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Abstract

Co-localization is the problem of localizing objects of
the same class using only the set of images that contain
them. This is a challenging task because the object detec-
tor must be built without negative examples that can lead to
more informative supervision signals. The main idea of our
method is to cluster the feature space of a generically pre-
trained CNN, to find a set of CNN features that are consis-
tently and highly activated for an object category, which we
call category-consistent CNN features. Then, we propagate
their combined activation map using superpixel geodesic
distances for co-localization. In our first set of experiments,
we show that the proposed method achieves state-of-the-art
performance on three related benchmarks: PASCAL 2007,
PASCAL-2012, and the Object Discovery dataset. We also
show that our method is able to detect and localize truly un-
seen categories, on six held-out ImageNet categories with
accuracy that is significantly higher than previous state-of-
the-art. Our intuitive approach achieves this success with-
out any region proposals or object detectors, and can be
based on a CNN that was pre-trained purely on image clas-
sification tasks without further fine-tuning.

1. Introduction

In recent years, deep learning methods have dominated
state-of-the-art results in object detection and localization
tasks [21, 25, 31, 29, 6, 34, 4, 26, 36]. However, one major
drawback for deep learning methods is that they require a
large amount of labeled training data, and data labels are ex-
pensive as they depend on extensive human efforts [32, 33].
Therefore, there is great value and importance if deep learn-
ing methods can learn to detect and localize objects accu-
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Figure 1. Object co-localization with CCFs and geodesic dis-
tance propagation. From a set of images containing a common
object, first we find the CCFs - the group of features that consis-
tently have high responses to the object images of the same class.
The CCFs then are used to form an activation map for each image,
followed by geodesic distance propagation to highlight the exact
regions of the objects.
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rately with unlabeled data. Object co-localization is one
such problem that is close to the goal of learning with un-
labeled data. In the problem of object co-localization, one
must learn to detect and localize the common object from a
set of same-class images, without any other image informa-
tion. Successful methods for the co-localization problem
should be able to localize an object through image search
using a single class-name keyword, without the need of any
pixel-level labels (e.g. bounding box and segmentation) or
negative examples. Such ability can be useful for automati-
cally generating large-scale datasets.

Recent co-localization methods typically utilize existing
region proposal methods for generating a number of can-
didate regions for objects and object parts [15, 32, 5, 20].
From the bag of candidate proposals, the set of object-
related proposals are determined based on different criteria,
such as those having high mutual similarity scores [20, 32]
or those minimizing the entropy of the score distribution
of a classifier [5]. Using object proposals significantly in-
creases processing time and hinders the scalability of the
algorithms as they depend on the quality of the object pro-
posals. In fact, region and object proposals are part of a re-
search problem of its own, and have drawbacks such as lack
of repeatability, reduced detection performance with a large
number of proposals, and difficulties in balancing precision
and recall [11].

Our method, however, does not require any object pro-
posals to perform co-localization, but only utilizes features
from a CNN that has been pre-trained on classification
tasks. The main idea in our work is that objects of the same
class share common features or parts. Moreover, these com-
monalities are central to both category representation and
detection and localization of the object. By finding those
object categorical features, their joint locations can act as
a single-shot object detector. This idea is also grounded in
human visual learning, where it is suggested that people de-
tect common features from examples of the category, as part
of the object-learning process [37]. We do this by obtaining
the CNN features of the provided set of positive images, in
order to select the features that are highly and consistently
activated, which we denote as Category-Consistent CNN
Features (CCFs). We then use these CCFs to discover the
rough object locations, and demonstrate an effective way to
propagate the feature activations into a stable object for pre-
cise co-localization, using the output of the boundary detec-
tion algorithm [24]. Figure 1 illustrates the pipeline of our
proposed framework.

In more detail, our approach begins with a CNN that
has been pre-trained for image classification on ImageNet.
Then, the images of the target category are passed through
the network. From the set of the CNN kernels, we group
them based on their maximum activations across the whole
set of images. In fact, since these images all contain the cat-

egorical object, all CCFs tend to have high and similar acti-
vations, which encourage them to be grouped into the same
cluster. Thus, we simply identify the group of kernels with
the highest average activation score as CCFs and compute a
single normalized activation probability map that associates
to this CCF set. Then, we employ an over-segmentation
into superpixels of the input image to propagate the val-
ues in the activation probability map to the entire image,
weighted by the similarities between superpixels. Such sim-
ilarities are computed via a boundary detection algorithm
and are presented as geodesic distances between superpix-
els. Finally, the precise object location can be obtained by
placing a tight bounding box around the thresholded object-
likelihood map.

We test our method on three popular datasets for the co-
localization problem. To show that our method is able to
generalize to truly unseen categories, we test our method
on six held-out Imagenet categories that were unseen, and
not part of the pre-trained CNN’s training categories. Our
experimental results show that our method achieves state-
of-the-art co-localization scores even on these ”unseen” cat-
egories.

We make three contributions in this work:

1. We propose a novel CCF extraction method that can
automatically select a set of representative features for
a category using only positive images. To the best
of our knowledge, our method is the first successful
framework for extracting representative features inside
a CNN framework.

2. We show that the set of CCFs highlights the rough
initial object regions, and can act as a single-shot de-
tector. This result is further refined with an effective
feature propagation method using superpixel geodesic
distances, that results in a distinctive object region us-
ing superpixel on the original image.

3. Our method achieves state-of-the-art performance for
object co-localization on the VOC 2007 and 2012
datasets [8], the Object Discovery dataset [27], and
the six held-out ImageNet subset categories, demon-
strating that we are able to accurately localize objects
obviating the need for region proposals.

2. Related work
Co-localization is related to work on weakly supervised

object localization (WSOL) [31, 29, 6, 34, 4, 26, 36, 38]
since both share the same objective: to localize objects from
an image. However, since WSOL allows the use of nega-
tive examples, designing the objective function to discover
the information of the object-of-interest is less challenging:
WSOL-based methods achieve higher performance on the
same datasets as compared to co-localization methods, due



to the allowed supervised training. For instance, Wang et al.
[34] uses image labels to evaluate the discrimination of dis-
covered categories in order to localize the objects. Ren
et al. [26] adopts a discriminative multiple instance learn-
ing scheme to compensate for the lack of object-level an-
notations to localize the objects based on the most discrim-
inative instances. Two recent works using CNN that share
the objective with our work are GAP [38] and GMP [22],
which both try to obtain the activation map from a CNN
representation. However, both GAP & GMP learn to find
discriminative features for object locations using additional
supervised learning, while the features discovered through
our CCF framework are representative in nature (represen-
tative may or may not be discriminative, and are similar in
concept to generative models). Our method obviates the
need for negative examples, and does not require additional
training as in GAP and GMP. Because of the supervision
that is required by those methods, it is not trivial for WSOL
approaches to be directly applied to the co-localization sce-
narios.

One challenge of co-localization is to define the criteria
for discovering the objects without any negative examples.
To fill the gap, state-of-the-art co-localization methods such
as [20, 32, 5, 15] employ object proposals as part of their
object discovery and co-localization pipelines. Tang et al.
[32] use the measure of objectness [2] to generate multiple
bounding boxes for each image, followed by an objective
function to simultaneously optimize the image-level labels
and box-level labels. Such settings allow the use of a dis-
criminative cost function [13]. This is also used in the work
of co-localization on video frames [15]. Cho et al. [5]’s
method also starts from object proposals, sharing the same
spirit with deformable part models [9] where objects are dis-
covered and localized by matching common object parts.
Most recently, Li et al. [20] study the confidence score dis-
tribution of a supervised object detector over the set of ob-
ject proposals to define an objective function, that learns a
common object detector with similar confidence score dis-
tribution. All the aforementioned methods heavily depend
on the quality of object proposals.

Our work approaches the problem from a different per-
spective. Instead of trying to fill in the gap of the negative
data and annotations that are unavailable, we find the com-
mon features shared by the objects from the positive im-
ages. Then, we use the joint locations of those features as
our single-shot object detector. Our subsequent step refines
the detected object features into a stable object by propagat-
ing their activations together. We describe the details of our
2-step approach in the following sections.

3. Extracting Category-Consistent CNN Fea-
tures

Our proposed method consists of two main steps. The
first step is to find the CCFs of a category, and obtain their
combined feature map that contains aggregated CCF acti-
vations over the rough object region. Then, the CCF acti-
vations are propagated into a stable object using superpixel
geodesic distances on the original images.

Our CCFs extraction step is indeed a feature selection
method in which we select a set of representative features
for a category from the variable pool. The variable pool
can be the set of CNN kernels in any layer, whether a con-
volutional layer or a fully connected layer. Given a set
of n object images from the same class and a pre-trained
CNN, we first compute the CNN representations for all
these n images. Assuming that there are m kernels from
the layer we want to extract the CCFs, we compute m acti-
vation vectors to represent the activation behavior of these
kernels, i.e., to which degree each kernel is activated for
each image. Specifically, for each kernel i, its activation
vector Ai is defined as: Ai = [ai,1, ai,2, . . . , ai,n]

T where
ai,j = max(F (i, j)), and F (i, j) is the CNN representation
of kernel i for image j.

Our goal in this step is to identify a subset of representa-
tive kernels for a category from the set of global candidate
kernels, that contain common features from the positive im-
ages of the same class. Since there is at least one object
of the category on every image, the activation vectors of
the representative kernels should have relatively high values
over all vector elements. Furthermore, the representative
kernels should have similar activation behavior, given that
their values associate to the same object instances. Thus,
we aim to find a set of kernels that have similar activa-
tion behavior and high average activation value. To find the
CCFs, we compute the pair-wise Lp similarities between
all pairs of kernels’ activation vectors, and cluster them us-
ing k-means. The kernels from the cluster with the highest
mean activation correspond to the CCFs.

The CCF kernels can then be used to generate the rough
object location in an image in a single-shot: given an image
from the target category, the feature maps that associates
to the CCFs are combined to form a single activation map.
Conceptually, the kernels that we seek correspond to object
parts, or some object-associated features. Thus the densely
activated area of the activation map indicates the rough lo-
cation of the target object. The final activation map is nor-
malized into a probability map whose values are in the [0, 1]
range. In Figure 2, we show the identified CCFs for the bus
category, where the activated regions describe bus-related
features and all fall within the spatial extent of the objects.



Figure 2. Examples of our CCFs for bus category. Each row is
a different example image, and each column is the activation (in
violet) of a single CNN feature in the set of our CCFs. The last
column shows the final co-localization results.

4. Stable Object Completion via Propagating
CCF Activations

The activation probability map from the CCFs automat-
ically points out only the rough location of the object. It
does not ensure a reliable object localization because:

1. The higher layer of a CNN does not guarantee a ker-
nel’s receptive-field size to cover the area of an entire
object.

2. While the feature maps contain spatial information,
they have imprecise object locations due to previous
max-pooling layers.

3. The CNN was trained discriminatively. Hence, only
the discriminative features of each object may be lo-
calized rather than the the whole object.

The geodesic distance has been shown to be effective for
many segmentation problems [17, 3, 35, 19]. Given the lo-
cations of some representative parts of the object, we uti-
lize the superpixels of the input image and their geodesic
distances computed using the image boundary map. The
boundary map and the superpixels of the input image can
then be used to effectively propagate the initial activa-
tion probability values into a complete object region. The
geodesic distance between two superpixels is the shortest
path between two superpixels where the edge weight is the
likelihood of an object boundary between two adjacent su-
perpixels, computed from the boundary probability map. In
essence, the geodesic distance compactly encodes the simi-
larity relationship between the two superpixels’ image con-
tents. Therefore, the smaller the geodesic distance between
the two superpixels, the more likely that they belong to the
same object. Based on this characteristic, we propose a sim-
ple and effective method to highlight the object region from
the activation probability map, that is both low-resolution
and contains non-smooth feature activations.

Next, we proceed to localize the object by combining su-
perpixels that belong to the same object using their geodesic
distances, which we call geodesic distance propagation.
The main idea is that if two superpixels belong to the same
object, they should have 1. a small geodesic distance, and
2. similar activation values. These concepts have been simi-
larly adopted by various works in terms of interactive image
segmentation and matting [3, 10], and are especially use-
ful in producing well differentiated object regions in this
case. Specifically, we seek to obtain a resulting global ac-
tivation map that has clear and highly boosted target ob-
ject regions, by propagating activations based on superpixel
geodesic distances.

Given an input image, we oversegment it into superpixels
using [23]. We take the combined activation map that was
obtained in the CCF identification step, and assign an en-
ergy value to each superpixel by averaging its correspond-
ing pixel values found in the activation map. For k super-
pixels, we denote the resulting flattened k × 1 superpixel
activation vector as E. Vector E can be considered as the
initial likelihood of each superpixel being within the object.
Then, We compute a k × k propagation matrix W, such
that Wi,j is the normalized amount of propagation between
superpixel i and j, with their geodesic distance denoted as
di,j , and a parameter µ for controlling the amount of acti-
vation diffusion:

Wi,j =
exp(−di,j × µ−1)∑N
k=1 exp(−di,k × µ−1)

. (1)

The propagation matrix W can then be applied to the
activation vector E directly:

E′ = WE, (2)

where E′ is the propagated activation vector of the image,
containing the globally boosted activations of the superpix-
els based on their pair-wise geodesic distances to all other
superpixels. This allows us to fill in each superpixel on the
image with their respective values from E′, and normalize
the propagated superpixel map by dividing every pixel by
the max value of the map. The result is an object-likelihood
map, on which we apply a global threshold to obtain the
region as our final object co-localization result. Finally, a
tight bounding box is placed around the maximum cover-
age of the thresholded regions within an image.

Our propagation step can be implemented in
O(n log(n) + n × e) using Johnson’s algorithm [12]
to compute all pair shortest paths (where n is the number of
superpixels, and e is the number of edges between super-
pixels on an image). Thus, our method can potentially be
applied on real-time applications. The effect of parameter
µ, which controls the amount of the activation diffusion, is
discussed in more detail in the supplementary material.



5. Experiments
We evaluate our proposed 2-step framework with dif-

ferent parameter settings to illustrate different character-
istics of our method. We also evaluate our method on
multiple benchmarks, with intermediate and final results to
show the localization effects of our proposed method. In
all of our experiments, we used two different CNN mod-
els: AlexNet[18] and VGG-19[30], both pre-trained on Im-
ageNet [28]. We use the fc6 of AlexNet and the last convo-
lutional layer of a VGG-19 network [30] as variable pool.
We used k = 5 for k-means clustering in the CCF identifica-
tion step. The final global threshold for obtaining the object
region from the object-likelihood map was set at 0.25 for all
images. It is worth mentioning that the recent state-of-the-
art co-localization method of Li et al. [20] also uses the fc6
feature of AlexNet and employs the output of EdgeBox[39]
in their experiments, which is a direct application of [24].
Our experiments using AlexNet fc6 features therefore are
directly comparable to theirs. There is, unfortunately, no
publicly available implementation of their method using
VGG19. We elaborate on some technical implementation
details in our supplementary material, including the method
to obtain the normalized activation map from fc6 kernels of
AlexNet.

5.1. Evaluation metric and datasets

We use the conventional CorLoc metric [7] to evaluate
our co-localization results. The metric measures the per-
centage of images that contain correctly localized results.
An image is considered correctly localized if there is at least
one ground truth bounding box of the object-of-interest hav-
ing more than a 50% Intersection-over-Union (IoU) score
with the predicted bounding box. To benchmark our method
performance, we evaluate our method on three commonly
used datasets for the problem of co-localization. These
are the VOC 2007 and 2012 [8], and the Object Discov-
ery dataset [27]. We also follow [20] to test our method
on the six held-out ImageNet subsets. For experiments on
the VOC datasets, we followed previous work [5, 15, 20]
that used all images on the trainval set excluding the im-
ages that only contain the object instances annotated as dif-
ficult or truncated. For experiments on the Object Discov-
ery dataset, we used the 100-image subset following [27] in
order to make an appropriate comparison with related meth-
ods. The ground truth bounding box for each image in the
Object Discovery dataset is defined as the smallest bound-
ing box covering all the segmentation ground truth of the
object.

5.2. Comparison to state-of-the-art co-localization
methods

We first evaluate our method on the 100-image subset
of Object Discovery dataset which contains objects of three

Figure 3. Object co-localization results on the Object Discovery
dataset. From the top row to the bottom row: input image, com-
bined activation map from the identified CCFs, propagated object-
likelihood map, and resulting bounding boxes. We also depict in
green the pixels with the object-region that is predicted by our
method. Our predicted bounding boxes are colored as white while
the ground truth bounding boxes are green.

classes, namely Airplane, Car, and Horse. There are 18,
11, and 7 noisy images in each class, respectively. Table
3 reports the co-localization performance of our approach
in comparison with the state-of-the-art methods on image
co-localization [13, 27, 14, 15, 5, 20]. In this small scale
setting, our method outperformed other methods in both in
individual object classes and overall.

Three examples of our co-localization approach using
VGG19 on the Object Discovery dataset are illustrated in
figure 3. The second row shows the combined activation
map from the set of identified CCFs, that acted as our
single-shot object detector. It is apparent that the combined
activation maps already provided object estimates that were
quite accurate to the location of the actual object in the im-
ages, with different parts of each object getting high val-
ues such as the tail of the airplane, the wheel of the car,
or head and tail of the horse. All these values were prop-
agated based on the superpixel geodesic distances, result-
ing in the images shown in the third row. The propagated
object-likelihood maps on the third row show that the spo-
radic activations on the background have been smoothed out
evenly, and that the non-smooth object parts and their as-
sociated activations have been boosted and completed into
complete and stable objects with significantly higher activa-



Method aero bicy bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mean
Joulin et al. [15] 32.80 17.30 20.90 18.20 4.50 26.90 32.70 41.00 5.80 29.10 34.50 31.60 26.10 40.40 17.90 11.80 25.00 27.50 35.60 12.10 24.60

Cho et al. [5] 50.30 42.80 30.00 18.50 4.00 62.30 64.50 42.50 8.60 49.00 12.20 44.00 64.10 57.20 15.30 9.40 30.90 34.00 61.60 31.50 36.60
Li et al. [20] - AlexNet 73.10 45.00 43.40 27.70 6.80 53.30 58.30 45.00 6.20 48.00 14.30 47.30 69.40 66.80 24.30 12.80 51.50 25.50 65.20 16.80 40.00

Ours - AlexNet 69.60 51.67 43.80 30.05 5.11 55.74 60.00 58.50 6.20 49.00 16.30 51.26 58.74 67.38 22.60 11.60 47.06 27.40 58.93 16.20 40.36
Ours - VGG19 71.90 61.67 48.20 27.66 11.90 63.90 59.30 71.50 5.70 37.00 12.20 44.80 66.50 71.70 18.48 11.11 36.76 29.25 66.96 22.84 41.97

Table 1. CorLoc scores of our approach and state-of-the-art co-localization methods on Pascal VOC 2007 dataset.

Method aero bicy bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mean
Cho et al. [5] 57.00 41.20 36.00 26.90 5.00 81.10 54.60 50.90 18.20 54.00 31.20 44.90 61.80 48.00 13.00 11.70 51.40 45.30 64.60 39.20 41.80

Li et al. [20] - AlexNet 65.70 57.80 47.90 28.90 6.00 74.90 48.40 48.40 14.60 54.40 23.90 50.20 69.90 68.40 24.00 14.20 52.70 30.90 72.40 21.60 43.80
Ours - AlexNet 72.58 67.40 48.73 31.22 8.22 74.05 52.42 64.75 16.04 52.09 26.09 58.64 67.40 71.97 23.99 13.07 37.55 34.25 64.20 15.64 45.02
Ours - VGG19 75.94 76.20 55.70 37.56 22.24 83.97 55.41 67.63 14.08 54.88 31.88 53.65 69.28 76.26 14.04 10.23 42.86 33.70 69.96 18.94 48.22

Table 2. CorLoc scores of our approach and state-of-the-art co-localization methods on Pascal VOC 2012 dataset.

Methods Airplane Car Horse Mean
Kim et al. [16] 21.95 0.00 16.13 12.69

Joulin et al. [13] 32.93 66.29 54.84 51.35
Joulin et al. [14] 57.32 64.04 52.69 58.02

Rubinstein et al. [27] 74.39 87.64 63.44 75.16
Joulin et al. [15] 71.95 93.26 64.52 76.58

Cho et al. [5] 82.93 94.38 75.27 84.19
Ours - AlexNet 81.71 94.38 77.42 84.50
Ours - VGG19 84.15 94.38 79.57 86.03

Table 3. Experiment on the Object Discovery Dataset. Highest
performance scores are labeled in bold.

tion magnitudes. This shows that our two-step framework
was able to generate informative single-shot object detec-
tions using the CCFs, and the subsequent stable object re-
gion via activation propagation.

The PASCAL VOC 2007 and 2012 datasets both con-
tain realistic images of 20 object classes with significantly
larger numbers of images per class. These datasets are
more challenging than the Object Discovery dataset due to
the diversity of viewpoints, and the complexity of the ob-
jects. Table 1 reports our performance on the VOC 2007
dataset. Our approach using VGG19 outperforms the state-
of-the-art method [20] by 2% on average. Our method
works particularly well on bicycle and cat with 16% and
26% higher Corloc score respectively. With AlexNet, our
method still shows a mild improvement from the state-of-
the-art method.

Results on VOC 2012 dataset are shown in table 2, show-
ing a more pronounced improvement over previous meth-
ods. Notice that VOC 2012 has twice the number of images
than the VOC 2007 dataset. Our method using AlexNet and
VGG19 achieves significantly better results than state-of-
the-art methods with 1.2% and 4.42% increase on average.

Our VGG-19 and AlexNet model was pre-trained on Im-
ageNet’s 1000 classes. While VOC 2007 and 2012 are dif-
ferent datasets from ImageNet, there are significant over-
laps between the object categories in VOC and ImageNet.
For example, the ”motorbike” class of VOC datasets is

equivalent to the ”moped” class of ILSVRC 2012 dataset.
The six subsets of the ImageNet dataset, chosen by Li et al.
[20], are held-out categories from the 1000-label classifica-
tion task, which means they do not overlap with the 1000
classes used to train VGG-19. The images and the corre-
sponding bounding box annotations were downloaded from
ImageNet website [1]. We show that our method is general-
izable to truly novel object categories with the six held-out
ImageNet subset classes. Table 4 reports the co-localization
of our method compares to [20] on the six ImageNet sub-
set. The results show that our method significantly outper-
forms the competing methods. This result demonstrates that
our method can robustly detect and localize truly unseen
categories using previously learned CNN features. Our ap-
proach outperforms the state-of-the-art method by 1.3% us-
ing a pre-trained AlexNet, and 12.8% using a pre-trained
VGG19 CNN model. This experiment shows that our
method can perform co-localization task accurately on truly
unseen classes, implying the strong generalization ability
of the CNN features. For example, our results that used the
pre-trained VGG19 show noticeable improvements over the
state-of-the-art method with a 19% CorLoc score increase
in the chipmunk class and 50% CorLoc score increase in the
racoon class.

Based on our experimental results on all three datasets,
our method using AlexNet performs comparably to the
state-of-the-art method, and shows mild improvements on
the VOC2007 and six held-out ImageNet subsets and an
average of 1.2% CorLoc score increase on the VOC2012
dataset. It is worth mentioning that the performance of
the previous state-of-the-art method [20] significantly re-
lies on the object proposal algorithm, the EdgeBox method
[39]. Unfortunately there is no available implementation of
[20] with different base CNN models other than AlexNet,
to measure how it scales with the better CNN models. Our
method scales up well, and it appears to show bigger perfor-
mance gains as the models and datasets get more complex.



ImageNet chipmunk rhino stoat racoon rake wheelchair mean
Cho et al. [5] 26.60 81.80 44.20 30.10 8.30 35.30 37.72

Li et al. [20] - AlexNet 44.00 81.80 67.30 41.80 14.50 39.30 48.12
Ours - AlexNet 44.94 86.36 56.73 66.02 10.34 32.37 49.46
Ours - VGG19 63.29 89.77 56.73 91.26 20.69 43.93 60.95

Table 4. CorLoc scores [7] (%) of our approach and state-of-the-art co-localization methods on the 6 held-out subsets of ImageNet collected
by Li et al. [20].

5.3. Category-consistent CNN features selection
analysis

In this section, we provide an analysis to justify our CCF
selection method, where we conduct additional experiments
with the same configurations but using different subsets of
CNN features for the initial object detection step. We use
VGG19 for the analysis in this section. After clustering
the last-layer CNN kernels based on their image-level ac-
tivations, these clusters were sorted in a decreasing order
by the clusters’ average activations. We then obtained the
rough object locations using individual clusters and thresh-
olded on those maps directly to obtain the object locations.
Their respective average CorLoc scores on the VOC 2007
and 2012 dataset are reported in table 5. The table shows
that co-localization performance correlates strongly with
the level of average activations of the clusters, suggesting
that the most representative features were indeed members
of the top cluster. We visualize some examples in figure 4,
with an image from the bus and motorbike category, respec-
tively. For each image, the first row is the results of our
method when using the first cluster (ranked by their aver-
age activation) and the second row shows the results of our
method when using the third cluster. It is clear that the com-
bined activation maps from the third cluster failed to detect
and estimate the object locations, and ultimately lead to in-
correct object localization results. This indicates that the
selection of the top cluster is essential, and the CCFs could
not be chosen arbitrarily.

We furthermore validate our feature selection method by
evaluating the performance of our approach when the CCFs
are not selected from the first cluster, but from the top k
clusters instead, where k varies from 1 to 5. As shown in
table 6, the results indicate that a larger number of kernels
does not provide enough object specificity as the perfor-

Dataset 1st 2nd 3rd 4th 5th
VOC07 41.97 39.55 32.15 25.44 21.40
VOC12 48.22 41.47 38.71 32.43 24.80

Table 5. Co-localization performance of our method on the
VOC 2007 and 2012 dataset. Each column indicates which top
cluster was taken as the CCF cluster (out of 5 total clusters), and
the corresponding average CorLoc score (%) by using the selected
cluster of features for co-localization.

Figure 4. Two examples illustrating the effect of our feature se-
lection method. For each image, the first row is the results of our
method when using the first cluster and the second row is the re-
sults of our method when using the third cluster. The green bound-
ing box is the ground truth and the predicted bounding boxes are
colored as white, the predicted object regions are masked as green.

mance decreases when more clusters are added.

Dataset 1 1-2 1-3 1-4 1-5
VOC07 41.97 41.10 39.30 32.25 31.20
VOC12 48.22 46.68 42.25 40.15 38.45

Table 6. Co-localization performance of our methods on the
VOC 2007 and 2012 dataset. Each column indicates how many
top clusters were taken as the CCF clusters (out of 5 total clus-
ters), and the corresponding average corLoc score (%) by using
the selected clusters of features for co-localization. For example,
the last column indicates that all available features were used for
co-localization.

5.4. Geodesic distance propagation analysis

The geodesic distance acts as a refinement step in our
pipeline to remove the background as well as to boost the
activation within the object region. To evaluate the ef-
fect of geodesic distance propagation, we simply compared
the performance of our method on VOC 2007 and 2012
datasets with and without geodesic distance propagation,
and report the results in table 7. The results show that
geodesic distance propagation significantly improved the



Figure 5. Some example results of object co-localization with
our CCFs and geodesic distance propagation. The results
show the bounding boxes that we generate match the ground truth
bounding boxes very well, even when objects are not located cen-
trally in the image. In addition, our co-localized object pixel-level
regions (pixels colored in green) show well delineated shape in
most cases.

co-localization accuracy by more than 6% in absolute Cor-
Loc scores for both datasets, which means that it is an im-
portant step after the initial CCF object detection step.

Dataset Without GDP With GDP
VOC07 35.41 41.97
VOC12 41.20 48.22

Table 7. Co-localization performance of our methods on VOC
2007 and 2012 dataset with and without using geodesic dis-
tance propagation. Using geodesic distance propagation in-
creased the average CorLoc score (%) of our approach by 6.56%
for the VOC 2007 dataset, and 7.02% for the VOC 2012 dataset.

5.5. Qualitative results

We show some examples of our co-localization results
in figure 5. The results show that the bounding boxes gen-
erated by our proposed framework accurately match the
ground truth bounding boxes. It is apparent that our results
generate well-covered object regions, that has the potential
to well delineate the objects in majority of the cases. The
figures also show that the objects were able to be accurately
co-localized with various sizes and locations.

Figure 6 illustrates three failure scenarios of our ap-
proach. While these three examples did not cover the
ground truth bounding box sufficiently, but they were not
far off. Some analysis suggests that these failures were due
to some CCFs that are shared by multiple categories, and
that the object boundaries may not have been strong enough
(i.e. bottle and boat).

Figure 6. Some failed examples of our approach. While these
examples did not have significant coverage with the ground truth
boudning box in terms of CorLoc, the mistakes were still accurate,
in the sense that the areas were detected but not the spatial extent.

6. Conclusion
In this work, we proposed a 2-step approach for the prob-

lem of co-localization, that uses only positive images, with-
out any region or object proposals. Our method is motivated
by human vision; people implicitly detect the common fea-
tures of category examples to learn the representation of the
class. We show that the identified category-consistent fea-
tures can also act as an effective first-pass object detector.
This idea is implemented by finding the group of CNN fea-
tures that are highly and consistently activated by a given
positive set of images. The result of this first step generates
a rough but reliable object location, and acts as a single-
shot object detector. Then, we aggregate the activations of
the identified CCFs, and propagate their activations so that
the activations over the true object region are boosted, while
the activations over the background region are smoothed
out. This effective activation refinement step allowed us to
obtain accurately co-localized objects in terms of the stan-
dard CorLoc score with bounding boxes. We achieved new
state-of-the-art performance on the three commonly used
benchmarks. In the future, we plan to extend our method to
generate object co-segmentations.
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[17] Philipp Krähenbühl and Vladlen Koltun. Geodesic Object
Proposals, pages 725–739. Springer International Publish-
ing, Cham, 2014. ISBN 978-3-319-10602-1. doi: 10.1007/
978-3-319-10602-1 47. URL http://dx.doi.org/
10.1007/978-3-319-10602-1_47.

[18] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
Imagenet classification with deep convolutional neural net-
works. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q.
Weinberger, editors, Advances in Neural Information Pro-
cessing Systems 25, pages 1097–1105. Curran Associates,
Inc., 2012.

[19] Hieu Le, Vu Nguyen, Chen-Ping Yu, and Dimitris Sama-
ras. Geodesic distance histogram feature for video seg-
mentation. In Computer Vision – ACCV 2016: 13th
Asian Conference on Computer Vision, Taipei, Taiwan,
November 20-24, 2016, Revised Selected Papers, Part
I, pages 275–290, Cham, 2017. Springer International
Publishing. ISBN 978-3-319-54181-5. doi: 10.1007/
978-3-319-54181-5 18. URL http://dx.doi.org/
10.1007/978-3-319-54181-5_18.

[20] Y. Li, L. Liu, C. Shen, and A. van den Hengel. Image co-
localization by mimicking a good detector’s confidence score
distribution. In ECCV, 2016.

[21] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian
Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C.
Berg. Ssd: Single shot multibox detector. 2016. URL
http://arxiv.org/abs/1512.02325. To appear.

[22] M. Oquab, L. Bottou, I. Laptev, and J. Sivic. Is object local-
ization for free? weakly-supervised learning with convolu-
tional neural networks. In CVPR, 2015.

[23] Federico Perazzi, Philipp Krähenbühl, Yael Pritch, and
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