
ConvNets with Smooth Adaptive Activation Functions for
Regression

Le Hou1 Dimitris Samaras1 Tahsin M. Kurc1,2 Yi Gao1 Joel H. Saltz1,3
1Stony Brook University 2Oak Ridge National Laboratory 3Stony Brook University Hospital

Abstract

Within Neural Networks (NN), the parame-
ters of Adaptive Activation Functions (AAF)
control the shapes of activation functions.
These parameters are trained along with other
parameters in the NN. AAFs have improved
performance of Convolutional Neural Net-
works (CNN) in multiple classification tasks.
In this paper, we propose and apply AAFs
on CNNs for regression tasks. We argue that
applying AAFs in the regression (second-to-
last) layer of a NN can significantly decrease
the bias of the regression NN. However, using
existing AAFs may lead to overfitting. To
address this problem, we propose a Smooth
Adaptive Activation Function (SAAF) with
a piecewise polynomial form which can ap-
proximate any continuous function to arbi-
trary degree of error, while having a bounded
Lipschitz constant for given bounded model
parameters. As a result, NNs with SAAF can
avoid overfitting by simply regularizing model
parameters. We empirically evaluated CNNs
with SAAFs and achieved state-of-the-art re-
sults on age and pose estimation datasets.

1 Introduction

Convolutional Neural Networks (CNNs), improved the
state-of-the-art on multiple classification tasks (He et
al. 2015) and regression tasks (Belagiannis et al. 2015;
Szegedy et al. 2013; Bulat et al. 2016). We advocate
the use of Adaptive Activation Functions (AAF) in
NNs applied to regression problems for two reasons.
First, recent studies showed that AAFs improve the
classification performance of NNs (Agostinelli et al.
2015; He et al. 2015; Jin et al. 2016). Second, the
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Figure 1: An illustration of the construction of the
proposed SAAF with piecewise polynomial form (best
viewed in color). Top: a piecewise quadratic SAAF f(x).
In each quadratic segment, the second order derivative
f ′′(x) is defined by weight wi. Regularizing the parame-
ters w1,2,3 leads to a small second order derivative and
Lipschitz constant, which results in bounded model
complexity. Bottom: f(x) equals to the summation of
the red curves. Eq. 3 gives the formal definitions of the
red curves and basis functions p1,2(x), b21,2,3(x).

output of a regression NN should be accurate for a range
of ground truth values, as opposed to a binary label.
A fixed NN tends to have larger biases in regression
tasks, compared to classification tasks. To address
this problem, we argue (in Sec. 2) that applying AAFs
on the regression (second-to-last) layer can reduce the
model bias in regression problems more efficiently than
adding more neurons.

In contrast to conventional non-adaptive activation
functions, AAFs have parameters that are trained along
with other parameters in the NN. It is rather challeng-
ing to construct and apply AAFs. If an AAF is too
simple, it may not be able to approximate the optimal
activation function to a desired degree of approxima-
tion error, especially for regression problems. On the
other hand, complex AAFs might lead to severe overfit-
ting. Designing the AAF with the right approximation
power and complexity for each application is contingent
on experience and trial-and-error.

AAFs can be defined as combinations of sub-functions
or nested sub-functions including the sigmoid, exponen-
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Figure 2: We demonstrate that SAAFs with piecewise polynomial form have regularized smoothness. NNs with
SAAFs have bounded model complexity, as explained in Sec. 4. In each plot, there are only 21 training data
pairs (input x with ground truth t) but 5000 linear or quadratic segments. Thus, most polynomial segments do
not have any data to train on. However, the resulting curve is smooth and not overfitting given a reasonable L2
regularization on the parameters in SAAFs. The parameter regularization affects the magnitude of the first and
second order derivatives for the piecewise linear and quadratic SAAFs respectively.

tial, sine, etc. with adjustable parameters (Bai et al.
2009; Xu et al. 2000; Ismail et al. 2013; Trottier et al.
2016). Using these AAFs led to better classification
accuracy or architectures with fewer model parameters.
Their major drawback is that the set of sub-functions
needs to be selected carefully for different datasets,
so that the optimal shape of the activation function
is approximated to a desired degree of error, without
introducing too many parameters. Piecewise polyno-
mials, e.g. Splines, can handle control points implic-
itly (Guarnieri et al. 1999; Hong et al. 2011; Scardapane
et al. 2016; Scardapane et al. 2016), but need complex
training processes. Additionally, the many parameters
that describe each polynomial segment, increase the
probability of severe overfitting. Non-Spline piecewise
linear or quadratic parameterizations (Hikawa 2003;
Mathias et al. 2012) have issues of discontinuity, non-
differentiability or unbounded smoothness.

Note that in most of the methods mentioned so far,
one global AAF is applied on all neurons. Recent re-
search in deep CNNs proposed to learn an AAF for
each layer of neurons or even individual neurons (Good-
fellow et al. 2013; He et al. 2015; Agostinelli et al. 2015;
Jin et al. 2016), as an alternative for reducing model
bias. Extending the non-adaptive Rectified Linear
Units (ReLU) to Parameterized Rectified Linear Units
(PReLU) (He et al. 2015) introduce a parameter which
controls the slope of the activation function. Activation
functions at different layers have the same form, but
different slope. A maxout neuron (Goodfellow et al.
2013) outputs the maximum of a set of linear functions.
Adaptive Piecewise Linear Units (APLU) (Agostinelli
et al. 2015) learn the position of break points and the
slope of linear segments simultaneously during training.
The Multi-Bias Activation (MBA) (Li et al. 2016) can
be viewed as a type of piecewise linear AAF. However,

the total number of NN parameters would be increased
N times using MBA with N biases, increasing the NN
complexity even more. As each neuron learns its own
maxout function, APLU, or MBA, the number of pa-
rameters in the NNs significantly increases with no
clear principles of how to avoid severe overfitting.

There currently exist two types of AAFs: simple AAFs
that do not guarantee a bounded approximation ability
and complex AAFs that cannot avoid severe overfitting
in a principled manner. Viewed in the bias-variance
tradeoff paradigm (Bishop 2006), existing AAFs do not
guarantee bounded bias and complexity (variance). We
propose a novel AAF called Smooth Adaptive Activa-
tion Function (SAAF) with piecewise polynomial form.
Compared with existing AAFs, given a fixed degree of
bias, an SAAF can achieve lower complexity; given a
fixed degree of complexity, an SAAF can achieve lower
bias. In particular, an SAAF can be regularized under
any complexity in terms of the Lipschitz constant of
the function and can approximate any function simpler
than the given complexity (i.e., with a smaller Lipschitz
constant) to an arbitrarily small bias. To regularize an
SAAF’s Lipschitz constant, one can simply apply L2
regularization on its parameters (shown in Sec. 4.2).
In contrast, there are no methods that regularize the
complexity of existing AAFs in a principled manner.
The Lipschitz constant of an AAF is a good measure-
ment of model complexity because the fat-shattering
dimension of a model is bounded by its Lipschitz con-
stant (shown in Sec. 4.3). Figs. 1 and 2 show examples
and properties of SAAFs. Our contributions are:

1. Unlike other AAFs, our Smooth Adaptive Acti-
vation Function can achieve low model bias and
complexity at the same time:

(a) Low model bias: SAAFs can approximate any
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one-dimensional function to any degree of error,
given sufficient number of polynomial segments.

(b) Low model complexity: NNs with SAAFs have
bounded model complexity in terms of fat-
shattering dimension, given a bounded magni-
tude of the parameters, regardless of the num-
ber of polynomial segments.

2. We propose to use SAAFs on the regression (second-
to-last) layer of regression CNNs. Our method out-
performs current state-of-the-art regression CNNs
significantly on age and pose estimation datasets.

2 Regression neural networks

In this section we decompose the learning process of a
regression NN to a summation of many one-dimensional
function learning processes. Based on this, we ar-
gue that applying AAFs on the regression (second-
to-last) layer can achieve a small model bias using
a small number of parameters. Without loss of gen-
erality, assume a regression NN has only one output
neuron which outputs a real value y as the predic-

tion, expressed as: y =
m∑
i=1

hioi + b, where o1,2,...,m

are the outputs from neurons in the previous layer,
h1,2,...,m are the weights of the output neuron’s input
synapses, and b is a bias term. We train the NN to
minimize the expected regression loss on the training
set E = arg min

θ
E[(t − y)2], where θ ⊇ {h1,2,...,m, b}

is the set of trainable parameters of the NN. For a
multi-layer NN, the output of a neuron oi is computed
by applying the i-th activation function fi on the in-
put pi, expressed as oi = fi(pi). Note that f1,2,...,m
do not necessarily have the same form. Notably, for
almost all of the activation functions, there exists a
function gi such that hifi(pi) = fi

(
gi(hi, pi)

)
holds for

all hi, oi. For example, gi(hi, pi) = hipi for ReLU,
Leaky ReLU (LReLU) (Maas et al. 2013) and PReLU.

Thus: y =
m∑
i=1

fi
(
gi(hi, pi)

)
+ b. In other words, the

final prediction of a regression NN is equivalent to the
summation of activation function outputs. We denote
gi(hi, pi) as xi, therefore:

y =

m∑
i=1

fi(xi) + b. (1)

We refer to the neurons/layer connected to the out-
put neuron as “regression neurons/layer”. These
regression neurons have activation functions f1,2,...,m.

Theorem 1. We consider the regression loss E and the
set of hypotheses functions defined by Eq. 1. We assume
on a training set, the loss is minimized such that y = t.
We also assume x1,2,...,m are mutually independent on
the training set. Then fi(xi) = E[t|xi] + Bi for all i,

where E[t|xi] is the expectation of ground truth t given
xi and Bi is a constant.

The proof of Theorem 1 is in App. B. Theorem 1 shows
that fi(xi) is a one-dimensional function that approxi-
mates t given feature xi, ignoring constant B. Thus, it
is important to be able to learn this one-dimensional
function that can achieve small model bias. Although
the assumption of mutually independent x1,2,...,m in
Theorem 1 might not always hold, we found in practice
that usually fi(xi) approximates t in real world datasets,
as shown in Fig. 3. If all of the activation functions
f1,2,...,m have the same simple form, e.g., ReLU, then
all of the features xi must be correlated with t linearly.
To generate those features xi, more neurons and layers
are needed. We propose to model f1,2,...,m as AAFs. In
this way, we can add a small number of parameters to
achieve small model bias efficiently. In our experiments,
applying AAF on the regression layer adds less than
1% to the total number of NN parameters and less than
10% to the training time.

3 Smooth adaptive activation function

We introduce the Smooth Adaptive Activation Function
(SAAF) formally in this section and show its advantages
in Sec. 4. Given n + 1 real numbers a1,2,...,n+1 in
ascending order and a non-negative integer c, using
1(·) as the indicator function, we define the SAAF as:

f(x) =
c−1∑
j=0

vjp
j(x) +

n∑
k=1

wkbck(x), (2)

where

pj(x) =
xj

j !
, b0

k(x) = 1(ak ≤ x < ak+1)

bck(x) =

∫∫
. . .

∫ x

0︸ ︷︷ ︸
c times

b0
k(α) dcα.

(3)

The SAAF f(x) is piecewise polynomial. Predefined
parameters c and ak are the degree of polynomial seg-
ments and break points respectively. The parameters
wk and vj are learned during the training stage. bck and
pj are basis functions and f(x) is a linear combination
of these basis functions. b0

k is the boxcar function. b1
k is

the integral of b0
k, which looks like the step function. b2

k

is the integral of b1
k, which looks like the ramp function

or ReLU. The degree of the polynomial segments in
f(x) is determined by the degree of the basis functions
bck and pj . Fig. 1 visualizes the construction of f(x).

Based on this parameterization, we can see that the
order of polynomial segments can be defined to an
arbitrary number. This allows the SAAF to have a
larger variety of forms compared to existing AAFs.
Additionally, for each polynomial segment, there is
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only one parameter controlling the c-th order derivative
within the segment. Derivatives of lower order are
guaranteed to be continuous across the entire SAAF,
including the locations of break points. By regularizing
the parameters w1,2,...,n, the magnitude of the c-th
order derivative is regularized. In other words, the
resulting activation function is smooth. As a result,
NNs with SAAFs are smooth functions. Fig. 2 gives
examples of one-dimensional function learning.

4 SAAF properties

An SAAF can approximate any one-dimensional func-
tion to any desired degree of accuracy given a sufficient
number of segments. NNs with SAAFs have bounded
fat-shattering dimension when the NN parameters are
regularized. We now discuss the properties and advan-
tages of SAAFs in detail.

4.1 SAAFs as universal approximators

Piecewise polynomials can approximate any one-
dimensional continuous function to any degree of error
given sufficiently small polynomial segments (Larson
et al. 2013). Because the range of a neuron’s input is
bounded in practice, an SAAF with a sufficient number
of polynomial segments can approximate any function
to any degree of error. Moreover, an SAAF with a
finite Lipschitz constant can approximate any function
that has a smaller Lipschitz constant.

4.2 A NN with SAAF is Lipschitz continuous

We show that because the smoothness of an SAAF
can be regularized, a feedforward NN with SAAFs is
Lipschitz continuous, given a bounded magnitude of
the parameters in the NN. A function f is Lipschitz
continuous if there exists a real constant L such that
for any α1 and α2 in the domain of f, |f(α1)− f(α2)| ≤
L||α1 −α2||. We use the Euclidean norm in this paper.
The constant L is the Lipschitz constant of f.

Assuming a bounded range of input x, it is clear that
the maximum derivative magnitude of f(x) is its Lip-
schitz constant. Therefore, L can be derived by inte-
grating the parameters w1,2,...,n and v1,2,...,c−1.

L = max
x

∣∣∣∣ ∫∫ . . .

∫ x

0︸ ︷︷ ︸
c−1 times

w(α) dc−1α

+

c−1∑
j=1

∫∫
. . .

∫ x

0︸ ︷︷ ︸
j−1 times

vj dj−1α

∣∣∣∣,
(4)

where w(α) =
∑n
k=1 wkbck(α). For example, given

c = 1, L = maxk |wk|. Given c = 2, L = maxx|v1 +∫ x
0

w(α)|. It has been shown (Anthony et al. 2009)
that if the activation functions in an NN are Lipschitz
continuous, then the NN is Lipschitz continuous.

Note that NNs with other activation functions such as
the Sigmoid, ReLU and PReLU are also Lipschitz con-
tinuous given a bounded magnitude of their parameters.
Therefore, NNs with combinations of such activation
functions and SAAFs are also Lipschitz continuous.
However, NNs with these activation functions tend to
have large model bias, as argued in Sec 2.

4.3 Bounded model complexity

In this section, we prove an upper bound of the
model complexity in terms of fat-shattering dimen-
sion (Bartlett et al. 1994) for any Lipschitz continous
model (function) such as NNs with SAAFs. Given
two models with the same training error, the model
with a lower fat-shattering dimension has a better ex-
pected generalization error (Anthony et al. 2009). Up-
per bounds of the fat-shattering dimension have been
proven (Bartlett 1998; Anthony et al. 2009) for Lips-
chitz continuous NNs under assumptions such as the
magnitude of NN parameters. We prove an exact upper
bound for any Lipschitz continuous regression model
with no other model assumptions. The definition of
fat-shattering dimension is in App. A.

Theorem 2. Suppose all data points lay in a d-
dimensional cube of unit volume. All functions in
function set F have a Lipschitz constant L. Then,
the set F has bounded fat-shattering dimension:

fatF (γ) ≤ d+
Ldd !

γd
√

2d(d+ 1)
. (5)

The proof of theorem 2 is in App. B. From theorem 2,
when L decreases, the fat-shattering dimension de-
creases polynomially. For an NN with SAAFs, since
L is bounded by the magnitude of the NN parame-
ters, regularizing the parameters will reduce model
complexity polynomially.

5 Experiments

We tested CNNs (implemented in Theano (Bastien et
al. 2012)) with our proposed method and other state-of-
the-art activation functions on eight real world datasets.
The activation functions we tested are:

• Rectified Linear Units (ReLU) (Maas et al. 2013),
Sigmoid (Sig), Tanh, and Leaky Rectified Linear
Units (LReLU) (Maas et al. 2013). These are widely
used non-adaptive activation functions. LReLU has
a fixed negative slope α when the input is negative.
We set α = −1/3 in all experiments.

• Parametric Rectified Linear Units (PReLU) (He
et al. 2015). Compared to LReLU, PReLU is an
AAF with a learnable α. In CNNs, PReLUs that
share the same filter weights also share the same α.
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Table 1: Range of error reduction rates using our SAAF
compared to other activation functions on all datasets.

Sig Tanh ReLU LReLU
-1 - 13% 5 - 31% 4 - 22% 4 - 21%

PReLU APLU MBA
5 - 15% 7 - 22% -1 - 15%

• Adaptive Piecewise Linear Units
(APLU) (Agostinelli et al. 2015). APLU is
a piecewise linear parameterization that is different
from SAAF. In all experiments, we use 5 linear
segments as suggested by (Agostinelli et al. 2015).

• Multi-Bias Activation (MBA) (Li et al. 2016). Mul-
tiple ReLUs at different biases are applied to each
neuron. Thus each neuron has multiple outputs.
We use 4 biases as suggested by (Li et al. 2016).

• Piecewise linear and quadratic SAAF (SAAFc1 and
SAAFc2), our proposed method. In CNNs, neurons
that share the same filter weights also share the
same SAAF parameters. We randomly chose 22 as
the number of segments, based on our proof that
the model complexity can be bounded regardless of
the number of polynomial segments. Break points
are distributed from −1.1 to 1.1.

According to Sec 2, AAFs on the regression neurons
are especially important. Therefore we also tested the
variant of applying AAFs only to regression neurons,
instead of all neurons. In this case, neurons other
than the regression neurons used ReLU or LReLU.
We distinguish AAFs only on regression neurons with
prefix R- such as R-APLU, R-SAAFc1 etc.

We applied the following data augmentation methods.
First, we rotated the images by -20 to 20 degrees.
Second, input images were cropped from the original
images. The height and width of the cropped image
were 87.5% of the original image. Third, the colors
of the cropped image were slightly perturbed. Fourth,
the aspect ratios were adjusted by +/− 0.15. Finally,
images were horizontally flipped. During testing, we
only used the center crop and its flip without further
augmentation. Then the predictions were averaged. In
all experiments, we added 10−5 times the L2 norm of
all CNN parameters as a regularization term in the
loss function. We also used batch normalization (Ioffe
et al. 2015) before all activation functions to alleviate
the vanishing/exploding gradient problem.

On eight datasets, NNs with proposed SAAFs reduced
the error of NNs with ReLU, LReLU, PReLU, APLU,
MBA by 11% in average, shown in Tab. 1. Notably, on
several age and pose estimation datasets, we followed
the training and testing set split scheme in the literature
and achieved state-of-the-art results.

Table 2: Results on the Images of Groups
dataset (Gallagher et al. 2009) using a 22-layer wide
ResNet (Zagoruyko et al. 2016). Our SAAF outper-
formed other activation functions measured by accuracy
of exact match (AEM%) and with-in-one-category-off
match (AEO%). (*used facial landmark detection)

Methods AEM AEO Methods AEM AEO

single-CNN* (Dong et al. 2016) 54 90

R-Sig 51.0 91.7 Sig 54.2 93.0
R-Tanh 50.8 90.9 Tanh 51.3 92.1
R-ReLU 50.7 92.2 ReLU 50.7 92.2
R-LReLU 48.6 92.0 LReLU 49.3 91.9
R-PReLU 46.7 90.0 PReLU 47.7 90.9
R-APLU 49.9 91.4 APLU 50.3 92.0
R-MBA 48.0 90.5 MBA 48.9 91.0
R-SAAFc1 53.3 92.7 SAAFc1 52.3 92.7
R-SAAFc2 53.8 92.3 SAAFc2 52.1 92.2

Table 3: Results on the Images of Groups dataset (Gal-
lagher et al. 2009) using a pretrained VGG 16-layer
network (Zagoruyko et al. 2016). Our proposed single-
CNN method achieved state-of-the-art results. (*used
facial landmark detection)

Method AEM AEO Method AEM AEO

multi-CNN* (Dong et al. 2016) 56 92

R-Sig 56.3 96.1 R-PReLU 59.1 96.0
R-Tanh 47.8 90.4 R-APLU 55.2 95.3
R-ReLU 58.9 96.6 R-MBA 60.9 96.3
R-LReLU 59.2 96.4 R-SAAFc1 61.5 96.3

R-SAAFc2 62.0 96.7

5.1 Age estimation

The problem of automatic human age estimation has
been well studied in applications such as identity veri-
fication (Ramanathan et al. 2006) and social network
analysis (Schwartz et al. 2013). We tested four age
estimation datasets: the Images of Groups dataset (Gal-
lagher et al. 2009), the ICCV 2015 ChaLearn-AgeGuess
challenge dataset (Escalera et al. 2015), the FG-NET
dataset (Panis et al. 2014), and the Adience dataset (Ei-
dinger et al. 2014). We predicted age from face images
as a regression problem and outperformed existing
state-of-the-art methods significantly.

The Images of Groups dataset contains 3.5K training
face images and 1K testing face images. We tested
two CNN architectures: a 22-layer wide residual net-
work (Zagoruyko et al. 2016) trained from a random
initialization, and a VGG 16-layer network pretrained
on ImageNet. Results of using a wide residual network
are shown in Tab. 2. Results of using a pretrained VGG
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Table 4: Single-CNN results on the ICCV 2015
Chalearn-AgeGuess (AgeGuess) challenge validation
dataset. We used the standard error metric used in
the challenge (Escalera et al. 2015) and report perfor-
mance on the validation set. We achieved the best
single-CNN result. Better results in the challenge used
at least 4 CNNs and external datasets that are at least
100X larger than the AgeGuess dataset, for example,
the challenge winner Deep Expectation (DEX) (Rothe
et al. 2016). We compare with a single DEX CNN on
the FG-NET and Adience benchmarks in Tab. 5

Method Error Method Error

Lab219 (Escalera et al. 2015) 47.7

R-Sig 39.8 Sig 41.8
R-Tanh 43.2 Tanh 43.4
R-ReLU 41.7 ReLU 40.4
R-LReLU 42.3 LReLU 42.3
R-PReLU 41.9 PReLU 41.5
R-APLU 42.5 APLU 43.2
R-MBA 40.7 MBA 38.3
R-SAAFc1 40.4 SAAFc1 40.0
R-SAAFc2 38.7 SAAFc2 38.7

network are shown in Tab. 3. When using a pretrained
network, we only applied AAFs on the regression neu-
rons that replaced the original classification layer in
the pretrained network. Our method outperforms the
existing state-of-the-art method significantly.

The Chalearn-AgeGuess (AgeGuess) dataset was used
in the ICCV15 age estimation challenge (Escalera et al.
2015). It contains 2.4K training and 1K validation
face images. On this dataset, we defined our own 12
layer network which is a smaller version of the VGG
architecture and pretrained it on the Adience dataset.
The results are shown in Tab. 4. We achieved the best
single CNN results on the AgeGuess dataset. Better
results in the challenge used extensive prediction fusions
(at least 4 CNNs) and very large external datasets (at
least 100X larger than the AgeGuess dataset).

The FG-NET is the most popular age estimation
dataset that has been studied by over 350 publica-
tions (Panis et al. 2014). It contains 1002 images
of 82 subjects. We compare our method with the
ICCV15 age estimation challenge winner Deep Expec-
tation (DEX) (Rothe et al. 2016). Following the DEX
method, we also fine-tuned a VGG 16-layer network.
We report the Mean Absolute Error (MAE) obtained
from leave one subject out cross-validation, which is
the standard evaluation method used in the literature.
The results are shown in Tab. 5. We achieved state-of-
the-art results on this dataset.

The Adience benchmark contains 26K images in 8

Table 5: Results on the FG-NET (Panis et al. 2014) and
Adience (Eidinger et al. 2014) age estimation bench-
marks using pretrained VGG 16-layer network. Our
method outperformed the ICCV15 age estimation chal-
lenge winning method Deep Expectation (DEX) sig-
nificantly, when using no external face datasets (only
ImageNet pretrained VGG net). Using the IMDB-
WIKI dataset (Rothe et al. 2016) to further pretrain
the VGG net, we achieved state-of-the-art results on
both datasets. (*Different training and testing set split)

FG-NET Adience
Method MAE AEM AEO

DLA (Wang et al. 2015) 4.26 - -
ReLU (Levi et al. 2015) - 50.7 84.7
Cascade CNN

3.49* 52.9 88.5
(Chen et al. 2016)
DEX (Rothe et al. 2016) 4.63 55.6 89.7
DEX +IMDB-WIKI 3.09 64.0 96.6

R-Sig 4.26 59.7 94.9
R-Tanh 4.84 58.8 93.8
R-ReLU 4.59 56.5 94.0
R-LReLU 4.17 59.7 94.8
R-PReLU 4.21 59.4 94.9
R-APLU 4.46 51.4 84.0
R-MBA 4.50 54.4 91.6
R-SAAFc1 4.18 61.2 94.6
R-SAAFc2 3.87 61.3 95.1
R-SAAFc2 +IMDB-WIKI 3.01 67.3 97.4

age groups, along with a cross-validation data sep-
aration scheme. Following the state-of-the-art DEX
method (Rothe et al. 2016), we also used the pretrained
VGG 16-layer network. Results using the VGG net-
work are shown in Tab. 5. We achieved state-of-the-art
results on this dataset.

5.2 Pose estimation

Pose estimation is a fundamental problem in computer
vision (Chen et al. 2014). We estimate human pose
in a single frame. Following (Belagiannis et al. 2015),
we regress a set of 14 joint locations: bottom/top of
head, left/right ankle, knee, hip, wrist, elbow, and
shoulder. Each joint position is expressed by the x
and y coordinates. Thus, in total there are 28 real
numbers associated with each human image. Also fol-
lowing (Belagiannis et al. 2015), we used the widely
used observer-centric ground truth (Chen et al. 2014).
We tested our method on the LSP (Johnson et al. 2010)
and volleyball (Belagiannis et al. 2014) datasets contain-
ing 2000 and 1107 cropped human images respectively.
We did not use the other two datasets in (Chen et al.
2014) as they contain only 100 to 200 images. We eval-
uated with the same metric: Percentage of Correctly
estimated Parts (PCP) as in (Belagiannis et al. 2015).
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Figure 3: Examples of R-SAAFc2 learned on the LSP pose estimation dataset. Axes are scaled by a constant. We
fed training instances into the CNN to compute the inputs of regression neurons (x-axis) and the outputs of the
neurons’ SAAFs vs. ground truth (y-axis). We see that SAAFs of various shapes correlate with the ground truth.

Table 6: Averaged PCP results of NNs with different
activation functions on LSP and Volleyball pose esti-
mation datasets. Our SAAF achieved the best results.

Datasets Datasets
Methods LSP Volly. Methods LSP Volly.

ReLU by (Belagiannis et al. 2015) 63.9 81.7

R-Sig 64.3 83.5 Sig 63.4 82.1
R-Tanh 59.1 77.7 Tanh 57.4 75.4
R-ReLU 62.5 80.7 ReLU 62.6 80.7
R-LReLU 63.1 81.4 LReLU 63.1 81.4
R-PReLU 62.1 81.8 PReLU 63.2 81.9
R-APLU 63.5 80.3 APLU 61.9 80.0
R-MBA 65.7 82.4 MBA 64.4 82.5
R-SAAFc1 68.3 84.6 SAAFc1 67.2 83.9
R-SAAFc2 68.6 84.5 SAAFc2 66.6 82.1

We used the existing regression CNN (Belagiannis et al.
2015) as baseline. We used the same CNN architecture,
Tukey’s biweight loss function, and just changed the
CNN’s activation function. In all datasets, NNs with
the proposed SAAFs achieved better results than NNs
with other activation functions, shown in Tab. 6. In
order to examine the effect of adding additional layers
with non-adaptive activation functions compared to
using SAAFs, we increased the number of layers from
9 to 16 and put more neurons in each layer (324%
more NN parameters and 85% more training time)
to create a larger ReLU NN. On the LSP dataset,
the Percentage of Correctly estimated Parts (PCP)
score increased from 62.6% to 66.2%, still lower than
the performance (68.6%) of the smaller R-SAAFc2
NN. Using the cascade of four CNNs (Belagiannis et
al. 2015), our proposed method (R-SAAFc2 cascade)
outperformed the existing regression CNN (Belagiannis
et al. 2015), using no external datasets, as shown in
Tab. 7. Note that recent approaches (Wei et al. 2016;
Bulat et al. 2016) achieved much better results on the
LSP dataset, using external datasets (ImageNet, MPII
pose dataset (Andriluka et al. 2014), LSP extended)
that are at least 100X larger than LSP.

5.3 Facial attractiveness prediction

We learn personal preferences of facial attractiveness
on web-quality face images. We built a dataset by
applying Viola-Jones’ face detection (Viola et al. 2001)
on female images downloaded from hotornot.com. The
dataset contains 2K RGB face images of 120×90 pixels.
Three individuals independently rated the images with
facial attractiveness scores ranging from 0 to 20. We
randomly selected one of the raters to provide the
training and testing labels. Labels from the other
two raters were only used to compute inter-observer
agreement. We used the same CNN architecture in
Sec. 5.1. Results are shown in Tab. 8.

5.4 Learning the circularity of nuclei

Hematoxylin and eosin stained pathology images pro-
vide rich information to diagnose, classify and study
cancer. One diagnostic criterion is the shape of nu-
clei (Braak et al. 2003). We used CNNs to learn the
circularity of nuclei in pathology images of glioma (a
type of brain cancer). We used the training set from the
MICCAI 2015 nucleus segmentation challenge (Fara-
hani 2015) which contains 1K images of nuclei. We
derived the ground truth circularity measurements from
the ground truth nuclear segmentation masks and used
CNNs to learn the circularity from nuclear images. The
results are shown in Tab. 8.

6 Conclusions

We have showed that using Adaptive Activation Func-
tions (AAF) on the regression (second-to-last) layer
can improve the performance of a regression CNN. We
proposed a novel Smooth Adaptive Activation Func-
tion (SAAF) which has multiple advantages. First, it
can approximate any function to a desired degree of
error. Second, using parameter regularization, an NN
with SAAF represents a Lipschitz continuous function
which leads to bounded model complexity in terms
of the fat-shattering dimension. As a result, the NN
can achieve lower model bias and complexity than NNs
with other AAFs. We tested different setup of SAAF in
various CNN architectures on eight real world datasets
and achieved state-of-the-art age estimation results. In
the future, we will test SAAF for classification.
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Table 7: PCP results of our proposed method vs. the current state-of-the-art regression CNN on two pose
estimation datasets. The cascade of 4 CNNs with R-SAAFc2 achieved the best average PCP.

Dataset Method Head Torso U-Legs L-Legs U-Arms L-Arms Avg.

LSP

(Belagiannis et al. 2015) 72.0 91.5 78.0 71.2 56.8 31.9 63.9
(Belagiannis et al. 2015) Cascade 83.2 92.0 79.9 74.3 61.3 40.3 68.8
R-SAAFc2 76.6 90.9 81.3 74.6 64.5 38.8 68.6
R-SAAFc2 cascade 83.9 92.8 82.6 77.8 65.6 45.8 72.0

(Belagiannis et al. 2015) 90.4 97.1 86.4 95.8 74.0 58.3 81.7
Volley- (Belagiannis et al. 2015) Cascade 89.0 95.8 84.2 94.0 74.2 58.9 81.0
ball R-SAAFc2 88.6 99.3 94.7 94.7 82.5 60.7 85.3

R-SAAFc2 cascade 91.5 99.3 95.2 94.8 81.0 54.1 84.1

Table 8: RMSE and Pearson correlation results of facial
attractiveness prediction and learning the circularity
of nuclei using CNNs with AAFs. For the facial attrac-
tiveness dataset, the inter-observer agreement between
three individuals is 0.702 Corr.

Facial Circularity
Attractiveness of Nuclei

Method RMSE Corr. RMSE Corr.

R-PReLU 4.189 0.693 0.508 0.631
R-APLU 4.404 0.656 0.618 0.626
R-MBA 4.171 0.701 0.479 0.666
R-SAAFc1 3.860 0.739 0.483 0.649
R-SAAFc2 3.982 0.723 0.492 0.641

PReLU 4.153 0.706 0.517 0.622
APLU 4.523 0.695 0.587 0.629
MBA 4.045 0.716 0.505 0.644
SAAFc1 3.918 0.734 0.513 0.634
SAAFc2 3.801 0.745 0.498 0.642
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Appendix A Fat-shattering dimension

The fat-shattering dimension is a scalar-related di-
mension defined as follows: Suppose that F is a
set of functions mapping from a domain X to R,
D = {x1,x2, . . . ,xz} is a subset of the domain X,
and γ is a positive real number. Then D is γ-shattered
by F if there exist real numbers t1, t2, . . . , tz, such that
for all b ∈ {0, 1}z, there exists a function fb in F , such
that for all 1 ≤ i ≤ m,

fb(xi) ≥ ti + γ if bi = 1,
fb(xi) ≤ ti − γ if bi = 0.

(6)

The fat-shattering dimension fatF (γ) is the size of the
largest subset D that is γ-shattered by F as scale γ.

Appendix B Proofs of Theorems

Proof of theorem 1. From the assumption of y = t, we
have

∑
i fi(xi) + b = t on all training data. Taking the

conditional expectation of x1 on both sides, we have∑
i E[fi(xi)|x1] + b = E[t|x1]. Based on the assumption

that x1,2,...,m are mutually independent, E[f1(x1)|x1] =
f1(x1) and E[fi(xi)|x1] = E[fi(xi)] for every i ≥ 2. Thus
f1(x1) = E[t|x1] + Bi where Bi = −(b + E[f2(x2)] +
E[f3(x3)] + · · ·+ E[fm(xm)]).

Proof of theorem 2. For simplicity, we consider shat-
tering two points x1 and x2 with t1 and t2 only. With-
out loss of generality, assume t1 ≥ t2. If fb ∈ F
satisfies Eq. 6 when b1 = 1, b2 = 0, then we have
|fb(x1) − fb(x2)| ≥ |t1 − t2 + 2γ| ≥ 2γ. Denote
s = ||x1 − x2||. According to the definition of Lip-
schitz continuity, we have 2γ ≤ sL. In other words
the distance s between two points must be no smaller
than 2γ/L in order for F to possibly γ-shatter them.
Next we derive fatF (γ) which is the maximum num-
ber of points F can γ-shatter in a cube of unit vol-
ume. Those points form a simplex mesh of at least
fatF (γ)−d number of simplexes. The nodes of the sim-
plex mesh are the data points x1,2,... that we expect F
to possibly γ-shatter. The side length of each simplex
should be at least 2γ/L. Therefore the total volume
of the mesh is no smaller than Vd(2γ/L)d(fatF (γ)− d),

where Vd =
√
d+ 1 /(d !

√
2d) is the volume of a d-

dimensional regular simplex of unit side length. Be-
cause we assume the volume of the simplex mesh (where
all data points lay) is no greater than 1, we have
fatF (γ) ≤ d + (2γ/L)−d/Vd. If we expand Vd, we
derive Eq. 5.
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