patients [3]. A challenge to using deep learning in this task is the dif-
ficulty of generating detailed and large training datasets. In pancreatic cancer,
malignant cells are typically arranged in irregularly shaped and poorly formed
glands that infiltrate surrounding tissues. There is a wide spectrum of hetero-
geneity in the appearance of tumor cells, combined with the fact that a majority
of the cancer region is comprised of non-cancer stromal and immune cells [5].
This morphologic complexity significantly limits highly detailed and fine-grained
annotations because the annotation process is too laborious and time consuming.

In order to address this challenge, we propose an approach that formulates the
cancer region detection problem as a noisy label classification problem. Annotated
cancer regions are considered noisy due to the lack of specific delineation and
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Fig. 1: A WSI with human annota-
tion. The red box indicates a true
positive patch; the blue box in-
dicates a false positive patch ex-
tracted from the tumor annotated
regions.(Please zoom in on a digital
device).

labeling of the cancer and non-cancer components within the cancer region. Our
approach uses a small amount of high-quality ground truth data (clean data), a
larger volume of noisy data, and an ensemble of deep learning models to generate
a large training dataset for a deep learning classifier.

Studies [1] have shown that the performance of a deep learning network
can be adversely affected when it is trained with a noisy dataset. Numerous
methods have been proposed to cope with noisy label classification for natural
images [11,6,10,12,14]. Ren et al.[11] propose a technique to assign weights to
training samples by using an additional clean validation set. Their intuition is to
apply smaller weights to noisy samples and increase the weights of clean training
samples to improve the gradient update. There is relatively limited work on the
development and application of noisy label classification methods in medical
imaging data [2,4,13]. Dgani et al. [4] model label noise as a part of the deep
learning network to recover true labels of noisy samples for the task of classifying
breast micro-calcifications in multi-view mammograms.

We make the following contributions: (1) Our approach is the first method
for detection of pancreatic cancer regions in WSIs by using a large, but noisy,
training dataset combined with the noisy label classification (NLC) technique of
Ren et al. [11]; (2) We propose a pipeline to generate a large training dataset
from moderately-sized and noisy annotated data; (3) Using this pipeline, we
have generated a training dataset of 353,000 patches from 190 WSIs in The
Cancer Genome Atlas (TCGA) repository. Our experiments show that a classifier
trained with this larger noisy dataset outperforms a classifier trained with fewer
clean ground truth data only. Our approach provides a viable mechanism for
generating a large training dataset from moderately-sized and noisy annotated
data. The training dataset and our prediction results on 190 TCGA WSIs are
publicly available for use in other imaging studies 1.

2 Noisy Label Classification Approach

We propose a patch-based classification model to detect and classify cancer and
non-cancer regions. This method partitions a WSI into tiles (or patches) of P×P
pixels and predicts a class label for each tile. The classification model is trained

1 https://github.com/SBU-BMI/quip paad cancer detection

https://github.com/SBU-BMI/quip_paad_cancer_detection
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Fig. 2: Proposed training data generation pipeline. The NLC and the Baseline-
Noisy models are trained with limited manually annotated data. The Ensemble
model generates labels for patches extracted from 190 TCGA WSIs, Dtcga.

with a set of tiles from cancer and non-cancer regions. In this section, we describe
the process of generating a set of training tiles from a relatively small amount of
high-quality annotated data (clean data) and a larger set of weakly annotated
data (noisy data). The overall framework is illustrated in Figure 2.

2.1 Tumor Region Annotation and Tile Extraction

Cancer and non-cancer regions in WSIs are manually segmented by pathologists.
Pathologists are normally asked to carefully draw accurate contours around all of
the cancer and non-cancer regions after histologic examination at intermediate
and high-magnification. As a result, they often have to spend hours to gener-
ate high-quality and error-free ground-truth training datasets. In this work, the
pathologist was asked to mark the boundaries of the cancer region in each WSI
at low- to intermediate-magnification. This reduced manual annotation time but
introduced noise because non-cancer components within the cancer regions could
not be delineated at low-magnification. Note that the regions that lie outside of
the annotated cancer regions were guaranteed to be non-cancer regions and did
not introduce noise. Figure 1 shows an example annotation to identify a can-
cer region (within the red lines) with true positive and false positive patches
extracted from the annotated region.

After manual annotation, image tiles were extracted from the annotated can-
cer and non-cancer regions. To determine the best tile size for classification,
several tiles from different annotated regions were presented to the pathologist.
In our experiments, tiles were extracted at 1,000×1,000 pixels (equivalent to
500×500µm) at 20x magnification and then resized to 224×224 pixels. A patch
was labeled positive if at least 50% of its area intersects with a cancer region.
Negative patches were determined by the patch being fully from outside the area
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of the cancer regions. All other tiles were removed from the dataset. In order to
generate a set of high-quality tile annotations (i.e., clean annotation data), a set
of tiles from the cancer regions was selected randomly from the WSIs and pre-
sented to the pathologist for classification as cancer, non-cancer, or undecided.
If the pathologist could not classify a tile, the tile was labeled as undecided and
removed from the clean annotation dataset.

2.2 NLC Model: Noisy Label Classification Model

The manual annotation process ensures that tiles outside of cancer regions are
true negative samples (non-cancer tiles). Tiles extracted from cancer regions are
labeled positive, but this set contains both true and false positive samples (noisy
training samples, i.e., non-cancer tiles that represent immune and stromal cells
within the cancer region). To address this issue, we have adapted the noisy label
classification method proposed by Ren et al. [11] with a modification on how to
construct the subset of clean samples. Instead of selecting random clean samples
from all regions in the WSIs, we choose samples in cancer regions only. In our
experiments, we generated 100 clean samples per class via this strategy.

Let (x, y) be a (tile, label) tuple, and let Dn and Dc be the set of noisy and
clean samples, respectively. The network parameters, θ, can be computed by min-
imizing the training loss over the training data: minθ

∑
di∈Dn

wiLi(di, θ), where
wi is the importance weight of sample xi and Li is the loss function associated
with xi. The weights {wi}Ni=1 are treated as hyper-parameters. They are com-
puted by minimizing the loss over the clean dataset: minw≥0

∑
di∈Dc

Li(di, θ∗(w)).
For computational efficiency, the update of the weights is computed in an online
manner for each batch of training samples.

2.3 Ensemble Model of NLC and Baseline-Noisy models

The Baseline-Noisy model is the same CNN architecture used for the NLC model,
but it is trained with the noisy and clean samples without NLC. In our ex-
periments (see Section 3.2), we observed that the NLC model is better than
the Baseline-Noisy model at classifying patches in cancer regions, whereas the
Baseline-Noisy model is better at classifying patches in non-cancer regions. To
utilize the strengths of both models, an Ensemble Model computes the final pre-
diction for a tile by averaging the prediction probabilities from the NLC and
Baseline-Noisy models. We used the Ensemble model to generate labels for a
large training dataset for the Final-CNN model in Figure 2.

3 Experimental Evaluation

3.1 Experimental Setup

Datasets. We used high-resolution WSIs of pancreatic adenocarcinoma (PAAD)
scanned at 40x magnification (approximately 0.25 microns per pixel) from SEER2

2 https://seer.cancer.gov/

https://seer.cancer.gov/
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Purpose ID #WSIs #Positive #Negative #Total

Noisy Training Dn 50 21,805 47,640 69,445
Clean set Dc 14 100 100 200
Unlabeled Data Dtcga 190 - - 353,000
Testing Tseer 14 1,700 1,700 3,400
Testing Tseer2 14 850 2,550 3,400
Testing Ttcga 190 1,051 2,003 3,054

Table 1: Dataset Statistics. Dn and Dc were used in training the NLC and the
Baseline-Noisy models. The Unlabeled Data, Dtcga, was used to generate the
training set for the Final-CNN model. Tseer, Tseer2, and Ttcga are test sets.

(64 WSIs) and TCGA3 (190 diagnostic WSIs). A pathologist manually annotated
cancer and non-cancer regions in 50 WSIs that were randomly selected from the
SEER dataset to generate the noisy annotation data. This process yielded a to-
tal of 69,445 tiles; 21,805 positive/cancer tiles and 47,640 negative/non-cancer
tiles. We generated a manually annotated clean dataset of 100 positive and 100
negative tiles from the remaining 14 SEER images. The noisy and clean data
comprised the ”Manually Annotated Dataset” in Figure 2. This dataset is used
to train the NLC and the Baseline-Noisy models. We randomly extracted 353,000
tiles from 190 TCGA WSIs. This dataset, Dtcga, was used as part of the training
dataset for the Final-CNN in Figure 2.

We created three test datasets: Tseer, Tseer2, and Ttcga. Tseer consists of 1700
positive tiles and 1700 negative tiles from 14 SEER WSIs. We initially extracted
a total of 3,960 patches from cancer regions in these images for pathologist re-
view and classification as positive or negative. The pathologist labeled 1,829
patches (46.2%) as positive, 1,833 patches (46.3%) as negative, and 298 patches
(7.5%) as undecided. From the clean samples (1,829 positive and 1,833 negative
patches), we randomly selected 3,400 patches to create Tseer and 200 patches for
Dc. The second set, Tseer2, contains a subset of 850 negative and 850 positive
samples from Tseer, and 1,700 negative samples randomly extracted in the non-
tumor regions from 14 SEER WSIs. The third test dataset, Ttcga, is made up
of 3,054 patches from 190 TCGA WSIs. Table 1 shows the number of patches
extracted for the training and test datasets.

Baseline-Clean: Baseline Model on Clean Data. To evaluate the contri-
bution of the clean dataset to the performance of the network, we trained the
Baseline-Clean model by using the clean set only. The model is optimized by
minimizing the following training loss: minθ

∑
di∈Dc

Li(di, θ).

Implementation. We used the Preact-Resnet-34 architecture [8] for all of the
models: NLC, Baseline-Noisy, Baseline-Clean and the Final-CNN model. Preact-
Resnet is a common CNN that is used in many medical imaging applications.

3 https://portal.gdc.cancer.gov/

https://portal.gdc.cancer.gov/
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Fig. 3: Area Under the Curve (AUC)
of the NLC, the Baseline-Noisy, and
the Baseline-Clean evaluated on Tseer.
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Fig. 4: Accuracy of the proposed models
in tumor and non-tumor regions, and in
WSIs as evaluated on Tseer2.

We trained the NLC, Baseline-Noisy, and Baseline-Clean models with the same
training process starting with an initial learning rate of 0.001, a momentum of
0.9 and a weight decay of 0.0001. The learning rate was decreased by a factor
of 10 at the 100th and 125th epochs. The network weights of the models were
initialized randomly and the models were trained until convergence (which took
150 epochs). We used the cross entropy loss function to compute the loss for
each training sample: Li = −yilog(ŷi)− (1− yi)log(1− ŷi), where yi = 1 if the
sample is positive and yi = 0 otherwise. ŷi is the prediction score of the network
after the sigmoid function is applied.

We trained the two Final-CNN classification models with Dtgca: one model
with labels generated by the Baseline-Noisy model and the other with labels by
the Ensemble model. We used the same training procedure as for the Baseline-
Noisy model apart from starting with a learning rate of 0.01. We decreased the
learning rate by 10 at the 10th epoch. We initialized the CNNs with the weights
of the Baseline-Noisy model and trained for 15 epochs.

3.2 Results

We used the area under the ROC (Receiver Operating Characteristic) curve,
or simply AUC, as our performance metric. Figure 3 shows the AUC values of
the NLC, Baseline-Noisy, and Baseline-Clean models tested against Tseer. The
Baseline-Clean model shows the worst performance with an AUC of 0.787. We
attribute this to the fact that it was trained with a small training dataset. The
NLC model outperforms the Baseline-Noisy model by 9.7% in the tumor regions,
where the performance improvement is due to the use of the NLC method.

The experiments show that the NLC model generally performs well in tu-
mor regions, whereas the Baseline-Noisy model performs better than the NLC
model in non-tumor regions. We believe that this is because of the training
process. The NLC model is regularized by clean data (however limited) that
guides the network to better distinguish between positive and negative samples
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Fig. 5: Prediction probability maps with example WSIs generated using the
Final-CNN model trained with Dtcga with labels generated by the Ensemble
model. Images A, C show the ground truth cancer regions (red lines) segmented
by pathologists. Images B, D display the probability maps as heatmaps on two
unseen testing SEER WSIs.

in tumor regions. In contrast, there is no clear guidance from tumor regions for
the Baseline-Noisy model during training. The performance suffered in tumor
regions because negative and positive patches inside a tumor region are not ex-
plicitly distinguished from one another. Because the number of negative samples
is larger than the number of positive samples, the Baseline-Noisy model likely
learned to better detect negative samples in non-tumor regions. This observa-
tion led to the implementation of the Ensemble as shown in Figure 2. Figure 4
shows the performance of the NLC, Baseline-Noisy, and Ensemble models with
test patches in tumor regions, test patches in non-tumor regions, and all of the
test patches in the test dataset Tseer2.

# Trainset Label Source Testset AUC

1 Dn ∪Dc Human Ttcga 0.829
2 Dtcga Baseline-NoisyTtcga 0.832
3 Dtcga Ensemble Ttcga 0.860

4 Dn ∪Dc Human Tseer2 0.917
5 Dtcga Baseline-NoisyTseer2 0.928
6 Dtcga Ensemble Tseer2 0.944

Table 2: AUC values of CNNs
trained with SEER data with hu-
man annotation (#1 and #4),
and with Dtcga with labels gen-
erated by the Baseline-Noisy
model (#2 and #5), or by the
Ensemble model (#3 and #6).
Models are evaluated on 2 test
sets: Ttcga (#1 – #3) and Tseer2
(#4 – #6).

To further evaluate the proposed methods, we generated 2 sets of (tile, label)
pairs for the 353,000 patches extracted from the 190 TCGA WSIs: one with
labels generated by the Baseline-Noisy model and the other with labels generated
by the Ensemble model. As shown in Table 2, the CNNs trained with labels
generated by the Ensemble model (#3 and #6 in Table 2) outperform the CNNs
trained with manually generated labels (#1 and #4) by 3.74% on Ttcga and
by 2.94% on Tseer2 testset in terms of AUC. They also slightly outperform the
CNNs trained with labels generated by the Baseline-Noisy model. Figure 5 shows
probability heatmaps of two SEER WSIs classified by the Final-CNN model
trained with Dtcga and patch labels generated by the Ensemble model.
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4 Conclusions

Generating large training sets for pancreatic cancer region detection is very chal-
lenging due to the complexity and heterogeneity of tumor regions. Our approach
involves collecting a relatively small set of clean data in cancer regions and ap-
plying a technique for assigning weights to training samples. Our results show
that this approach can generate large training sets from noisy datasets. Given
the high cost of generating ground truth data, we believe that methods which
work with weakly-labeled, noisy data will be crucial to the broader adoption of
deep learning in digital pathology. We plan to investigate additional sampling
and noise reduction techniques to improve the quality of weakly-labeled training
datasets and cancer region detection accuracy.
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