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Abstract— Trajectory-pooled Deep-learning Descriptors have
been the state-of-the-art feature descriptors for human action
recognition in video on many datasets. This paper improves
their performance by applying the proposed eigen-evolution
pooling to each trajectory, encoding the temporal evolution of
deep learning features computed along the trajectory. This leads
to Eigen-Evolution Trajectory (EET) descriptors, a novel type
of video descriptor that significantly outperforms Trajectory-
pooled Deep-learning Descriptors. EET descriptors are defined
based on dense trajectories, and they provide complimentary
benefits to video descriptors that are not based on trajectories.
Empirically, we observe that the combination of EET descrip-
tors and VideoDarwin outperforms the state-of-the-art methods
on the Hollywood2 dataset, and its performance on the UCF101
dataset is close to the state-of-the-art.

I. INTRODUCTION

Recognizing human actions in realistic videos is difficult
due to various challenges such as background clutter, self
occlusion, and viewpoint variation. An effective and efficient
approach to handle these challenges is to use local visual
space-time descriptors, an approach that does not require
non-trivial pre-processing steps such as recognition and
segmentation. In particular, one of the best types of video
descriptor is Dense Trajectories [27] (or improved Dense
Trajectories [28]), which remain competitive even in the
recent surge of deep-learning descriptors [22], [25], [29]. In
fact, most recent human action recognition methods [1], [8],
[9], [14], [19], [29], [31] combine Dense Trajectories with
deep learning features to obtain better performance.

Human actions, by definition, are caused by the motion of
humans, and Dense Trajectories exploit this fact. The power
and success of Dense Trajectories can be attributed to their
ability to extract local descriptors along humans’ motion.
The key idea is to densely sample feature points and track
them in the video based on optical flow. Typically, the feature
points are tracked for 15 frames, leading to trajectories with
a temporal span of 15 frames. The improved Dense Trajecto-
ries method [28] explicitly estimates the camera motion and
prunes away trajectories from the background; this method
only retains trajectories from humans or objects of interest.
For each trajectory, multiple descriptors are computed along
the trajectory to capture shape, appearance, and motion in-
formation. In particular, each trajectory leads to four feature
vectors: Trajectory, Histogram of Oriented Gradients [4],
Histogram of Optical Flow (HOF), and Motion Boundary
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Histogram (MBH). Recently, Wang et al. [29] proposed
to improve trajectory features by aggregating deep-learning
descriptors (based on Two-stream CNN [22]) along each
trajectory. This led to the current state-of-the-art descriptors
called Trajectory-pooled Deep-learning Descriptors (TDD).

However, TDD ignores the temporal evolution of features
along the trajectories, which turns out to be important for
classifying human actions. For each trajectory, TDD first
computes a sequence of feature vectors (based on Two-
stream CNN [22]), one vector at each time step of the
trajectory. Subsequently, the feature vectors are averaged to
represent the trajectory, and this is the main problem of TDD,
because averaging is a summary operator that throws away
much information, including the evolution of the features
along the trajectory. In this work, we propose an alternative
way to look at a sequence of feature vectors: it can be seen as
an ordered set of one-dimensional functions. Each function
corresponds to the evolution of a feature over time. Instead of
using the average value to summarize a function, we propose
to represent it as a linear combination of basis functions. The
basis functions can be optimally determined using Principle
Component Analysis (PCA) to find the principle directions
of feature evolution. Finally, the trajectory is represented
as one or several vectors of PCA coefficients. We refer to
this process as Eigen-Evolution pooling. This process yields
Eigen-Evolution Trajectory (EET) descriptors as illustrated
in Figure 1.

Eigen-Evolution pooling is as efficient as average pooling.
The basis functions for feature evolution can be precom-
puted, and computing an EET descriptor is equivalent to
a single matrix vector multiplication. This process is still
efficient even when multiple EET descriptors are needed,
i.e., computing EET1, EET2, etc. The main computational
bottleneck is not due to the pooling operation, but the process
of computing CNN feature vectors along densely populated
trajectories. To speed up this procedure, we first compute
the video-wide convolution feature maps. We then use each
trajectory’s coordinates to access its corresponding deep-
learning features.

EETs are local descriptors and they can be used in any
standard recognition pipeline for action recognition. In this
paper, we use EET descriptors with Fisher Vector encod-
ing [21] and Support Vector Machines [26]. We evaluate EET
descriptors on Hollywood2 [20] and UCF101 [24] datasets
and find that they outperform the current trajectories-based
descriptors. When using EET descriptors in conjunction with
a video pooling method, the combined method outperforms978-1-5386-2335-0/18/$31.00 c©2018 IEEE
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Figure 2: As described in Equation 3, each trajectory is represented as a linear combination of k predefined
basis trajectories. In this paper, we use DCT basis to compactly represent trajectories.

segmenting video sequences. Ours is the first paper to use this dual representation in the structure
from motion problem, and to note that a generic basis can be defined in trajectory space which
compactly represents most real trajectories.

3 Representing Nonrigid Structure
The structure at a time instant t can be represented by arranging the 3D locations of the P points in
a matrix S(t) 2 R3£P ,

S(t) =
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#
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The complete time varying structure can be represented by concatenating these instantaneous struc-
tures as S3F£P = [S(1)T S(2)T · · · S(F )T ]T . In [2], each instantaneous shape matrix S(t) is
approximated as a linear combination of basis shapes,

S(t) =
X

j

cj(t)Sj , (1)

where Sj 2 R3£P is a basis shape and cj(t) is the coefficient of that basis shape. If the set of
observed structures can be compactly expressed in terms of k such basis shapes, S has a rank of at
most 3k. This rank constraint can be restated by rearrangement of S as the following rank k matrix,
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The row space of this matrix corresponds to the shape space. Since the row and column space of a
matrix are of equal dimension, it follows that the columns of S§ are also spanned by k vectors. We
call the column space of this matrix the trajectory space and note that it enjoys a dual relationship
with the shape space. Specifically, if the time varying shape of an object can be expressed by a
minimum of k shape basis, then there exist exactly k trajectory basis vectors that can represent the
same time varying shape.

To represent the time varying structure in terms of trajectory basis, we consider the structure
as a set of trajectories, T (i) = [Tx(i)T Ty(i)T Tz(i)T ]T , (see Figure 1(b)) where Tx(i) =
[X1i, · · · ,XFi]T , Ty(i) = [Y1i, · · · , YFi]T , Tz(i) = [Z1i, · · · , ZFi]T are the x, y, and z coordinates
of the ith trajectory. As illustrated in Figure 2, we describe each trajectory as a linear combination
of basis trajectory,
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where µj 2 RF is a trajectory basis vector and axj(i), ayj(i) and azj(i) are the coefficients corre-
sponding to that basis vector. The time varying structure matrix can then be factorized into an inverse
projection matrix and coefficient matrix as S3F£P = £3F£3kA3k£P , where A = [AT
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Figure 2: As described in Equation 3, each trajectory is represented as a linear combination of k predefined
basis trajectories. In this paper, we use DCT basis to compactly represent trajectories.
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Fig. 1. Illustration of the Eigen-Evolution Trajectory (EET) Descriptors. (a): given a trajectory, we consider the spatiotemporal volume encapsulating
the trajectory and extract a sequence of deep-learning feature vectors for the volume. (b, c): the sequence of feature vectors can be viewed as an ordered
set of one-dimensional functions. Each function can be decomposed as a linear combination of basis functions. The set of coefficients that correspond to
a basis function defines an EET descriptor. We refer to them as EET1, EET2, · · · , based on the order of the basis functions (subfigures d, e, f).

the current state-of-the-art recognition performance on the
Hollywood2 dataset.

II. RELATED WORKS

Hand-crafted descriptors. Feature descriptors are important
for human action recognition, and much previous work has
been devoted to the design of local features [5], [15], [18],
[28], [34], which are often robust to background clutter,
self occlusion, and viewpoint variation in realistic video
clips. There are various ways to extract informative regions
from a video clip. For instance, Space Time Interest Points
[18] use 3D Harris corner detector, while Cuboid [5] uses
temporal Gabor filters. In this paper, we choose the improved
Dense Trajectories (iDT) [28] due to its good performance.
Each trajectory leads to four feature vectors: Trajectory,
Histograms of Oriented Gradient [4], Histograms of Optical
Flow, and Motion Boundary Histograms. These 4 descriptors
are computed along the trajectory to capture information
about shape, appearance, motion, and the change of motion,
respectively.

Deep-learning descriptors. Deep learning has achieved
great success in image based visual recognition tasks [11],
[12], [16], [23]. There has been some attempts to develop
deep architectures for action recognition [22], [25], [30] as
well. Wang et al. [29] propose to improve dense trajectories
descriptors by aggregating deep-learning descriptors (based
on Two-stream CNN [22]) along each trajectory. This leads
to the current state-of-the-art descriptors called Trajectory-
pooled Deep-learning Descriptors (TDD).

Pooling methods. We propose a method for pooling infor-
mation along a trajectory. Our method encodes the temporal
evolution along the trajectory, addressing the problem of the
averaging pooling. We are not the first to realize the problem
of average pooling. Hoai & Zisserman [13] proposed to use
the orderly weighted averaging instead of averaging. This
approach has also been applied to spatial pooling [32], [33].

There is a connection between the proposed eigen-
evolution pooling with rank pooling [10]. Rank pooling can
be applied to any temporal sequence. A popular method is
VideoDarwin, which applies rank pooling to the sequence
of video frames. Rank pooling has been applied to another
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Fig. 2. Illustration of computing deep-learning descriptors for trajecto-
ries. Given a video, We extract the dense trajectories and the convolutional
feature maps. Each trajectory is associated with a sequence of feature vectors
f1, · · · , fL ∈ Rd, with d being the number of CNN feature maps and L
the length of the trajectory. TDD applies Average Pooling to represent a
trajectory. We propose to use Eigen-Evolution Pooling instead.

extreme level of image pixels to produce dynamic images
focusing on humans and objects of motion [1].

III. EIGEN-EVOLUTION DESCRIPTORS

In this section, we describe Eigen-Evolution Trajec-
tory (EET) descriptors, which are founded on dense trajecto-
ries, deep-learning features, and the proposed eigen-evolution
pooling.

A. Improved Dense Trajectories (iDT)

EET descriptors are defined based on dense trajectories.
To extract dense trajectories, we use the improved imple-
mentation of [28] instead of the original dense trajecto-
ries [27]. We customize the implementation of [28] with
two modifications: (i) videos are normalized to have the
height of 360 pixels, and (ii) frames are extracted at 25
fps. These modifications are added to standardize the feature
extraction procedure across videos and datasets. They did not
significantly alter the performance of the action recognition
system. Note that each trajectory is specified as a sequence
of L = 16 points in the video space, corresponding to a
temporal span of 15 frames. The coordinates of these points
on the trajectory are used to pool deep convolutional features.

B. Eigen-Evolution Pooling

The pipeline of computing deep-learning descriptors for
trajectories is illustrated in Figure 2. Given a video, we first



extract thousands of trajectories as local interest points in
the video space, and densely apply a CNN to extract the
convolutional feature maps. Subsequently, for each trajectory,
we consider a spatiotemporal volume encapsulating that
trajectory. The length of the volume is the same as the
length of the trajectory, and the width and and height of
the volume are defined by the scale of the trajectory. Each
trajectory-based volume is associated with a sequence of
feature vectors f1, · · · , fL ∈ Rd, with d being the number
of CNN feature maps and L the length of the trajectory. The
current state-of-the-art trajectory-based method, TDD [29],
uses the average of f1, · · · , fL to represent the trajectory,
i.e., u0 = 1

L

L
t=1 ft. Average pooling is a simple approach,

but it throws away the temporal progression of the feature
vectors along the trajectory. In order to capture the temporal
evolution of the feature vectors, we propose eigen-evolution
pooling to replace average pooling.

Let F = [f1, · · · , fL] ∈ Rd×L represent a sequence of
feature vectors. Instead of considering F as a collection of
columns, we propose to look at F as a list of rows. Let ai
denote the row of F, i.e., F = [a1, · · · ,ad]T . Each row ai ∈
RL is a one-dimensional function that corresponds to the
evolution of a feature over time. Instead of using the average
value to summarize a function, we propose to represent it as
a linear combination of basis functions.

We propose to use a set of basis functions that minimizes
the reconstruction errors. Suppose we have a set of orthonor-
mal basis functions G = [g1, · · · ,gk] ∈ RL×k,GTG = Ik
with a coupled encoder W ∈ Rk×L, such that a function
a can be decomposed into a linear combination of basis
functions Gc, c ∈ Rk, and the coefficient vector c can be
obtained as the product between the input function and the
encoder, i.e., c = Wa. Note that if k (the number of basis
functions) is small, the reconstructed function Gc = GWa
might not be exactly the same as the input function a. In
order to keep as much information as possible, we propose
to find the optimal set of basis functions G, by minimizing
the reconstruction error.

G∗ = argmin
GTG=I



F



i

GWai − ai2 (1)

In the above, the first summation


F refers to the enu-
meration over multiple trajectories; each trajectory leads to
a feature matrix F. The second summation


i enumerates

through the rows of F. By setting the gradient of the loss with
respect to the encoder ∂L

∂W = 2(W−GT )


F


i aia

T
i = 0,

we have W = GT , i.e., the encoder should be exactly the
transpose of the basis functions. Then the Eq. (1) can be
simplified to:

G∗ = argmax
GTG=I

k

j=1

gT
j Bgj , (2)

where B =


F



i

aia
T
i =



F

FTF (3)

The matrix B is essentially a covariance matrix. It is the
covariance matrix between time steps, not the covariance
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Fig. 3. Visualizing Eigen-evolution functions. (a): top four eigen-
evolution functions for all features combined; the first eigen-evolution
function is similar to an average function. (b): top four eigen-evolution
functions of a single feature (chosen randomly from a list of 512 deep
learning features). Eigen-evolution functions for a single feature and all
features are similar.

matrix between features. The optimal set of basis functions
G∗ can be found using eigen decomposition:

B =

L

i=1

λieie
T
i , λ1 ≥ · · · ≥ λL. (4)

where e1, · · · , eL are the eigen vectors with corresponding
eigen values λ1, · · · ,λL. Since B is the covariance of
features over times, we refer to e1, · · · , eL as eigen evolution
functions or simply eigen evolutions. For smallest possible
reconstruction error, we must have g1 = e1, · · · ,gk = ek.

For a basis function g and a feature sequence F, Fg is
the vector of coefficients corresponding to the basis function
g. This has the same dimension as the feature vectors in F
and we refer to it as an Eigen-Evolution Trajectory (EET)
descriptor because g is an eigen-evolution function. With dif-
ferent basis functions g’s, we capture behaviors at different
evolution directions. When e1, e2, · · · , ek are used as the
basis function, we obtain k different descriptors, which will
be referred to as EET1, EET2, ..., EETk respectively.

C. Eigen-evolution functions

Figure 3(a) shows the top four eigen-evolution functions
obtained by the procedure described above for the combina-
tion of all features extracted using the spatial-stream VGG-M
model [3]. Not surprisingly, the first function is similar to
the average function; the function is almost flat with a slight
upward curve in the middle.

It is possible to use different set of basis functions for
different features for optimal reduction of reconstruction
errors, but we found no benefit of doing so. Figure 3(b)
shows the top four eigen-evolutions obtained for a single
feature that is chosen randomly from the list of all features
in the deep learning feature vector associated with TDD.
Comparing Figure 3(a) and Figure 3(b), we observe little
difference between the two sets of basis functions. Therefore,
for simplicity and efficiency, we propose to use a single set
of eigen-evolution functions for all features.

We also find a surprising connection between the proposed
eigen-evolution pooling and rank pooling [10]. Rank pooling,
originally known as VideoDarwin [10], is a method to
aggregate relevant information over time and encode the
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temporal progression. The idea is to find a direction in the
feature space that preserves the temporal order of a sequence
of feature vectors. Rank pooling, however, is computationally
intensive, requiring solving a Rank SVM formulation every
time we need to encode a sequence of feature vectors. To
overcome the efficiency issue, Bilen et al. [1] proposed an
approximate formulation for rank pooling. Given a sequence
of feature vectors f1, · · · , fL, they first compute the L2-
normalized accumulated feature vectors: Ft =


t

i=1 fi


2
.

Approximate rank pooling is essentially the sum pooling
of feature differences (Fj − Fi) over all time intervals
1 ≤ i < j ≤ L:

u1 =


1≤i<j≤L

(Fj − Fi) =

L

t=1

(2t− L− 1)Ft. (5)

The pooling weights of rank pooling is plotted in Fig-
ure 4(b). This function is similar to the second eigen-
evolution function obtained for sequences of L2-normalized
accumulated feature vectors {Ft}Lt=1. Note that the eigen-
evolution functions are learned from data and they are the
principle evolution directions. In this case, it is interesting
that the second principle direction is similar to the direction
that preserves temporal progression. An advantage of eigen-
evolution over rank pooling is that eigen-evolution is more
general. Eigen-evolution can be applied to any sequence of
feature vectors, not just L2-normalized accumulated feature
vectors. Furthermore, rank pooling only provides a single
descriptor that corresponds to the second principle evolution
direction, while eigen-pooling provides a principle approach
to obtain multiple descriptors with complementary benefits.

D. Convolutional Features

Eigen evolution is a general pooling method that is not
restricted to deep learning features. However, in this paper,
we confine our experiments to CNN feature vectors. The
procedure to compute CNN feature maps is flexible with a
variety of options. We can choose which CNN model and
which convolutional layer to be used to extract the feature
maps. The spatial resolution of the input video can also vary,
because the convolutional layers do not require a specific size
for the input as in the case of a fully-connected layer. There

are also several different methods for normalizing the feature
maps. In the following, we discuss these options in detail.

1) Feature Map Extraction: We first discuss some options
for extracting convolutional feature maps.

• Two-stream CNN. In principle, any kind of CNN archi-
tecture can be used to extract convolutional feature maps.
In our implementation, we follow the original TDD paper
and use a Two-stream CNN provided by [29]. The model
is trained on UCF-101 dataset and it consists of a spatial
and a temporal CNN. The spatial CNN is based on VGG-
M-2048 model and fine-tuned with individual RGB frames
(224×224×3); the temporal CNN has a similar structure, but
its input is a volume of stacked optical flows (224×224×2F,
where F = 10 is the number of flow maps).

To extract convolutional feature maps, we make two
modifications to the original model. First, we make the model
fully-convolutional by removing all the fully-connected lay-
ers. Second, we pad zeros to each convolution layer’s input
with the size of the pad being half the size of the convolu-
tional kernels. This is to avoid the boundary-shrinking effect
of when applying convolution.

• Input Scale. The size of the input RGB frames and optical
flow images can vary, because we only use convolutional
layers and convolutional layers do not require a fixed input
size. Having a larger input size means each neuron will
look at a smaller neighborhood (receptive field) and produce
features at a finer scale. Combining descriptors at different
input scales can improve the classification results.

• Spatial Feature Maps. We extract frames from videos at
25fps and resize them into a predefined scale (360p×480p).
Subsequently we feed individual frames into the pre-trained
spatial CNN and take the output of the ‘conv4’ or ‘conv5’
layer as the spatial feature maps for each video, as suggested
in the original TDD method [29].

• Temporal Feature Maps. The process of computing tempo-
ral feature maps is similar to that of computing spatial feature
maps, except we feed into the pre-trained temporal CNN
with 10 consecutive flow images (with horizontal and vertical
motion channels). The flow images are computed at 25fps
using a GPU version of TVL1 algorithm, and subsequently
resized into a predefined scale as well. For computing the
temporal CNN descriptors, we used the ‘conv3’ or ‘conv4’
layer’s output as the temporal feature maps.

2) Feature Map Normalization: After the feature maps are
extracted, they are normalized. Traditionally, normalization
has been widely used for hand-crafted local descriptors
such as HOG, HOF, and MBH. Here we consider two
normalization methods for convolutional feature maps: in-
channel and in-voxel.

• In-channel normalization. Figure 5 (left) illustrates the in-
channel normalization method, which is L∞ normalization of
each individual feature channel across the video’s spatiotem-
poral volume. This normalization is to ensure each feature
channel ranges in the same interval, and thus contributes
equally to final representation.
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Fig. 5. Illustration of Feature Map Normalization. Left: in-channel
normalization is performed within each individual feature channel; Right:
in-voxel normalization is performed within each individual voxel.

• In-voxel normalization. Figure 5 (right) illustrates the in-
voxel normalization method. It is L∞ normalization of each
individual voxel across the feature channels. This ensures
each voxel ranges in the same interval, and consequently
makes equal contribution to the final representation.

E. Fisher Vector encoding

After computing the local descriptors, we use Fisher
Vector encoding [21] to represent an entire video. A Fisher
Vector encodes both first and second order statistics of
the feature descriptors (using a Gaussian Mixture Model
(GMM)). Fisher Vector outerformed the bag-of-word ap-
proach for action classification [28].

For each type of descriptors, we first sample a subset
of 1,000,000 data points. We use PCA to de-correlate the
descriptors and reduce the dimension to D (D = 64 for
CNN-based descriptors; D is half of the original dimension
for iDT descriptors), and then train a GMM with K = 256
mixtures. Finally, each video is represented with a 2KD
dimensional Fisher Vector, which is subsequently power
normalized (α = 0.5) and L2 normalized, as in [21], [28].

After Fisher Vector encoding, we train one-vs-all
SVMs [26] for action classification. After learning the clas-
sifiers, given a test video, we compute the probability of
each action by normalizing the scores across actions with
a softmax function [31]. To combine multiple descriptor
types, we compute the average kernel, which is equivalent
to concatenating the corresponding Fisher Vectors.

IV. EXPERIMENTS

A. Datasets

We evaluate the performance of EET descriptors on two
datasets: Hollywood2 [20] and UCF101 [24]. The Holly-
wood2 dataset has 12 action classes and contains 1707 video
clips collected from 69 different Hollywood movies. The
videos are split into a training set of 823 videos and a testing
set of 884 videos. The training and testing videos come from
different movies. We augment the training set with horizon-
tally flipped training videos, and report the mean Average
Precision as the performance measure on Hollywood2. The
UCF101 dataset contains 101 action categories with 13,320
action videos collected from YouTube. Each category has
at least 100 video clips. The dataset has three different

TABLE I
CHOSEN CONFIGURATION FOR EET DESCRIPTORS

Component Used Configuration
model Two-stream VGG-M-2048

scale 360p× 480p (UCF101)
180p× 240p (Hollywood2)

layer spatial: conv4
temporal: conv3

normalization in-voxel

TABLE II
EET WITH DIFFERENT TYPES OF FEATURE SEQUENCES

Sequence Preprocess EET1 EET2 EET3

ft none 77.5 81.8 80.5
Ft (Eq.5) accum + L2 78.0 82.3 81.7

Performance of EET descriptors with two different types of feature
sequences. {ft}: original feature sequence. {Ft}: the L2-normalized
accumulative sequence (Eq. (5)).

training/test splits. We use top-1 accuracy as the evaluation
metric for each training/test split in UCF101.

B. Configuration of Feature Maps

The feature extraction process as four configurable com-
ponents: model, layer, scale, normalization. For model and
layer, we adopt the same models and best layers used in the
TDD paper [29]. For scale, we compare three input sizes:
360p×480p, 240p×320p, 180p×240p and find that the EET
descriptors perform best at scale 360p × 480p on UCF101
and 180p×240p on Hollywood2. For normalization, we find
that in-voxel normalization is slightly better than in-channel
normalization for EET descriptors. The reason might be, with
in-voxel normalization, each voxel is equally represented so
eigen-evolution pooling is more effective in discerning the
changes among adjacent voxels. In the end, the setting given
in Table I is used for the evaluation of EET descriptors.

C. Evaluation of EET Descriptors

• EET with sequence preprocessing. As explained before,
eigen-evolution pooling can be applied to the original feature
sequence {ft} or the L2-normalized accumulative sequence
{Ft} (Eq. (5)). Table II compares the performance of EET on
these two sequences. As can be observed, the performance
of EET(1,2,3) is consistently better when applied on the
sequence {Ft}. Hereafter, we will use the {Ft} sequence
to compute EET descriptors in our experiments.

• Eigen-Evolution Pooling & Rank Pooling. We have dis-
cussed a surprising connection between the eigen-evolution
pooling and the rank pooling. Table III compares the perfor-
mance of EET with the rank-pooled descriptors. When being
used alone, EET2 outperforms EET1 and EET3, and EET2
achieves similar performance with rank pooling method.
When combined, the EET descriptors outperform the rank-
pooled descriptor, owing to the additional information which



TABLE III
EET DESCRIPTORS VERSUS RANK-POOLED DESCRIPTORS

Rank-pooled EET1 EET2 EET3 EET1+2 EET2+3 EET1+2+3

82.4 78.0 82.3 81.7 82.8 83.4 83.8

TABLE IV
COMPARING EET AND TDD – TRAJECTORY-LEVEL POOLING

Dataset FeatureMap TDD EET Improvement

Hollywood2
spatial 43.5 54.4 10.9
temporal 63.1 66.0 2.9
2-stream 64.7 68.7 4.0

UCF101
(split 1)

spatial 77.5 84.4 6.9
temporal 77.9 81.0 3.1
2-stream 86.1 88.8 2.7

EET descriptors significantly outperform TDD on both the spatial and
temporal feature maps, indicating the importance of preserving the
temporal evolution of appearance and motion along the trajectories.

is ignored by rank-pooling. To balance between the perfor-
mance and efficiency, we propose to combine EET2 and
EET3 as the default EET descriptor.

• EET & TDD. We evaluate the performance of the proposed
EET descriptors (computed with only one layer and one scale
per stream, as specified in Table I) on both Hollywood2
and UCF101 datasets. The experimental results are summa-
rized in Table IV. Note that we can apply eigen-evolution
pooling in both forward and backward directions (also for
rank pooling in [10], [9]). The forward and backward EET
descriptors are then fused by concatenating their correspond-
ing Fisher Vectors. As can be observed, compared to the
TDD descriptors, EET descriptors significantly improve the
recognition performance on both the spatial and temporal
streams, indicating the importance of preserving the temporal
evolution of appearance and motion along the trajectories.
The advantage is most evident on the spatial stream, where
EET outperforms TDD by a large margin on both datasets
(from 43.5% to 54.5% on Hollywood2; from 77.5% to 84.4%
on UCF101).

D. Video-level pooling methods for EET descriptors

EET descriptors are local; each descriptor is confined to
the spatio-temporal volume of a trajectory. For a video,
EET descriptors can be densely computed, and they must be
aggregated to produce the feature vector representation for
the video. We refer to this procedure as video-level pooling,
and there are different ways for doing so. In this section,
we compare the performance of different video-level pooling
methods for EET descriptors.

Each trajectory has a temporal span of 15 frames, and we
assign each trajectory to its middle frame (the 8th frame).
Each frame is therefore associated with a set of trajectories,
and we can compute an unnormalized Fisher Vector for
each frame. Subsequently, a video can be represented as a
sequence of frame-wise unnormalized Fisher Vectors φ1, · ·
·,φT . To compress the information from the sequence into
a single feature vector, we can apply different video-level

TABLE V
COMPARISON OF VIDEO-LEVEL POOLING METHODS.

Dataset Descriptor AP HAP RP HAP+RP

Holly.

EET-spatial 54.4 54.5 50.7 54.4
EET-temporal 66.0 67.2 62.5 66.6
EET-2-stream 68.7 69.9 65.0 69.2

iDT 69.4 71.6 73.5 73.8

EET-2-stream (HAP) + iDT (HAP + RP) 76.8

UCF101
(split 1)

EET-spatial 84.4 84.8 83.5 84.4
EET-temporal 81.0 82.8 81.9 82.8
EET-2-stream 88.8 89.6 88.2 89.2

iDT 84.0 85.4 85.0 85.7

EET-2-stream (HAP) + iDT (HAP + RP) 89.6

For EET, Hierarchical average pooling (HAP) outperforms both rank
pooling (RP) and average pooling (AP). On Hollywood2, the fusion of
EET and iDT significantly improves the performance.

pooling methods. Until now, we have been using average
pooling to represent an entire video as φ = norm(

T
t=1 φt).

As aforementioned, we set the norm function to be power
normalization (α = 0.5) followed by L2 normalization.
We can also apply video-level rank pooling, i.e., Video-
Darwin [10]). Aside from average pooling (AP) and rank
pooling (RP), we also propose a simple and effective pooling
method called hierarchical average pooling (HAP). To obtain
the final feature vector using hierarchical average pooling,
we run a sliding window (size: 20, stride: 1) and perform
average pooling and normalization within each window, and
subsequently perform average pooling over the entire video
again. We suggest to use HAP instead of AP, because HAP
consistently outperforms AP in our experiments.

Table V compares the performance different video-level
pooling methods (for EET descriptors and iDT descriptors)
on Hollywood2 and UCF101 datasets. As can be observed,
hierarchical average pooling (HAP) outperforms both rank
pooling (RP) and average pooling (AP) for EET descriptors.
For iDT, the combination of HAP and RP achieves the
best performance. Interestingly, the improvement of rank
pooling over average pooling at the video level is more
evident for the temporal stream, whereas at the trajectory
level the improvement is higher for the spatial stream.
On the Hollywood2 dataset, the fusion between EET and
iDT descriptors achieves significant improvement. On the
UCF101 dataset, however, the combination of EET with iDT
does not lead to much better performance.

E. Comparison to the state-of-the-art

To achieve the best recognition performance, we compute
EET descriptors with multiple convolutional layers (spa-
tial: ‘conv4’+‘conv5’; temporal: ‘conv3’+‘conv4’) and input
scales (180p×240p, 240p×320p, 360p×480p). We also fuse
EET with iDT descriptors the same way as did in Table V.
Table VI and Table VII compare the proposed method with
the state-of-the-art methods. On the Hollywood2 dataset,
our method outperforms previous state-of-the-art by 2%.
On the UCF101 dataset, we achieve performance on par
with previous state-of-the-art methods [2], [6], [7], [8], [30],
which used a much deeper architecture (Inception, ResNet)



TABLE VI
COMPARISON WITH STATE-OF-THE-ART ON HOLLYWOOD2.

Method mAP(%)

2-stream TSN (pretrained) [30] ∗62.6
iDT [28] 64.7
Non-Action [31] 71.0
SSD + RCS [13] 73.6
VideoDarwin [10] 73.7
HRP + iDT [9] 76.7

TDD [29] ∗68.4
TDD + iDT [29] ∗73.0

EET (Proposed) 74.5
EET + iDT (Proposed) 78.7

∗ denotes results from our implementation.

TABLE VII
COMPARISON WITH STATE-OF-THE-ART ON UCF101.

Method Accuracy(%)

iDT [28] 85.9
Two Stream CNN [22] 88.0
Multi-skip Feature Stacking [17] 89.1
DIN + iDT [1] 89.1
C3D + iDT [25] 90.4
HRP + iDT [9] 91.4
RNN-FV + iDT [19] 94.1
3-stream TSN [30] 94.2
ST-ResNet + iDT [6] 94.6
ST-Multiplier + iDT [7] 94.9
I3D [2] 98.0

TDD [29] 90.3
TDD + iDT [29] 91.5

EET (Proposed) 91.8
EET + iDT (Proposed) 92.2
EET + iDT + 2-stream TSN (Proposed) 94.5

and additional training data (Kinectics). In principle, the
proposed method can be used with these newer CNN models
for further improvement. The fairest comparison is between
EET, TDD, and 2-Stream CNN, all of which used the same
architecture (VGG-M) and training data.

V. CONCLUSIONS

In this paper, we have proposed Eigen-Evolution Trajec-
tory (EET) descriptors, which integrate the benefits of dense
trajectories, deep-learning features, and eigen-evolution pool-
ing. Deep architectures are utilized to extract discriminative
feature maps, and eigen-evolution pooling is applied to each
trajectory, capturing the temporal evolution of appearance
and motion along the trajectory. The EET descriptors sig-
nificantly outperform the previous state-of-the-art trajectory-
based descriptors. Combining EET descriptors that preserve
short-term evolution and VideoDarwin that captures long-
term dynamics, we are able to advance the state-of-the-art
performance on the Hollywood2 dataset.
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