
Recognizing Cultural Events in Images: a Study of Image Categorization Models

Heeyoung Kwon, Kiwon Yun, Minh Hoai, Dimitris Samaras
Stony Brook University, Stony Brook, NY 11794-4400

{heekwon, kyun, minhhoai, samaras}@cs.stronybrook.edu

Abstract

The goal of this work is to study recognition of cultural
events represented in still images. We pose cultural event
recognition as an image categorization problem, and we
study the performance of several state-of-the-art image cat-
egorization approaches, including Spatial Pyramid Match-
ing and Regularized Max Pooling. We consider SIFT and
color features as well as the recently proposed CNN fea-
tures. Experiments on the ChaLearn dataset of 50 cultural
events, we find that Regularized Max Pooling with CNN,
SIFT, and Color features achieves the best performance.

1. Introduction
Cultural events such as Rio Carnival and Munich Okto-

berfest attract millions of visitors every year, and they are
the attention of photographers, professionals and amateurs
alike. As can be seen in Figure 1, the subjects of many
consumer photographs are cultural events, and the ability
to recognize those events in still images is useful for many
applications such as indexing and searching of large-scale
image archives.

The goal of this work is to study recognition of cultural
events represented in typical still images such as consumer
photographs. This problem has received little attention in
the past, and it is only popularized by the recent ChaLearn
Cultural Event Recognition Challenge [1].

We pose cultural event recognition as an image catego-
rization problem and study the performance of several state-
of-the-art image categorization approaches. In particular,
we study the performance of Bag-of-Words representation
combined with Spatial Pyramid Matching [12]. This is a
popular approach which has been used for many tasks, in-
cluding scene recognition [12] and human action recogni-
tion [5] in images. In addition to Spatial Pyramid Matching,
we also investigate the recently proposed method Regular-
ized Max Pooling [9]. This method has shown impressive
state-of-the-art performance for recognizing human actions
from still images.

The rest of this paper is organized as follows. Section 2

describes the ChaLearn Cultural Event dataset. Section 3
explains the feature representation used in our experiments.
Sections 4 and 5 present two recognition methods investi-
gated in this paper. Section 6 provides extensive experimen-
tal evaluation of different methods and parameter settings
on the ChaLearn Cultural Event dataset.

2. Dataset and performance measure
Dataset. We study recognition of cultural events using
the ChaLearn Cultural Event Recognition dataset [1]. This
dataset consists of images of 50 cultural events over 28
countries. Examples of cultural events are Carnival Rio,
Oktoberfest, St.Patrick’s Day, La Tomatina, and Tango Fes-
tival. The images are collected by querying the image
search engines of Google and Bing. The images are divided
into three disjoint subsets for training, validation, and test-
ing; these subsets contain 5,875, 2,332, and 3,569 images,
respectively. Each image is manually annotated with one
of the 50 cultural events. Figure 1 shows some example
images for several cultural events such as Carnival Rio, Ok-
toberfest, and St Patrick’s Day.

Performance measure. The performance measure is
Mean Average Precision (mAP), which is a standard mea-
surement used for benchmarking recognition systems in
many visual recognition challenges including ChaLearn [1]
and PASCAL VOC Challenges [7]. To obtain mAP, we first
compute the Average Precision (AP) for each of the 50 cul-
tural event classes, and the mAP is the average of the ob-
tained APs. The AP for a class is calculated as the area un-
der the precision-recall curve for the 1-vs-all cultural event
classifier. The evaluation code is provided by ChaLearn [1].
Due to the unavailability of annotation for the test set, most
results reported in this paper are performed on the valida-
tion data.

3. Classifiers and Features
To recognize cultural events, we use Least-Squares Sup-

port Vector Machines [19] and consider three types of lo-
cal features. The local features are SIFT, Color, and CNN,
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Figure 1. Example images of the cultural events from ChaLearn Cultural Event dataset [1].

which are among state-of-the-art features for image catego-
rization. We additionally consider some combinations of
these features.

3.1. Least-Squares SVM classifiers

We use Least-Squares Support Vector Machines
(LSSVM) [19]. LSSVM, also known as kernel Ridge
regression [16], has been shown to perform equally well as
SVM in many classification benchmarks [18]. LSSVM has
a closed-form solution, which is a computational advantage
over SVM. Furthermore, once the solution of LSSVM
has been computed, the solution for a reduced training set
obtaining by removing any training data point can found
efficiently. This enables reusing training data for further
calibration (e.g., used in [9, 10]). This section reviews
LSSVM and the leave-one-sample-out formula.

Given a set of n data points {xi|xi ∈ <d}ni=1 and asso-
ciated labels {yi|yi ∈ {1,−1}}ni=1, LSSVM optimizes the
following:

minimize
w,b

λ||w||2 +
n∑

i=1

(wTxi + b− yi)2. (1)

For high dimensional data (d � n), it is more efficient
to obtain the solution for (w, b) via the representer theorem,
which states that w can be expressed as a linear combina-
tion of training data, i.e., w =

∑n
i=1 αixi. Let K be the

kernel matrix, kij = xT
i xj . The optimal coefficients {αi}

and the bias term b can be found using closed-form formula:
[αT , b]T = My. Where M and other auxiliary variables
are defined as:

R =

[
λK 0n

0T
n 0

]
,Z =

[
K
1T
n

]
, (2)

C = R+ ZZT ,M = C−1Z,H = ZTM. (3)

If xi is removed from the training data, the optimal coeffi-
cients can be computed:[

α(i)

b(i)

]
=

[
α
b

]
+

(
[αT b]zi − yi

1− hii

)
mi. (4)

Here, zi is the ith column vector of Z and hii is the ith

element in the diagonal of H. Note that R,Z,C,M, and
H are independent of the label vector y. Thus, training
LSSVMs for multiple classes is efficient as these matrices
need to be computed once. A more gentle derivation of the
above formula is given in [3].

3.2. SIFT

We consider cultural event recognition using PHOW de-
scriptors [2]. PHOW descriptors are dense SIFT [15] at
multiple scales. Specifically, we extract dense SIFT at ev-
ery 5 pixels at scales 4, 6, 8, and 10. To extract PHOW
descriptors, we use VLFEAT library [20]. We build a visual
vocabulary from training SIFT descriptors using k-means
with 4, 000 clusters. Subsequently, SIFT descriptors are as-
signed to one of the clusters (i.e., visual words), and the de-
scriptors for an image (or an image region in case of Spatial
Pyramid Matching) are aggregated into a 4000-dimensional
histogram, which is referred to as the bag-of-words repre-
sentation.

3.3. Color

Although SIFT descriptors can be used to capture the
texture of cultural events, they ignore color information.
Color cues, however, are crucial for identifying some cul-
tural events, as illustrated in Figure 1 (e.g., St Patrick’s Day
based on the green color). To capture color information, we
divide an image into a grid of 3 × 3 cells, and compute the



Figure 2. The pipeline for Spatial Pyramid Matching. An image is divided into 1× 1 (Level 0), 2× 2 (Level 1) and 4× 4 (Level 2) spatial
grids of cells. A local feature vector for each cell is computed, and all feature vectors are concatenated to create a feature vector for the
image. Local feature vectors could be CNN features or the BoW representation of SIFT/color descriptors.

average normalized RGB values in each grid cell. Given the
unnormalized (R, G, B) values, the normalized RGB values
are defined as R/(R+G+B), G/(R+G+B), B/(R+G+B). The
normalized RGB values are known as rg chromaticity [14],
which are less sensitive to illumination conditions than the
unnormalized RGB values. We build a color codebook us-
ing k-means with 2, 000 clusters. Subsequently, color de-
scriptors are assigned to one of the color words, and the de-
scriptors for and image (or an image region) are aggregated
into a 2000-dimensional histogram.

3.4. CNN features

We also study the use of CNN features [13] for cul-
tural event recognition. CNN features have been shown
to yield excellent image classification results [11, 4]. To
extract CNN features, we use the publicly available Caffe
implementation [4] of the CNN architecture described by
Krizhevsky et al. [11]. As will be seen, we extract CNN fea-
tures for multiple regions of an image. For each region, we
extract a 1024-dimensional CNN feature vector. This fea-
ture vector is referred to as CNN M 1024 in [4]. As shown
by [4], this feature is slightly worse than CNN M 2048 and
CNN S TUNE, but it has lower dimensionality.

4. Spatial Pyramid Matching

Spatial Pyramid Matching (SPM) [12] is a popular ap-
proach for image categorization. SPM works by parti-
tioning an image into increasingly fine sub-regions and
aggregating local features found inside each sub-region
(e.g., computing histograms [17] of quantized SIFT de-
scriptors [15]). This approach has shown impressive levels
of performance on various image categorization tasks. In
our experiments, we consider a SPM model with three lev-

els [12]. Specifically, an image is divided into 1× 1 (Level
0), 2×2 (Level 1) and 4×4 (Level 2) spatial grids of cells. A
feature vector is computed for each cell, and all feature vec-
tors are concatenated with weights 0.25, 0.25, 0.5 for levels
0, 1, 2, respectively. This yields a (1 + 4 + 16)K = 21K
dimensional feature vector, whereK is the dimension of lo-
cal feature vectors for cells. Figure 2 illustrates the pipeline
of SPM.

We use SPM with all three types of local features: SIFT,
color, and CNN. For SIFT and Color, the local feature vec-
tor for each cell is the Bag-of-Words (BoW) representa-
tion [17] of visual words. The vocabulary sizes for SIFT
and Color codebooks are 4, 000 and 2, 000 respectively.

5. Regularized Max Pooling

Regularized Max Pooling (RMP) [9] is a recently pro-
posed technique for image categorization. It has been
shown to achieve state-of-the-art performance on recogniz-
ing human actions in still images. RMP combines the flexi-
bility of Spatial Pyramid Matching (SPM) and the deforma-
bility of Deformable Part Model (DPM) [8]. RMP works
by partitioning an image into multiple regions and aggre-
gating local features computed for each region, as in the
case of SPM. However, unlike SPM, RMP does not rely on
rigid geometric correspondence of grid division. Grid di-
vision ignores the importance of semantic or discriminative
localization; and it has limited discriminative power for rec-
ognizing semantic category with huge variance in location
or large deformation. To overcome the rigidity of grid di-
vision, RMP allows the regions to deform, just like in the
case of DPMs with deformable parts. The regions in an
RMP can be considered as parts at different locations and
scales. Parts are geometrically anchored, but can be dis-



(a) Grid division

(b) Examples of considered subwindows

Figure 3. From grid division to subwindows. (a): An image is
divided into 4×4 blocks. RMP considers rectangular subwindows
that can be formed by a contiguous chunk of blocks. There are 100
such subwindows, and (b) shows four examples.

criminatively deformed. Compared to DPM, RMP has two
advantages. First, an RMP model can have hundred of parts
at various scales while a DPM is typically used with a small
number of parts at the same scale. Second, the learning for-
mulation of RMP is simple, without the need for expensive
iterative updates.

An RMP model is a collection filters. Each filter is an-
chored to a specific image subwindow and associated with a
set of deformation coefficients. The anchoring subwindows
are predetermined at various locations and scales, while the
filters and deformation coefficients are learnable parame-
ters of the model. Figure 3 shows how the subwindows are
defined. To classify a test image, RMP extracts feature vec-
tors for all anchoring subwindows. The classification score
of an image is the weighted sum of all filter responses. Each
filter yields a set of filter responses, one for each level of de-
formation. The deformation coefficients are the weights for
these filter responses. Please refer to [9] for more details.

6. Results

This section reports the performance of various methods,
considering different combinations of feature types and im-
age categorization models. We first discuss the performance
of SPM using SIFT, color, and CNN features. We will then
compare the performance of SPM and RMP.

Row Feature type Method type mAP

(A) SIFT SPM 47.8
(B) SIFT+Color SPM 55.8
(C) CNN SPM 70.1
(D) CNN MultiReg 70.3
(E) CNN RMP 71.9

(B) + (E) 73.7

Table 1. Performance of various methods with different combina-
tion of feature types and methods. Color feature provides comple-
mentary cues for SIFT, and CNN performs better than both SIFT
and Color combined. RMP outperforms MultiReg and SPM. The
best result is achieved by combining SPM using SIFT+Color and
RMP using CNN.

6.1. Feature Comparison

The first three rows of Table 1 show the performance of
SPM using SIFT, SIFT+Color, and CNN features. As can
be seen, all feature types perform reasonably well, achiev-
ing high mean average precisions for 50 cultural event
classes. SIFT+Color outperforms SIFT by a large margin;
this confirms the benefits of using color cues for recogniz-
ing cultural events. Overall, CNN features perform the best,
achieving mAP of 70.1%. For a reference, CNN with a sin-
gle layer SPM (Level-0 only) achieves mAP of 64.5%.

6.2. Method comparison

Rows (C), (D), and (E) of Table 1 report the performance
of several methods using the same feature type, CNN. We
will refer to these methods as SPM, MultiReg, and RMP,
hereafter. SPM is the method that uses 3-level spatial pyra-
mid of CNN features. MultiReg is similar to SPM. It is also
based on rigid geometric correspondence, but extracts fea-
tures from a different set of subwindows. In particular, Mul-
tiReg divides an image into a grid of 16 blocks (4× 4) and
considers all 100 rectangular subwindows that can be ob-
tained by a contiguous set of blocks (Figure 3). RMP uses
the same set of subwindows as MultiReg, but the subwin-
dows can deform (translation and scale). SPM, MultiReg,
and RMP are all based on LSSVM. As can be seen, RMP
outperforms SPM and MultiReg. Since all of these meth-
ods use the same feature type, the superiority of RMP can
be accounted for by its ability to handle deformation.

We consider the differences between APs of RMP and
SPM, which will be referred to as AP gaps. We sort the AP
gaps for 50 cultural event classes and plot them in Figure 4.
As can be seen, the AP gaps are positive for 75% of the
classes. Figure 5 shows some representative images from
two classes with the highest AP gaps and the bottom two
classes with the lowest AP gaps. For classes in Figures 5(a)
and 5(b), the AP gaps between RMP and SPM are 10.8%



Figure 4. AP gaps between RMP and SPM. AP gaps are the
differences between the APs of RMP and SPM, using CNN fea-
tures. This figure plots the individual AP gaps for 50 cultural event
classes. The majority of classes have a positive AP gap.

and 7.7% respectively. However, for classes in Figures 5(c)
and 5(d), RMP does not perform better than SPM. The key
advantage of RMP over SPM is the ability to handle geo-
metric deformation. However, the intraclass variance of im-
ages in some cultural classes might not be due to geometric
deformation, as can be seen in Figures 5(c) and 5(d).

6.3. Method and feature combination

We also study the complementary benefits of
SIFT+Color features to RMP, which uses CNN fea-
tures. In particular, we combine SPM using SIFT+Color
(Section 6.1) and RMP that uses CNN features as follows.
To combine two methods, we consider the average of
the SVM confidence scores. The mAP for the combined
method is 73.7%. This is significantly higher than 71.9%,
which is the mAP of RMP alone. This suggests that
SIFT+Color features provide complementary information
for recognizing cultural events.

Figure 6 shows the APs of 50 event classes, obtained
using a method that combines RMP using CNN and SPM
using SIFT+Color. The majority of classes have APs higher
than 60%. The two classes with highest APs are shown in
Figure 7, and the two classes with lowest APs are shown in
Figures 8 and 9. As can be seen, classes with low APs are
not as distinctive as classes with high APs.

6.4. Comparison with other ChaLearn participants

We compare the performance of our best method
(RMP+CNN combined with SPM+SIFT+Color) with the
entries of ChaLearn 2015 Challenge. The results on the test
set are obtained by submitting the output of our method to

(a) Helsinki Samba Carnaval

(b) Basel Fasnacht

(c) Diada de Sant Jordi

(d) Fiesta de la Candelaria

Figure 5. Cultural event classes with highest (a, b) and lowest (c,
d) AP gaps between RMP and SPM.



Figure 6. Individual APs for 50 cultural classes. These APs are
obtained using a method that combines RMP using CNN and SPM
using SIFT+Color. The mAP is 73.7. Only few classes have APs
lower than 60%.

(a) Ballon Fiesta

(b) La Tomatina

Figure 7. Cultural event classes with highest APs (more than 96%).
The images from these classes are highly distinctive.

(a) Representative images from Maslenitsa

(b) Negative images that receive high confidence scores

Figure 8. Maslenitsa – cultural event with lowest AP. (a): rep-
resentative images of the class. (b): negative images with highest
confidence. Images from this class are not as distinctive as images
from classes shown in Figure 7.

Team mAP

Nyx 31.9
MasterBlaster 58.2
MIPAL SNU 73.5
UPC-STP 76.7
MMLAB 85.5
Ours 74.2

Table 2. Comparison with other entries of the 2015 ChaLearn
Challenge on recognizing cultural events.

the challenge organizer. This submission is done once. Ta-
ble 2 shows the results of our method and other participants.
Our method achieves the third best performance.

7. Conclusions
We have studied the performance of Spatial Pyramid

Matching (SPM) and Regularized Max Pooling (RMP) on



(a) Representative images from Fiesta de la Candelaria

(b) Negative images that receive high confidence scores

Figure 9. Fiesta de la Candelaria – cultural event with second
lowest AP. (a): representative images of the class. (b): negative
images with highest confidence; these images are highly similar to
actual images of the event class.

the task of cultural event recognition. We have considered
several types of features and performed experiments on the
ChaLearn dataset [1] that contains 50 cultural events. We
observe that CNN features outperform SIFT and Color fea-
tures, but SIFT and Color do provide complementary ben-
efits. RMP outperforms SPM for the majority of cultural
event classes. We visually examine the classes in which
RMP does not lead to better performance and find that those
classes contain images with high intraclass variance, but the
variance is not mainly due to geometric deformation. In this
work, we have used CNN M 1024, which is an off-the-shelf
CNN feature [4] trained on ImageNet dataset [6]. We have
not finetuned CNN features on the ChaLearn Cultural Event
dataset. We leave this for future work and expect it would
improve the overall performance.
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