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Abstract—This paper casts surface registration as the problem of finding a set of discrete correspondences through the
minimization of an energy function, which is composed of geometric and appearance matching costs, as well as higher-order
deformation priors. Two higher-order graph-based formulations are proposed under different deformation assumptions. The
first formulation encodes isometric deformations using conformal geometry in a higher-order graph matching problem, which
is solved through dual-decomposition and is able to handle partial matching. Despite the isometry assumption, this approach
is able to robustly match sparse feature point sets on surfaces undergoing highly anisometric deformations. Nevertheless, its
performance degrades significantly when addressing anisometric registration for a set of densely sampled points. This issue is
rigorously addressed subsequently through a novel deformation model that is able to handle arbitrary diffeomorphisms between
two surfaces. Such a deformation model is introduced into a higher-order Markov Random Field for dense surface registration,
and is inferred using a new parallel and memory efficient algorithm. To deal with the prohibitive search space, we design an
efficient way to select a number of matching candidates for each point of the source surface based on the matching results of a
sparse set of points. A series of experiments demonstrate the accuracy and the efficiency of the proposed framework, notably in
challenging cases of large and/or anisometric deformations, or surfaces that are partially occluded.

Index Terms—Surface Registration, Higher-order Graph Matching, Conformal Geometry, Higher-order Markov Random Fields
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1 INTRODUCTION

F INDING the correspondences between two or more sur-
faces is a prerequisite for many applications in computer
vision, medical imaging and computer graphics such as
shape recognition, deformation transfer, object recognition
and segmentation [18]. Furthermore, the proliferation of
3D content (e.g., [1], [49], [65]) has further enhanced the
need of developing a robust surface registration method, in
particular for noisy-sampled 3D shapes undergoing large
and/or non-rigid deformations.

Surface registration approaches can be classified as either
extrinsic (i.e., the coordinates for each point on the surface
is known, e.g., [8]), or intrinsic (i.e., the surface is repre-
sented in a parametrization space, e.g., [15]). Registration
of surfaces undergoing large deformations in the extrinsic
space is intractable due to the large number of degrees of
freedom present in their non-rigid deformations. In contrast,
intrinsic methods can significantly reduce the complexity
of the problem by representing the shape in a space that is
invariant to certain types of deformations.
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In the most common case, intrinsic methods assume
that two surfaces undergo isometric (i.e., distance or
metric preserving) deformations. Such an assumption is
a reasonable approximation for most of the real-world
deformations. State-of-the-art intrinsic methods refer to
geodesic/exponential maps (e.g., [13], [14]), conformal
maps (e.g., [64], [68], [72]) and diffusion maps (e.g., [44],
[50]). In particular, conformal maps provide a closed-
form solution to the dense surface matching problem, and
can be directly generalized to anisometric deformations
using quasi-conformal maps [2], which can handle arbi-
trary diffeomorphisms between two surfaces. Despite the
fact that conformal maps are well-suited for establishing
dense correspondences between surfaces undergoing large
deformations, the use of a single map is unreliable in the
presence of inconsistent boundary conditions, anisometric
deformation, and noise. It is therefore necessary to consider
correspondences obtained from multiple mappings and use
them towards robust metrics able to handle uncertainties in
the input. Graph-based approaches have strong advantages
in handling noise and occlusions [9], [61]. and thus will be
used as the basis for our approach.

In this paper, we cast the surface registration problem
as a two-stage matching task that seeks correspondences
between two discrete point sets, sampled from two surfaces.
In such a setting, deformation constraints between two
surfaces are represented by up to third-order interactions
among these point sets. Thus, the optimal registration
corresponds to the optimal solution of an objective function
defined over a higher-order graph. To efficiently couple the
strength of intrinsic surface registration methods and graph-
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based approaches, we propose two graph-based formula-
tions to solve sparse and dense surface registration, leading
to both computational efficiency and accurate dense surface
registration results.

Initially, surface registration is expressed as a higher-
order graph matching problem that integrates both extrinsic
matching costs (e.g., texture, curvature and normal con-
sistencies) and intrinsic deformation constraints (deviation
from isometry, inspired by [42]), and is solved using the
dual-decomposition technique [37]. Despite its success in
registering sparsely sampled points, the deformation met-
ric [42] is only robust to points on the surface that are
sufficiently sparse. It is no longer discriminating enough,
when the set of points to be registered becomes dense.

To this end, we propose a novel local surface deforma-
tion model to characterize arbitrary deformations between
two surfaces. According to Riemannian geometry [23], a
shape is endowed with a metric tensor at each point in
the parametrization domain. Here, we consider a special
canonical parametrization of the shape whose metric tensor
at each point is Euclidean. This allows us to define a
generic deformation descriptor, namely Canonical Distor-
tion Coefficients (CDCs), which can be used to characterize
surface deformations and can be efficiently computed in
the discrete setting. Based on this, we formulate dense
surface registration using a higher-order MRF with special
topology, and develop an associated inference algorithm
that requires minimal memory and achieves significant
speedup via parallel acceleration. Last but not least, in
order to reduce the search space, we design an efficient
matching candidate selection scheme for any point on the
surface based on the fact that any three correspondences
determine a unique closed-form solution to establish the
mapping between two surfaces.

1.1 Related work

Modeling surface deformation is a very challenging task
due to the large number of degrees of freedom that exist
in real-world deformations. Certain “rigidity” assumptions
have been widely made, as a trade-off between the quality
in deformation approximation and the simplicity in compu-
tation. Existing deformation models either characterize the
rigidity in the extrinsic space or in the intrinsic space.

Extrinsic surface representations were studied exhaus-
tively for matching two surfaces undergoing a global rigid
deformation (i.e., rotation and translation) through the it-
erative closest points (ICP) [8] algorithm as well as its
numerous variants (e.g., [16], [29]). Whereas global rigidity
does not take into account bendable shapes (e.g., garments
or rubber bands), the notion of local rigidity has been
proposed defining the deformation between two local corre-
sponding neighborhoods as rigid [30]. However, searching
for the correspondences between surfaces undergoing large
deformations directly in the original extrinsic space may
suffer from high computational complexity.

Intrinsic surface representations through distance func-
tions and the expression of the surface matching problem as

a volume registration one were studied initially to provide
a dense solution to the correspondence problem (e.g., [31],
[45]). Such methods could handle a reasonable but still
limited amount of deformations due to the regularization
constraints imposed on the deformation field. To tackle
large scale deformations, several approaches have been
developed to obtain dense point correspondences by repre-
senting the surfaces to a canonical domain which preserves
the geodesic distances or angles (e.g., [13], [14], [64], [68],
[72]). Such representations usually require an initial set of
feature correspondences or boundary conditions, which are
difficult to find. The performance of these methods degrades
in the presence of noise as well as varying scales, boundary
conditions and resolutions. Furthermore, since most surface
deformations are not perfectly isometric, solely consider-
ing intrinsic information introduces approximation errors
to the matching result. In order to address the above-
mentioned issues, [5], [54], [55] proposed to search for
correspondences using a probabilistic formulation based on
geodesic distances. Nevertheless, issues like the compu-
tational complexity and inaccuracy of geodesic distances
towards establishing dense correspondences reduce the ap-
plicability of these methods. An alternative approach for
seeking correspondences in the intrinsic space is to map the
shape to a high dimensional space in which the Euclidean
distance approximates the intrinsic properties of the surface.
For example, the idea of diffusion maps [44], [50] is to
represent the shape through a space that preserves the
commute time, which has the advantage of being robust to
topological changes. To overcome the high computational
complexity issues in establishing point correspondences,
the idea of functional maps [43] was proposed to establish
the correspondences in the functional space, which is
nevertheless limited to shapes with bijective mapping.

Graph matching is a powerful framework for estab-
lishing correspondences [3], [17], which is able to com-
bine multiple matching costs (e.g., appearance similarity
and geometric compatibility) within an objective function
through the integration of singleton, pairwise or higher-
order interactions among nodes (e.g., [24], [41], [58]). It
has been employed often in the literature (e.g., [6], [7])
to encode contextual constraints between feature points for
high-level applications (mostly for images) such as object
recognition. However, its use in 3D surface matching has
been very limited, probably due to the fact that more so-
phisticated metrics are required in order to encode invariant
spatial relationships between points on the surfaces [60].
Numerous optimization methods have been proposed in
the context of graph matching, such as spectral relaxation
(e.g., [22], [40]), continuous relaxation (e.g., [48], [57]),
and randomized algorithms (e.g., [39]). Notably, [58] pro-
posed a novel pairwise graph-matching algorithm based on
the dual-decomposition framework, which provides certain
optimality guarantee on the solution.

Markov Random Fields (MRFs), in particular pairwise
MRFs, have been widely applied to address numerous
computational visual perception tasks, such as image seg-
mentation, stereo, detection and registration, etc. [9], [61].
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Fig. 1: Overview of our algorithmic framework for surface registration as described in Sec. 1.2.

Recently, the applications of higher-order MRFs in com-
puter vision have become more and more popular, mostly
driven by the development of inference methods (e.g., [32],
[37], [66]). Higher-order MRFs, compared with pairwise
models, allow a better characterization of statistics among
random variables and have better expression power [61].
This is particularly useful for modeling measures that
intrinsically involve more than two variables (e.g., [4], [28],
[69]) and characterizing invariant statistics (e.g., [62], [63]).

1.2 Overview
A brief overview of the proposed surface registration sys-
tem is shown in Fig. 1, where sparse surface matching is
first performed and is followed by dense registration.

In the sparse registration stage, sparse feature points
are selected according to geometric principles (such as the
local maxima of Gaussian curvature [42] and the average
geodesic distance function [34] between the input surfaces
S1 and S2). On these points we find ns correspondences
between the two feature sets, via a higher-order graph
matching algorithm that uses multiple matching criteria and
is solved via the dual-decomposition technique (Sec. 2).

Once such correspondences have been established, the
dense registration stage relies on them to constrain the local
search space for each point on the surface (Sec. 3). Since
every three correspondences determine a unique conformal
map between two surfaces, ns sparse correspondences
provide

(
ns
3

)
candidate matching points on S2 for any point

p ∈ S1. These points are then clustered to obtain meaning-
ful matching candidates for each point (Sec. 3.2.2). Given
the discrete set of candidate correspondences for each point
on S1, the dense surface registration problem becomes com-
binatorial. To impose constraints on the deformation field,
we introduce a generic local surface deformation model
defined on the triangulated graph of these points on S1 with
meaningful candidate matching points (Sec. 3.1). A higher-
order MRF optimization is then formulated and solved to
obtain the optimal dense registration result (Sec. 3.2, 3.3).

Finally, experimental validation (Sec. 4) and discussion
(Sec. 5) conclude the paper.

2 SPARSE SURFACE REGISTRATION USING
HIGHER-ORDER GRAPH MATCHING
In this section, we present our sparse surface registra-
tion algorithm based on a higher-order graph matching

formulation. First of all, we introduce the higher-order
graph matching problem and in particular a general pseudo-
boolean formulation.

2.1 Pseudo-boolean higher-order graph matching
Let us denote by P1 and P2 two sets of points, and P ≡
P1 × P2 the set of potential correspondences between P1
and P2. We introduce the boolean indicator variable

xa =

{
1 if a = (p1a, p

2
a) ∈ P is an active correspondence,

0 otherwise,

where p1a ∈ P1 and p2a ∈ P2 are the two points defining
a potential correspondence a. A basic constraint imposed
on the matching configuration is that each point in P1 is
mapped to at most one point in P2, while for each point in
P2 there is at most one point in P1 mapping to it. Therefore,
we have the set of feasible solutions defined as,

C = {x ∈ {0, 1}P1×P2 |
∑
i∈P1

xi,j ≤ 1,
∑
j∈P2

xi,j ≤ 1,

∀i ∈ P1 and ∀j ∈ P2}. (1)

Note that missing correspondences are allowed in order to
deal with partial matching. In such a graph labeling setting,
the higher-order graph matching problem can be formulated
as follows:

min
x∈C
{E(x|θ) =

∑
a∈P

θaxa +
∑

(a,b)∈P×P

θabxaxb+∑
(a,b,c)∈P×P×P

θabcxaxbxc}, (2)

where θa is the matching cost for each correspondence a ∈
P , θab for a pair of correspondences (a, b) ∈ P × P , θabc
for a triplet of correspondences (a, b, c) ∈ P × P × P ,
and θ denotes the vector consisting of all such parameters.
Note that in order for Eq. 2 to have non-trivial solutions,
at least some values in θ must be negative. Furthermore,
the matching constraints can be reduced to pairwise terms
in the energy function. More specifically, we observe the
following equivalence:

∀i ∈ P1,
∑
j∈P2

xi,j ≤ 1

iff min
xi,j

∑
j′,j′′∈P2,j′ 6=j′′

θ∞xi,j′xi,j′′ = 0 (3)

where θ∞ is a sufficiently large number. We use P C =
{(a, b)|a, b ∈ P, a 6= b and (p1a = p1b or p2a = p2b)} to
denote the set of pairs that encodes the matching constraints
for all the correspondences. Thus, the general higher-order
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matching problem can be formulated as a pseudo-boolean
optimization problem [10] as follows:

min
x∈{0,1}P1×P2

{E(x|θ) =
∑
a∈P

θaxa +
∑

(a,b)∈P×P

θabxaxb+∑
(a,b)∈PC

θ∞xaxb +
∑

(a,b,c)∈P×P×P

θabcxaxbxc}. (4)

The above formulation is generic and is able to handle
partial matching by properly defining the potentials.

Because of the positive weight θ∞ that encodes
the matching constraint, the energy function is non-
convex [11], and in general its optimization is an NP-hard
problem [10]. We adopt the flexible dual-decomposition
technique [37] to perform the optimization efficiently.
Moreover, theoretically any higher-order terms can be effi-
ciently reduced into quadratic terms [32], often referred to
as order reduction. The basic idea is to transform an energy
function consisting of higher-order terms into an equivalent
one that has the same minimum but involves only singleton
and pairwise terms.

2.2 Higher-order graph matching for sparse sur-
face matching
In the context of the above general higher-order graph
matching formulation, the singleton terms encode both
appearance and geometric similarities, the pairwise terms
constrain the matching solution space and the higher-order
terms encode intrinsic deformation errors.

2.2.1 Singleton potentials
For each correspondence, we consider both geometric and
texture information to define its potential [56]. Let us
denote the Gaussian curvature at point p as curv(p), and the
texture value at point p as tex(p). The singleton potential
for a correspondence a = (p1a, p

2
a) is defined as:

θi = (curv(p1a)− curv(p2a))2 + λ0(tex(p1a)− tex(p2a))2, (5)

where λ0 balances the weight between the curvature and
the texture information.

2.2.2 Pairwise potentials
In the general higher-order graph matching formulation as
shown in Eq. 4, we use pairwise potentials to encode the
mapping constraints for the graph matching, by setting θ∞

and θab to be 105 and 0, respectively, in our experiments.
Other pairwise potentials for surface matching, such as
those of [60], can also be incorporated straightforwardly
in this formulation.

2.2.3 Higher-order potentials
The uniformization theorem [25] states any 3D surface can
be flattened conformally to a canonical 2D domain. Such a
mapping represents a feature point p as a parametric coordi-
nate in the complex plane zp ∈ Ĉ. Conformal mappings are
flexible because of the Möbius transformation, which can
be uniquely determined by fixing the mappings of any three
points on the surface to the 2D parametrization domain.
Inspired by [42], we compute the matching score between

(a) (b)

Fig. 2: An example showing the matching ambiguity when
considering only intrinsic information. The matching scores in
(a) and (b) are the same according to Eq. 6 based on the Möbius
transform, since the distances between the matched features are
identical. However, such ambiguity can be avoided by adding
extrinsic similarity information (e.g., normal and curvature).

two triplets as the deformation error based on the Möbius
transform.

Given two surfaces, S1 and S2, and a mapping from
{p1a, p1b , p1c} ⊂ S1 to {p2a, p2b , p2c} ⊂ S2, we first de-
termine the associated Möbius transformation m1(z) and
m2(z) that maps each triplet to a prefixed configuration
{ei 2π3 , ei 4π3 , ei2π} ⊂ Ĉ, where Ĉ represents the complex
domain. Such transformations essentially endow each point
on the surface S1 and S2 with a new coordinate in Ĉ. Let
us denote the new coordinate for each point p as z(p) ∈ Ĉ.

Similar to [42], we establish correspondences between
the two sets P1 ⊂ S1 and P2 ⊂ S2 by searching for the
mutually closest point correspondence set under the new
coordinates, denoted as:

Mabc ={(p1, p2)|p1 ∈ P1, p2 ∈ P2,

∀ p′2 ∈ P2 \ {p2}, |z(p1)− z(p2)| < |z(p1)− z(p′2)|,
∀ p′1 ∈ P1 \ {p1}, |z(p1)− z(p2)| < |z(p′1)− z(p2)|}

and define the deformation error as

Eabc =
∑

(p1,p2)∈Mabc

|z(p1)− z(p2)|2. (6)

Note that both Mabc and Eabc are computed by aligning
p1k to p2k, where k ∈ {a, b, c}. Given Mabc and Eabc, we
then define the Möbius matching potential as follows,

θMöbius
abc =

{
Eabc
|Mabc|2

− 1 if Eabc
|Mabc|

< δ

1/|Mabc| otherwise
. (7)

Here |Mabc| denotes the number of valid correspondences
and δ is a threshold to deal with non-plausible correspon-
dences (in our experiments δ = 0.1). Intuitively, the more
matching pairs and the smaller the distance between those
mutually closest pairs, the lower the potential energy.

However, the Möbius energy introduces ambiguity since
it assumes isometry, which is invariant under symmetric
transformations (an example is shown in Fig. 2). To resolve
such an ambiguity, we consider an extrinsic property of the
surface, the Gaussian map, defined as the mapping of the
normal at each point on the surface to the unit sphere [27].
Two triplets have the same orientation if and only if
the determinants of their normals are of the same sign.
Therefore, in order to avoid ambiguities in orientation, a
constraint on the Gaussian map is imposed via the following



0162-8828 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPAMI.2016.2528240, IEEE Transactions on Pattern Analysis and Machine Intelligence

SUBMISSION TO IEEE TRANS. PAMI 5

potential:

θGaussian
abc =

{
0 if det(n1

a,n
1
b ,n

1
c) det(n2

a,n
2
b ,n

2
c) ≥ 0

1/|Mabc| otherwise
.

Here ni ∈ R3 denotes the normal at point i, and
det(na,nb,nc) denotes the determinant of the 3×3 matrix
[na,nb,nc]. This is considered as a soft constraint in our
framework, since normals can change orientations when the
surface undergoes very large deformations.

The triple potential for each possible triple matching
(p1a, p

1
b , p

1
c)→ (p2a, p

2
b , p

2
c) can be defined as

θabc = λ1θ
Möbius
abc + λ2θ

Gaussian
abc . (8)

After defining the potentials of the graph matching problem
(Eq. 4), we next discuss its optimization.

2.3 Optimization and computational complexity
The idea of dual-decomposition is to re-formulate the
original problem as the union of several sub-problems that
are easier to solve [36], [37]. For the graph matching
problem, let θ denote the vector of the weights of the
singleton, pairwise and triplet terms, and I denote the
set of subproblems. The decomposition is expressed as
E(x|θ) =

∑
σ∈I ρσE

σ(x|θσ) where ρσ is the weight for
each subproblem. Then the original problem is solved by
updating the parameter θσ of each subproblem σ so that it
increases the energy of the dual problem, while satisfying
the following decomposition constraint:∑

σ∈I

ρσθ
σ = θ. (9)

If we can find a lower bound Φσ(θσ) for each subproblem,
i.e., Φσ(θσ) ≤ minxE

σ(x|θσ), then we can obtain a lower
bound for the original problem, i.e.,

Φ(θ) =
∑
σ∈I

ρσΦσ(θσ) ≤
∑
σ∈I

ρσE
σ(x|θσ) = E(x|θ). (10)

This lower bound is maximized using a projected subgra-
dient method so that a solution to the original problem can
be extracted from the Lagrangian solutions [37].

Specifically, we decompose the optimization problem in
Eq. 2 into the following three subproblems:

1) a linear subproblem which considers only the sin-
gleton term

∑
a∈P θaxa. This linear subproblem is

also known as the linear assignment problem and
can be solved efficiently using the Hungarian algo-
rithm [3].

2) a higher-order pseudo-boolean subproblem by re-
ducing the higher-order terms to quadratic terms [10]
which can be solved by the QPBO algorithm [35].
Here we employ [32] for the reduction. Specifically,
each third-order term θabcxaxbxc in Eq. 4 is replaced
by θabcw(xa + xb + xc − 2) if θabc < 0, and
θabc{w(xa +xb +xc− 1) + (xaxb +xbxc +xcxa)−
(xa+xb+xc)+1} otherwise (where w is an auxiliary
binary variable), leading to an objective function with
the same minimum as the original one.

3) a local subproblem which divides the original sur-
face into small regions and uses an exhaustive search
to find the optimal solution in each small region.

We introduce a higher-order pseudo-boolean subproblem,
in contrast to [58] that considers pairwise subproblems.
Given the solutions of the subproblems, we update the dual
variables {θσ} by projecting them to the space that satisfies
Eq. 9 [37], [58]. This process is performed iteratively until
convergence.

The above algorithm involves an expensive step in each
iteration, which is the max-flow computation. We employ
the implementation of [38], whose worst case complexity
is O(mn2|C|), where m is the number of edges, n is the
number of vertices, and |C| is the cost of minimum cut.
Assuming we select |P1| and |P2| feature points from two
surfaces, there are O(|P1|3|P2|3) possible triplets.

3 DENSE SURFACE REGISTRATION USING
HIGHER-ORDER MRFS

The main obstacles in extending the sparse matching ap-
proach to dense relate to:
• Model accuracy: the Möbius matching potential de-

fined in Eq. 7 has high discriminative power when
the feature points are far apart. However, such power
degrades as the sampling becomes denser, which af-
fects the optimality properties of the obtained solution.
Hence, we require an alternative potential that is able
to encode localized and anisometric deformations.

• Computational complexity: increasing the number of
sampling points n would make the sparse matching
approach computationally prohibitive, since the graph
structure would grow in the order of O(n6) if we
consider all possible triplets.

These issues are addressed through a novel higher-
order MRF-based dense surface registration method that
is endowed with: (i) a new deformation model; (ii) a novel
graph-based energy to determine the optimal instance of
this deformation model; (iii) an efficient matching candidate
selection scheme; (iv) an efficient optimization algorithm
for the MRF inference.

3.1 A generic deformation model

We will first introduce a mathematical formulation that
accurately characterizes arbitrary surface deformations for
a dense set of points living on a surface. We first introduce
the generic deformation model in the continuous setting and
then derive its variant for the discrete setting.

3.1.1 Continuous setting
Let (M, gM) denote a surfaceM endowed with a Rieman-
nian metric gM. In Riemannian geometry [23], a surface
is defined by its local charts M = Uα ∪ Uβ . . ., and
each open subset Uα is in one to one correspondences
φα : Uα → R2, where φα is the local parametrization.
For any p ∈ Uα ⊂M, a metric tensor is associated with p
as a symmetric positive definite matrix:

gα(p) =

(
gα11(p) gα12(p)
gα21(p) gα22(p)

)
. (11)
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Different local representations describe the same surface, if
the following chain rule is satisfied:

∀p ∈ Uα ∩ Uβ , gα(p) = Jαβ(p)T gβ(q)Jαβ(p). (12)

Here Jαβ is the Jacobian matrix of the transformation be-
tween the local coordinate systems of Uα and Uβ . Any local
representation satisfying this rule is a valid parametrization
of the surface. Since the metric tensor at any point p ∈M
is positive definite, we can always apply a proper linear
transformation to its parametrization φα such that gα(p)
is the identity matrix. Such a parametrization is called the
canonical parametrization for p:

Definition 1. (Canonical parametrization) For any p ∈
M, a parametrization φα : Uα → R2 is called canonical
for p if the metric tensor at p is the identity matrix.

Accordingly, the Jacobian matrix Jpq between the two
points p and q under their canonical parametrizations is
called the canonical Jacobian. We will show that con-
sidering the canonical parametrization/Jacobian allows us
to characterize arbitrary deformations between surfaces
independently of the choice of intrinsic/extrinsic surface
representations, which is the main advantage of our defor-
mation model.

Let us consider arbitrary diffeomorphisms between the
parametrization domains of two surfaces. For any cor-
respondence p ∈ Uα ⊂ M → q ∈ Uβ ⊂ N , the
change of metric gα(p) → Jαβ(p)T gβ(q)Jαβ(p) reflects
how an infinitesimal circle is deformed into an infinitesimal
ellipse. In particular, under canonical parametrizations for
points p and q (i.e., both gα(p) and gβ(q) are identity
matrices), the matrix JTpqJpq accurately characterizes such
local deformation, where Jpq is the canonical Jacobian
between p and q. If we only consider the change of shape,
i.e., how a circle is deformed into an ellipse regardless
of its orientation, the distortion along its two principle
directions can be represented by the two eigenvalues λ1 and
λ2 of JTpqJpq (Fig. 3(a)). Therefore, the local deformation
between two surfaces can be characterized by such two
eigenvalues λ1, λ2 for each pair (p, q) of corresponding
points. Formally, we define:

Definition 2. (Canonical distortion coefficients) The
canonical distortion coefficients (CDCs) between p and q
are defined as the eigenvalues of the Jacobian transforma-
tion matrix JTpqJpq between any canonical parametrization
at p and q.

CDCs are generic deformation features that are able
to characterize a wide class of deformation groups. For
instance, below are two typical classes of deformations that
can be characterized by CDCs:

1) In the case of the isometric deformation, a unit circle
is mapped to a unit circle, i.e., λ1 = λ2 = 1.

2) In the case of the conformal deformation, a unit circle
can be mapped to a circle with arbitrary radius. Thus,
λ1 = λ2 6= 0.

To further connect the canonical distortion coefficient to
a general class of diffeomorphisms defined in the complex

f (p)

p q

e1

e2

e1’

e2’ a

b

c

a’
b’

c’

f (abc)

(a) Continuous setting (b) Discrete setting

Fig. 3: The finite element method assumes the transformation
between facets to be piecewise linear and f( ~ab) = ~a′b′, f( ~ac) =
~a′c′. Under the linearity assumption, the Jacobian can be com-

puted in a closed form for each pair of triangular facets 4abc 7→
4a′b′c′.

plane f : Uα → Uβ , between any canonical parametrization
xα and xβ for p and q respectively, we define

∂f

∂z
=

1

2
(
∂x1α
∂x1β

+
∂x2α
∂x2β

) +
i

2
(
∂x2α
∂x1β

− ∂x1α
∂x2β

)

∂f

∂z
=

1

2
(
∂x1α
∂x1β

− ∂x2α
∂x2β

) +
i

2
(
∂x2α
∂x1β

+
∂x1α
∂x2β

),

where we assume xα = x1α + ix2α and xβ = x1β + ix2β .
The notion of quasi-conformality [2] can be characterized
by the Beltrami-coefficient:

µ(z) ≡ ∂f

∂z
/
∂f

∂z
,

which provides all the information about the conformality
of f . Without loss of generality, let us suppose λ1 ≥ λ2. It
can be shown that |µ(z)| = (

√
λ1 −

√
λ2)/(

√
λ1 +

√
λ2).

In particular, f is called holomorphic if µ(z) = 0 [27], i.e.,
λ1 = λ2, coinciding with the fact that a holomorphic func-
tion is another description of conformal mapping. Hence,
the Beltrami-coefficient generalizes conformal mapping and
can be partially determined using CDCs. However, the
Beltrami-coefficient is useful for surface parametrization,
where the scaling factor is lost. The proposed CDC pre-
serves the scale information which is important for shape
matching. Besides, unlike the Beltrami-coefficient, the CDC
is directly extendable to hyper dimensions (nD).

3.1.2 Discrete setting through finite elements
In the context of finite element analysis [12], a continuous
space is approximated using a set of basis elements (e.g.,
polynomial functions defined on each facet) with continuity
preserved at the boundaries among the basis elements. We
consider the most popular representation of a continuous
surface – a triangular mesh, with triangular facets as basis
finite elements. In this discrete setting, CDCs are assumed
to be constant for each basis element (i.e., each triangular
facet). Thus, the concept of canonical parametrization can
be expressed in the following manner: a parametrization of
a point p is locally Euclidean at p if the images of any
two tangent vectors have the same angle and length. In the
discrete setting, this means in the canonical parametrization
domain, a 3D surface facet 4abc is mapped onto 2D by
preserving all the angles and edge lengths.

In the continuous setting, the Jacobian matrix between
p and q is a linear transformation that maps the tangent
spaces at p and q. Given a basis element 4abc in the
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discrete setting, the tangent space at p corresponds to the
linear space spanned by 4abc. Hence, the linear mapping
J(·) between two canonical domains 4abc and 4a′b′c′
should satisfy J( ~ab) = ~a′b′ and J( ~ac) = ~a′c′, which can be
computed in closed-form. Since J(·) is linear, J(~bc) = ~b′c′

is satisfied, i.e., the Jacobian for mapping p → q in
the continuous case corresponds to a linear transformation
mapping ~ab→ ~a′b′, ~ac→ ~a′c′ in the discrete case (Fig. 3).

Alg. 1 summarizes the algorithm for computing CDCs.
For n-manifold shapes, the computation of CDCs only re-
quires solving n linear equations and eigenvalues. Note that
the computation looks analogous to the surface parametriza-
tion of [46], [47], due to the piecewise linear assumption.
However, Alg. 1 is derived in the context of Riemannian
geometry for shape deformation.

Algorithm 1: Algorithm for computing the canonical dis-
tortion coefficients (CDCs) for each triangular facet.

Input : 4abc and its mapping 4a′b′c′
Output : CDCs for mapping from 4abc to 4a′b′c′.

Step One: Map the triangles 4abc and 4a′b′c′ to 2D
while keeping their orientation.
Step Two: Compute the 2× 2 linear transformation J
mapping ~ab to ~a′b′ and ~ac to ~a′c′.
Step Three: Compute the eigenvalues, λ1 and λ2 of JTJ .
Step Four: Output λ1 and λ2

Based on CDCs, we can deform the original shape
(e.g., [52]), and also determine the correspondences be-
tween two shapes. We now introduce a general MRF
formulation for dense shape registration.

3.2 MRF formulation for shape registration

Assuming that a triangulated set of n points V = {pu|pu ∈
S1, u = 1, . . . , n} are sampled on the surface S1, shape
registration seeks to determine the correspondence for each
point p ∈ V on S2, which we obtain via inference over a
higher-order MRF framework.

The considered MRF model is a hyper-graph G =
(V,F), corresponding to a triangulation of the surface S1,
where V denotes the vertex set and F ⊂ V × V × V
denotes the triangular facet set. We also associate a random
variable xu for each vertex u ∈ V to represent the set of
matching candidates of the vertex u on the shape S2. A
configuration/matching for the point set V can therefore
be denoted by x = (xu)u∈V . For the sake of clarity and
simplicity, xu will also be used to denote the corresponding
point on S2.

The singleton potential θu(xu) of the objective function
is defined as the difference in the feature descriptor (e.g.,
texture, shape context) between u and its correspondence
xu:

θu(xu) = |feaS1(u)− feaS2(xu)|2, (13)

where feaS(·) ∈ Rn denotes the feature vector at a point
on shape S.

Next, let λuvw(xu, xv, xw) ∈ R2 denote the CDCs
computed from deforming 4uvw to 4xuxvxw (Alg. 1),
the higher-order potential can then be defined as:

θuvw(xu, xv, xw) = ρ(λuvw(xu, xv, xw)), (14)

where ρ(·) encodes the deformation constraints on the CDC
values (detailed discussion is given in Sec. 3.2.1). Given
the above potential functions, shape registration refers to
the configuration x that minimizes

E(x) =
∑
u∈V

θu(xu) +
∑

(u,v,w)∈F

θuvw(xu, xv, xw). (15)

In the following, we first discuss the practical aspects
of imposing the deformation constraints (Eq. 14), before
addressing the optimization of the objective function.

3.2.1 Deformation constraints

The assumption that deformations are similar across dif-
ferent shapes of the same type is valid in the context of
natural shapes, and has been applied in, for example, de-
formation transfer [53] and facial expressions transfer [59].
The ground truth deformation prior can be obtained by
3D scanning systems with reliable texture information
(e.g., markers). Fig. 4 shows an example of human facial
expressions. The 3D data, shown in (a) and (c), are captured
with markers using the system described in [65]. Here we
select two frames with the largest expression difference to
measure the maximal possible change of CDCs. Fig. 4(b),
(d), (f) and (g) show the visualization of the distribution
of CDCs. From the above data set we obtain the allowed
bound for human face expression changing from neutral to
large deformation as I1 = [0.7, 5.66], I2 = [0.1, 4] for λ1
and λ2, respectively. For the problem of surface registration,
we define a Potts-like energy for the higher-order terms in
Eq. 15 as follows:

θuvw(xu, xv, xw) =

{
0 if λ1 ∈ I1 and λ2 ∈ I2
10 otherwise

, (16)

where λ1 and λ2 are the CDCs obtained by matching
4uvw to 4xuxvxw.

3.2.2 Matching candidate set

Inclusion of all the points on S2 as the candidate set
of xu would be computationally prohibitive. A common
workaround is to prune off unlikely matching points based
on neighborhood information, as shown in the 2D graph
matching case [24]. However, for the 3D surface matching
problem, a surface may undergo large deformation. There-
fore, the neighborhood relations of 3D points cannot be
straightforwardly defined based on their 3D coordinates.
However, given three correspondences, an alignment of
the two surfaces in the conformal mapping domain can be
obtained in a closed form by determining the associated
Möbius transformation. The alignment is accurate when
the two surfaces undergo perfect isometric deformation and
the error increases continuously as the deformation deviates
from isometry. Hence, the matching candidate set for dense
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Fig. 4: An expression deformation prior obtained by 3D scanned
data with markers. (a) and (c) show the 3D scan of the onset
and peak of a facial expression with large shape deformations
respectively. (b) and (d) are the corresponding triangular templates
constructed from the 3D scan data. (d) shows the deformation
from (b) to (d) represented by CDCs and illustrated by a color
map shown in (e). The histogram of the CDC values are shown
in (f) and (g).

surface registration can be obtained from the sparse regis-
tration results (Fig. 1), which we achieve via two successive
operations: candidate selection and clustering.

Given sparse correspondences between S1 and S2, the
goal of candidate selection is to obtain matching candidates
on S2 for each point on S1. Triplets of sparse correspon-
dences are mapped to a prefixed configuration by solving a
Möbius transformation, as described in Sec. 2.2. A pair of
corresponding triplets in the 2D domain produce a matching
of the two surfaces and provide a corresponding point on
S2 for every point on S1. This way, n sparse matching
correspondences produce

(
ns
3

)
candidate matching points

for every point on S1. A 2D illustration of the candidate
selection scheme is given in Fig. 5.

Our candidate selection approach is robust to sparse
matching errors, since only part of the sparse matching
results are used for selecting each dense matching candi-
date. A qualitative evaluation is shown in Fig. 6, where
we observe that most candidate points are close to the de-
sired correspondences. It should be noted that considering
all triplet correspondences provides an exhaustive set of
matching candidates. We further reduce the search space
by clustering such candidates using mean shift [21] and
maintain only the principal modes of the density (other
approaches such as [19] and [20] can be used as well).

3.3 An efficient higher-order MRF optimization
Inference of higher-order MRFs is an active research topic
and various techniques have been proposed. Most existing
approaches either employ order-reduction [32], [26] (first
reduce higher-order terms into pairwise ones and then solve
the problem using graph cuts techniques [35]) or dual-
decomposition [36]. However, the algorithms designed for

Intrinsic Space MatchingSparse Matching
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I II III

p
I II
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p’

I III
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p’’

II III
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p

Candidate Selection

Align I and II

Align I and III

Align II and III

Fig. 5: 2D Illustration of candidate selection scheme.

Candidate matching points

pp’

Fig. 6: An example showing candidate points obtained from
different Möbius transforms and their clustering. For any point p
from the source surface, the clustering of its matching candidate
points on the target surface gives us a matching candidate p′.

general MRFs often lack efficiency in terms of computation
and/or memory, and fail to take advantage of MRFs with
special topology and/or potentials. In order to efficiently
perform inference, we explore the topological property of
our MRF and develop a parallel optimization algorithm that
requires minimal memory and achieves significant speedup
via GPU.

Let us first look at the dual problem for the LP relaxation
of the minimization problem of the energy in Eq. 15, by
introducing an indicator variable τu;i for u ∈ V, i ∈ L:

τu;i =

{
1 if xu = i

0 otherwise
,

Similarly, τuvw;ijk is introduced for each (u, v, w) ∈ F and
(i, j, k) ∈ L × L× L:

τuvw;ijk =

{
1 if xu = i, xv = j, xw = k

0 otherwise
.

By defining θu;i = θu(i) and θuvw;ijk = θuvw(i, j, k),
we obtain the following integer LP formulation for the
minimization problem of the energy in Eq. 15:

min
τ

∑
u∈V

∑
i∈L

θu;iτu;i +
∑

(u,v,w)∈F

∑
(i,j,k)∈L3

θuvw;ijkτuvw;ijk

s.t.
∑
i

τu;i = 1, ∀u ∈ V∑
i,j,k

τuvw;ijk = 1, ∀(u, v, w) ∈ F∑
j,k

τuvw;ijk = τu;i, ∀(u, v, w) ∈ F and i ∈ L

τu;i, τuvw;ijk ∈ {0, 1}.

By relaxing the domains of the variables τu;i and τuvw;ijk

to [0, 1], we obtain the dual form of the LP problem as
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follows:

max
M

∑
u

min
i
θu;i +

∑
(u,v,w)∈F

min
i,j,k

θuvw;ijk (17)

s.t. θu;i = θu;i +
∑

(u,v,w)∈F

Muvw;u:i, ∀u ∈ V and i ∈ L

θuvw;ijk = θuvw;ijk −Muvw;u:i −Muvw;v:j −Muvw;w:k,

∀(u, v, w) ∈ F and (i, j, k) ∈ L × L× L.

Here Muvw;u:i is the dual variable (message) corresponding
to the constraint

∑
j,k τuvw;ijk = τu;i (Fig. 8(a)).

The dual problem of Eq. 17 can be solved by min-
sum diffusion algorithm [66] as shown in Alg. 2. It has
been shown that once convergence is attained, the solution
satisfies the J-consistency condition [66]. Furthermore,
each update of the message requires a simple reparame-
terization of the MRF, and does not need extra memory for
storing all the dual variables Muvw;u:i. Hence, the memory
requirement for Alg. 3 is only for storing primal variables,
i.e., O(|V ||L|+ |F||L|3).

Algorithm 2: Min-sum diffusion algorithm.
repeat

for each Muvw;u:i do
Muvw;u:i− = 1

2 [θu;i −minj,k θuvw;ijk] and
reparameterize θu;i and θuvw;ijk according to the
constraints in Eq. 17.

end for
until convergence

Each update of the message in Alg. 2 involves the param-
eters in a triangle. Also within each facet4uvw, the update
of each label Muvw;u:i, i = {1, . . . , L} is independent.
Hence the algorithm can be significantly accelerated.

To explore the parallelism of the min-sum algorithm
(Alg. 2), we define the concept of independent facet set.

Definition 3. (Independent facet set) Given a graph G =
(V,F), a subset Fk ⊂ F is called an independent facet set
if for any fi, fj ∈ Fk, fi ∩ fj = ∅.

The decomposition of a set F into subsets of independent
facet sets F = ∪iFi can be efficiently computed in
polynomial time by a simple greedy algorithm. Hence we
can implement Alg. 2 in parallel as shown in Alg. 3. The

Algorithm 3: Parallel min-sum diffusion algorithm.

Decompose F into independent facet sets ∪iFi
repeat

for each Independent facet set Fi, in parallel for all
(u, v, w) ∈ Fi and k ∈ L do

Update the message Muvw;u:k, Muvw;v:k and
Muvw;w:k and reparameterize (Alg. 2).

end for
until convergence

maximal speedup achieved in Alg. 3 is maxi(|Fi||L|).
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Fig. 7: Comparisons between our algorithm and the tensor
matching algorithm [24]. (a) shows the performance in partial
matching when n = 30 points is matched to n+ n1 points. Our
method is strongly robust to outliers. (b) shows the use of partial
pairwise terms for matching constraints to overcome memory limit
for full matching (n1 = 0) and our method remains robust with
increasing n.

4 EXPERIMENTAL RESULTS

Our system is tested on an Intelr Xeon(TM) 3.4G PC
with 4G RAM and an NVIDIAr Geforce 9800GTX+
graphics card. We first present the experimental evaluation
on our higher-order graph matching and higher-order MRF
optimization algorithms, and then exhibit the performance
of the whole method on sparse & dense shape registration,
and surface tracking.

4.1 Higher-order graph matching
To evaluate the performance of our higher-order graph
matching algorithm, in particular its ability to handle partial
matching, we compare our algorithm with the tensor-
based algorithm of [24] using the authors’ implementation.
In order to easily compare the algorithms quantitatively,
we follow the synthetic data generation process of [24].
Given n > 0, we randomly sample n points on the 2D
plane to obtain the first point set S1, and then generate
their matching points by randomly rotating, translating and
scaling those points in S1 plus some random noise, resulting
in a second point set S2. In addition, in order to evaluate
the performance of partial matching, we enlarge S2 by
including n1 > 0 randomly generated points, which have
no correspondence (i.e., |S1| = n and |S2| = n + n1).
Similar to [24], we set singleton potentials as zero, and use
the following similarity-invariant higher-order potentials:

θabc = Ae−((∠p1a−∠p2a)
2+(∠p1b−∠p2b)

2+(∠p1c−∠p2c)
2)),

where ∠pka, ∠pkb and ∠pkc denotes the vertex angles of
4pkapkbpkc , and the weight constant A is set to be −100
in our algorithm. We sample 50n triangles for the triplet
potentials and use the same ANN-based algorithm for
computing the tensor as in [24]. Fig. 7(a) shows the
matching accuracy with increasing n1 (n = 30). Note that
our algorithm remains robust even when n1 = n, which
demonstrates its ability to handle partial matching.

One limitation of our algorithm is the large memory
requirement for encoding those pairwise potentials that
ensure a valid matching result (Eq. 3). If we consider all
the constraints in Eq. 3, the algorithm is only able to handle
30 − 40 matching pairs. However, this can be partially
overcome by only considering a fraction of the pairwise
constraints and selecting matching results that are valid (i.e.,
Eq. 1 is satisfied). Fig. 7(b) shows the percentage of correct
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Fig. 8: Performance analysis of our MRF optimization algorithm.
(a) shows the optimality using the test cases described in Sec. 4.2.
(b) shows the speedup using the parallel implementation of Alg. 3.
L is the number of labels for each node. We show the runtime
per iteration since different inputs have different iteration counts.

matching as n increases (n1 = 0), by limiting the maximal
number of pairwise terms to be 100n. We observe that our
algorithm degrades less sharply than [24] even in the case
of full matching (n1 = 0). However, this gain in accuracy
does not come for free, our algorithm runs 2 − 10 times
slower than that of [24] on average.

4.2 Higher-order MRF optimization
We implement Alg. 3 using the NVIDIAr CUDA architec-
ture [33]. In approximation algorithms, the approximation
error (AE) is defined as the gap between the optimal integral
solution and the solution obtained by the algorithm. In order
to test the AE, we design the test inputs as follows: Given
any input mesh, we randomly assign a ground truth label
lu for each node u ∈ V . We define the singleton potentials
of Eq. 15 as

θu(xu) =

{
0 if xu = lu
rnd(1) otherwise

,

where rnd(1) is a random number between [0, 1]. Also we
define the higher-order potentials as

θuvw(xu, xv, xw) =

{
0 if (xu, xv, xw) = (lu, lv, lw)

rnd(1) otherwise
.

In this case, the optimal solution of Eq. 15 should be
(lu)u∈V . Fig. 8(a) shows the result of our algorithm using
the above designed test cases for different mesh and label
sizes. Although the total energy increases with mesh size,
the average energy per term (vertex and facet) remains
significantly low (< 0.01 for all cases). Fig. 8(b) shows
the comparison on average time taken per iteration, between
the implementations with and without GPU accelerations.
The number of iterations depends on the (unknown) form
of the objective function. In our experiments, the algorithm
converges within 3000 iterations.

4.3 Sparse & dense shape registration
In this section, we evaluate our approach for dense surface
matching. Let us first introduce some related implementa-
tion details and then discuss the obtained results.

In sparse surface matching, for the potential functions
of the surface matching algorithm defined in Sec. 2.2,
the weights of Eq. 5 and 8 are defined as λ0 = 1,
λ1 = 0.1 and λ2 = 1. For each input mesh, one conformal

(a) Sparse matching (b) Dense matching
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Fig. 9: Matching result for the body data: (matched/total =
2861/3376)

mapping is computed using the mid-edge uniformization
algorithm [42], [46], which involves solving a symmet-
ric linear equation (it takes < 1s for a mesh with 104

faces using a GPU implementation). Additional conformal
mappings are computed in a closed form by the Möbius
transformation induced by three correspondences (Sec. 2.2).

The candidate selection and clustering of 103 points
based on 10 sparse features takes approximately 1 minute
(as described in Sec. 3.2.2). The input to the dense surface
registration stage is the set of vertices V on the source
surface with at least one valid matching point from our
candidate selection stage. A triangulation of these vertices
is constructed based on their parametrization, resulting in
a higher-order graph G = (V,F). In our experiment,
the aforementioned candidate selection process typically
provides 2 − 4 candidate points for each v ∈ V . We then
uniformly re-sample L = 64 points for each v ∈ V near the
original matching candidates, to further improve matching
accuracy. The computation of all the L3 possible CDCs
for one facet takes only 2.0ms on average using the GPU.
The computation of the potential θuvw;ijk for a graph with
|F| = 2000 takes 3s.

We consider the challenging problem of matching sur-
faces that involve large deformations and inconsistent
boundaries (partial overlapping). The number of vertices
for each mesh is in the range of 1, 500 − 4, 000. Our
method produces dense matching for 60 − 90 percent of
all vertices, which is illustrated as matched/total (no. of
matched vertices/no. of total vertices of the source surface).
The lion data of Fig. 10 comes from [53] and the face
and hand data are captured with texture by the 3D scanner
described in [65]. Based on the Delaunay triangulation of
the points on the source surface, we consider the ratio of the
area of each local triangle to the area of its matched triangle,
to measure the quality of the dense registration. The local
area is not expected to undergo abrupt change in natural
deformations (e.g., expression change, stretched arms or
bending figures). Therefore the area ratio is expected to be
close to one for every local triangle.
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Fig. 10: Matching result for the lion data: (matched/total =
1105/1251)

Matching with largely inconsistent boundaries and par-
tial overlapping: The mid-edge uniformization algorithm
is able to map the boundaries of the surface to slits while
preserving the conformal structure of the surface in an
exact sense. Therefore, it is suitable for matching partially
overlapping surfaces. This property can be combined with
our candidate selection scheme to determine the outliers
near the boundary where the mean shift clustering returns
a low score. Examples are shown in Figs. 11, 12, and 13. An
example of significant non-overlap between the two meshes
is shown in Fig. 1.

Matching with large deformations: Figs. 9, 10, 13 and 14
show results matching two surfaces undergoing a large
deformation. Even when the sparse features cannot all be
selected consistently (as shown in Fig. 14), our higher-order
graph matching algorithm in Sec. 2.3 is able to find reliable
sparse correspondences (Fig. 14(a)) and obtain a dense
surface matching result through the two-stage optimization
scheme in Sec. 1.2 (Fig. 14(b)).

Comparison experiments: Fig. 12 shows a comparison
between our algorithm and the Least Square Conformal
Mapping (LSCM) approach [64]. Although LSCM can
handle free boundaries, there is no theoretical guarantee that
the conformal structure is preserved near the boundary and
it can produce self-intersections in the mapping space [51].
In our comparison, we use the feature correspondences
computed from the sparse matching stage as the feature
constraints for LSCM. The limitations of LSCM can be
observed in Fig. 12(c). In this example, although all vertices
on the left mesh are matched to the right mesh, there are
approximately 42 percent flipped triangles. Note that we
cannot compare directly with the results in [64], since their
initial feature points were manually selected.

Furthermore, we compare our results with a more recent
dense surface matching approach [34], using the authors’
implementation. Similar to [34], we define the matching
error for a set of test points Ptest to be

Err(f, ftrue) =
∑

p∈Ptest

dS2
(f(p), ftrue(p))/|Ptest| (18)

(a) Sparse matching (b) Dense matching
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Fig. 11: Matching result for the face data: (matched/total =
2098/2644)
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Fig. 13: Dense matching under large non-rigid deformations.
(matched/total = 2378/3633)

where f denotes the correspondence map from S1 to S2
obtained by an matching algorithm, ftrue the ground-truth
correspondence map, and dS2(·, ·) the geodesic distance be-
tween two points on surface S2 normalized by

√
Area(S2).

Here we obtain the “ground truth” map ftrue by manually
selecting the matching points for around 100 points on S1.
To reduce the error caused by individual bias, we average
the matching results by 5 people for each point. The result
of the comparison between our method and [34] is shown in
Table 1. Note that [34] assumes the mapping between two
surfaces to be bijective and there is no explicit underlying
deformation model in selecting the final dense match. In
contrast, we take into account the partial matching problem
both in our graph-based formulation and candidate selection
scheme, and an accurate deformation model is considered
in selecting the optimal dense matching result.

4.3.1 Surface tracking
We have also applied our approach to the tracking of
dynamic, 3D scanned data. For the singleton term in
Eq. 15, we employed the robust metric proposed in [71].
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Fig. 12: Comparison with LSCM approach [64] for dense surface matching. (matched/total = 1455/1635) (best viewed in color).
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Fig. 14: Dense matching under multiple articulated deformations.
(matched/total = 1224/1786)

Data Our method Kim et.al. [34]
Body (Fig. 9) 0.0622 0.2437
Lion (Fig. 10) 0.0832 0.1790
Face (Fig. 11) 0.0319 0.0465
Face (Fig. 13) 0.0565 0.0865
Hand (Fig. 14) 0.0481 0.1193

TABLE 1: Comparison with a recent intrinsic method for dense
surface registration [34]. The average error is calculated based on
Eq. 18.

Both the consistencies between consecutive frames and
between current frame and the first frames are taken into
account. To impose inter-frame consistency, we use the
same data set as [71] and select the two consecutive frames
with the largest deformation change to obtain the range
of CDCs between frames, i.e., I1 = [0.874, 1.143] and
I2 = [0.846, 1.182] for λ1 and λ2 respectively (Eq. 16).
Furthermore, we handle drift errors by imposing consis-
tency between the first frame and the current frame, using
the same deformation prior obtained in Fig. 4.

Fig. 15 shows the tracking results on the BU-4DFE
database [67], which consists of 3D dynamic facial expres-
sions of different subjects. A mesh template is manually
constructed in the first frame and automatically tracked in
the subsequent frames. Because of the temporal continuity
in consecutive frames, sufficient matching candidates can
be obtained by only looking at the 3D neighborhood of each
point. In this dataset, the texture information is noisy and
thus only relying on texture information can easily lead
to erroneous results. Nevertheless, with our deformation
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Fig. 15: Shape tracking results. The average texture difference
for all correspondences between every frame and the first frame
for the three sequences, from top to bottom are shown in (a), (b)
and (c), respectively.

model encoded in the higher-order terms of the MRF
model, we have achieved accurate tracking results for
sequences with significant anisometric facial deformation
as shown in Fig. 15.

5 CONCLUSION

We proposed a higher-order graph-based approach for
dense, non-rigid surface registration. Specifically, a two-
stage algorithm was introduced to reduce the search space
and improve matching accuracy, through an efficient candi-
date selection scheme and an accurate deformation model,
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respectively. In our sparse surface registration stage, a
higher-order graph matching formulation combined the
similarities in appearance and geometry as well as the in-
trinsic deformation error based on the isometry assumption.
In our dense surface registration stage, a generic deforma-
tion model, introduced to a higher-order MRF formulation,
was proposed to handle anisometric surface deformations.
The proposed method achieved robust dense registration
between non-rigid surfaces with large deformations, partial
overlapping and inconsistent boundaries and scale.

This work provides a solid basis for multiple future di-
rections. For example, our matching method can be applied
to dynamic 3D shape completion used in 3D virtual video
conference, thank to its ability to partially match surfaces
with large deformations. Our deformation model, namely
CDCs, can be used for driving the animation of 3D objects,
by solving the 3D embedding of a template object using our
higher-order MRF optimization. We will also explore more
sophisticated ways to learn the CDCs and apply them in
expression transfer, face recognition, etc.

REFERENCES

[1] Microsoft c© Kinect, 2010.
[2] L. V. Ahlfors. Lectures on Quasiconformal Mappings. American

Mathematical Society, 2 edition, 2006.
[3] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows:

Theory, Algorithms, and Applications. Prentice Hall, 1993.
[4] A. A. Amini, T. E. Weymouth, and R. C. Jain. Using dynamic

programming for solving variational problems in vision. IEEE Trans.
Pattern Analysis and Machine Intelligence, 12(9):855–867, 1990.

[5] D. Anguelov, P. Srinivasan, H.-C. Pang, D. Koller, S. Thrun, and
J. Davis. The correlated correspondence algorithm for unsupervised
registration of nonrigid surfaces. In Proc. Neural Information
Processing Systems, 2004.

[6] S. Belongie, J. Malik, and J. Puzicha. Shape matching and object
recognition using shape contexts. IEEE Trans. Pattern Analysis and
Machine Intelligence, 24(4):509–522, Apr. 2002.

[7] A. C. Berg, T. L. Berg, and J. Malik. Shape matching and object
recognition using low distortion correspondences. In Proc. IEEE
Conf. Computer Vision and Pattern Recognition, pages 26–33, 2005.

[8] P. J. Besl and N. D. McKay. A method for registration of 3-D shapes.
IEEE Trans. Pattern Analysis and Machine Intelligence, 14(2):239–
256, 1992.

[9] A. Blake, P. Kohli, and C. Rother. Markov Random Fields for Vision
and Image Processing. MIT Press, 2011.

[10] E. Boros and P. L. Hammer. Pseudo-boolean optimization. Discrete
Applied Mathematics, 123(1-3):155–225, 2002.

[11] S. P. Boyd and L. Vandenberghe. Convex Optimization. Cambridge
University Press, 2004.

[12] S. C. Brenner and R. Scott. The Mathematical Theory of Finite
Element Methods. Springer, 3 edition, 2007.

[13] A. M. Bronstein, M. M. Bronstein, and R. Kimmel. Generalized
multidimensional scaling: a framework for isometry-invariant partial
surface matching. Proc. National Academy of Sciences, 103:1168–
1172, 2006.

[14] A. M. Bronstein, M. M. Bronstein, and R. Kimmel. Expression-
invariant representations of faces. IEEE Trans. Pattern Analysis and
Machine Intelligence, 2004:1042–1053, 2007.

[15] A. M. Bronstein, M. M. Bronstein, and R. Kimmel. Numerical
Geometry of Non-Rigid Shapes. Springer, 2008.

[16] B. J. Brown and S. Rusinkiewicz. Global non-rigid alignment of
3-D scans. ACM Trans. Graph., 26, 2007.

[17] R. Burkard, M. Dell’Amico, and S. Martello. Assignment Problems.
Society for Industrial and Applied Mathematics, 2009.

[18] R. J. Campbell and P. J. Flynn. A survey of free-form object
representation and recognition techniques. Computer Vision and
Image Understanding, 81(2):166–210, 2001.

[19] M. Cho, J. Lee, and K. M. Lee. Feature correspondence and
deformable object matching via agglomerative correspondence clus-
tering. In Proc. IEEE Int’l Conf. Computer Vision, 2009.

[20] M. Cho and K. M. Lee. Progressive graph matching: Making a move
of graphs via probabilistic voting. In Proc. IEEE Conf. Computer
Vision and Pattern Recognition, 2012.

[21] D. Comaniciu and P. Meer. Mean shift: A robust approach toward
feature space analysis. IEEE Trans. Pattern Analysis and Machine
Intelligence, 24(5):603–619, 2002.

[22] T. Cour, P. Srinivasan, and J. Shi. Balanced graph matching. In
Proc. Neural Information Processing Systems, 2007.

[23] M. P. do Carmo. Riemannian Geometry. Birkhäuser, 1992.
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