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Abstract. Although a lot of research has been performed in the field
of reconstructing 3D shape from the shading in an image, only a small
portion of this work has examined the association of local shading pat-
terns over image patches with the underlying 3D geometry. Such ap-
proaches are a promising way to tackle the ambiguities inherent in the
shape-from-shading (SfS) problem, but issues such as their sensitivity to
non-lambertian reflectance or photometric calibration have reduced their
real-world applicability. In this paper we show how the information in
local shading patterns can be utilized in a practical approach applicable
to real-world images, obtaining results that improve the state of the art
in the SfS problem. Our approach is based on learning a set of geomet-
ric primitives, and the distribution of local shading patterns that each
such primitive may produce under different reflectance parameters. The
resulting dictionary of primitives is used to produce a set of hypotheses
about 3D shape; these hypotheses are combined in a Markov Random
Field (MRF) model to determine the final 3D shape.

1 Introduction

Shape recovery is a classic problem in computer vision and a large body of
prior work exists on the subject, including a variety of shape-from-X techniques.
Shape-from-shading is the instance of the shape recovery problem where shape
is inferred by the variations of shading in the image. The goal of this paper is
to infer the 3D scene structure, in the form of a normal map, from a single 2D
image using the information contained in shading. Although shading is a very
important cue for human perception of shape and depth, shape-from-shading is
a challenging and generally ill-posed problem in computer vision.

A vast amount of prior work exists in the field of shape from shading. Early
work can be found in [1]. A variety of shape-from-shading algorithms are sur-
veyed in [2], and more recently in [3], including approaches based on energy
minimization and partial differential equations [4]. A variety of smoothness and
curvature constraints in energy minimization is examined in [5] to improve the
recovered needle maps. Energy minimization approaches suffer from deep local
minima, as discussed in [6], which proposes a stochastic optimization approach
to avoid them. Heavy shadows further complicate the SfS problem. In [7], shad-
ing is incorporated in the form of additional constraints to a deformable model,
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in order to estimate shape under varying reflectances and extended to the case of
unknown illumination. An MRF formulation of the shape from shading problem
is presented in [8], including integrability constraints. While SfS is an ill-posed
problem in the case of orthographic projection under a distant light source, [9]
shows that assuming a more realistic perspective projection and a point light
source, SfS becomes well-posed.

In our approach we are interested in extracting and utilizing information in
larger image regions (image patches) consisting of multiple pixels. Our motiva-
tion comes from the intuition that ambiguities inherent in the problem when
looking at individual pixels are reduced when examining larger neighborhoods.
A data-driven approach could capture the correlations between local image ap-
pearance and geometry, allowing us to perform shape reconstruction based on
a relatively small set of hypotheses about local 3D structure that have been
learned by observing real data, thus making the problem easier.

Some prior work [10, 11] has examined shading and geometry in small image
regions. [12] examines shading primitives capturing the shading patterns in folds
and grooves of surfaces, including interreflections. A graphical model framework
for incorporating patch-based priors in various computer vision problems is pre-
sented in [13]. Their results in the SfS problem are however limited to a small
subset of synthetic images. Geometric primitives are also utilized in [14], to cap-
ture object-specific priors for reconstruction of known object classes, such as
faces. In [15] a set of shading primitives is used to capture the folds in cloth, and
the surface in between folds is interpolated through a two-level MRF model in
order to reconstruct the 3D shape of cloth. Recently, [16] used learned shading
primitives to deform the initially known 3D surface of a locally textured object.
One of the few patch-based approaches for the general shape-from-shading prob-
lem is proposed in [17]. Their method uses a dictionary of spherical primitives
and a variational approach to reconstruct the 3D shape of Lambertian objects.

In this work, we use a learned dictionary of geometric primitives to capture
the relationship between the appearance and geometry of image patches. Each
entry in the dictionary captures the geometry of a small rectangular region
(patch) and a distribution of the possible image intensities associated with this
geometry, as observed in a training set containing images of known geometry.
We choose to describe the 3D geometry by a normal map. We assume that
the scene is illuminated by a single distant point light. We do not assume a
specific type of surface reflectance. In our initial approach to the problem, we
assume that the object surface has uniform albedo, so that an image containing
only shading variations is available. Shading variations in case of variable albedo
could be extracted through other methods [18]. Furthermore, we do not model
the effects of cast shadows and interreflections. However, since our method relies
more on the higher-frequency components of local appearance, interreflections,
which change relatively smoothly over the surface, will have limited influence on
our method.

To reconstruct the shape of a new image, we first divide the image into
patches. For each image patch, we search the dictionary for patches that have
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similar appearance to the observed one. Patch appearance is described on a
wavelet basis. We define the distance of the image patch to a dictionary patch as
the Mahalanobis distance between the observed appearance and the distribution
of appearances that can be produced by the dictionary patch. That distribution
corresponds to different parameter choices in the Ward reflectance model [19].
Searching the dictionary for matches to an observed image patch produces a
set of hypotheses about the local geometry. Despite the fact that there are in-
finite possible geometric explanations for the appearance of a given patch, our
experiments show that certain explanations are much more probable, making
our approach effective. The problem of inferring the shape of the objects in the
scene becomes that of properly selecting the normal vectors given the set of local
hypotheses obtained by the dictionary.

We combine the local hypotheses into the final 3D shape through a Markov
Random Field (MRF) model. The MRF model contains one node per image
pixel, with pairwise interactions between them, and the node labels indicate the
normal vector at each corresponding pixel. The main contributions of this work
are the following:

1. We propose a new metric to capture the similarity between local shading
patterns and learned patches using a wavelet decomposition and the Ma-
halanobis distance. As a result, our method can reconstruct the shape of
surfaces that significantly deviate from the lambertian model, and handle
images that are not photometrically calibrated. These are both significant
restrictions of previously proposed approaches.

2. We describe an algorithm that effectively combines information across mul-
tiple scales and combines the local geometric hypotheses to reconstruct the
final normal map through an MRF model. Our method achieves state-of-
the-art results in real images.

3. We show how a patch-based SfS approach can be used to refine and fill-in
gaps in the geometry obtained with 3D sensors such as the Microsoft Kinect.

We present results on synthetic and real data. In both cases, our algorithm is
able to recover both the general object shape and finer geometric details. In our
experiments, dictionaries are learned on synthetic data, but we are able to use
them to reliably reconstruct the shape of real photographs. Comparisons with
other approaches [17, 20, 21, 9] on real data show the advantages of our approach.

In the following sections we describe how image patches can be represented
and how a dictionary of patches can be learned from a set of training images and
their corresponding geometry (Sec.2), and how we can reconstruct the normal
map from a test image, using the trained dictionary and formulating the problem
as inference on a Markov Random Field (MRF) model (Sec.3). In Sec.4 we
present results on synthetic datasets and real images with our method. Sec.5
concludes the paper.
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Fig. 1. The data stored in a learned dictionary. Left: the normal map of sample dic-
tionary patches; Right: the mean appearance of each dictionary patch as reconstructed
from the mean of appearance wavelet coefficients. Red indicates background pixels.

2 Patch dictionary

We first construct a dictionary of local geometric primitives (patches) from a
set of training images with known geometry. Each patch in the dictionary is a
small normal map of size n× n, representing the local 3D geometry. Along with
the geometry for each patch, we store the distribution of pixel intensities (local
appearances) that can be produced by that geometry under different reflectance
models, given a light source direction. We refer to each of the learned geometric
primitives in the dictionary as a dictionary patch. By patch appearance we refer
to the n×n grid of pixel intensities describing the appearance of an image patch
or dictionary patch. By patch geometry we refer to the n × n grid of normal
vectors representing the patch geometry.

2.1 Patch representation

We reduce the dimensionality of the normal map representation by applying
PCA to a subset of patches from the training set and keeping the MG first
eigenvectors. Patch normal maps are therefore projected on the PCA basis and
represented by the MG resulting coefficients. We choose to represent the patch
appearance using a Haar wavelet basis [22]. We use Haar wavelets of order 2,
using the non-standard construction, resulting in a basis of size MA = 16 for
appearance patches.

The distribution of appearances that can be produced by the geometry of
a dictionary patch is represented by the mean and variance of the coefficients
of the patch appearance. Furthermore, each dictionary patch contains a mask
that indicates which pixels belong to the foreground and which (if any) to the
background. Therefore, a dictionary patch Di is represented by a quadruplet
{Gi,Mi, µ

A
i , σ

A
i }, where G are the PCA coefficients describing the patch normal

map, Mi is the patch foreground/background mask (an n × n grid of binary
values), and µA

i and σA
i are the means and variances of the coefficients of the

appearances that can be produced by the patch geometry.
An example set of patch appearances and geometries from a learned dictio-

nary is shown in Fig.1.

2.2 Dictionary construction

Let T =
{(
TG
k , T

M
k , tLk

)}
be the training set, where each training instance k

consists of a normal map TG
k , a foreground/background mask TM

k and a light
source direction tLk . We assume that each training instance is illuminated by a



Reconstructing Shape from Dictionaries of Shading Primitives 5

single distant light source. In order to obtain a good dictionary D from train-
ing set T , we aim to learn a set of geometric primitives that could adequately
describe the objects in the training set. Our approach is to: 1) First examine
only the geometry of the training set, learning a set of dictionary patches that
correspond to distinct local geometric structures in our training set. 2) As a
second step, we examine the local appearance produced by each of the learned
dictionary patches under different reflectances, and store statistics to describe
the distribution of these appearances.

To learn the dictionary patch geometry, we first divide the geometry TG
k of

each training instance k into a set P of overlapping patches Pi of size n × n.
We then project the normal map PG

k of each patch Pi onto the PCA basis, so
that PG

k is represented by a set of coefficients αG
k . To decide if we should add

this patch to the dictionary D, we compute the distance between Pk and each
dictionary patch Di as:

〈Pk,Di〉 =

MG∑
m=1

(
αG
k (m)− αG

i (m)
)2

+ wM

n2∑
p=0

[
PM
k (p),DM

i (p)
]
, (1)

where the first term is the euclidian distance of the PCA coefficients representing
the geometry and the second term the difference of the foreground/background
masks, weighed by a weight wM that determines how strictly we want the fore-
ground/background mask to match between the two patches (a large value of
wM = 100 was used in our experiments).

If the distance to the closest patch already in the dictionary is above a thresh-
old θD, then a new dictionary patch is added to the dictionary, with the geometry
and mask of patch Pk. Therefore, after all patches in the training set have been
examined, a (potentially large) dictionary D has been constructed, containing a
variety of distinct local geometric structures.

The second step is to learn the distribution of appearances that can be
produced by the geometry of each dictionary patch. In order to do that, we
render the normal map of each dictionary patch Di using the Ward [19] re-
flectance model and a set R of different reflectance parameters, which corre-
sponds to surfaces of varying specularity, varying diffuse intensity and varying
anisotropic specular properties. We project the image intensities produced by
each reflectance parameter selection onto the wavelet basis, and we store the
mean µA

i and variance σA
i for each appearance coefficient across all reflectance

parameters.

Dictionary light source direction We train the dictionary of patches using
a single, known light source direction. This known light source direction is used
to associate each local geometric primitive in the dictionary with a range of
appearances under different reflectance parameters, removing the dependence of
local appearance on light direction.

When reconstructing a test image, the light source direction used to train
the dictionary has to be the same as the one that corresponds to the test image.
Therefore, we re-compute the distribution of appearances for each dictionary
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patch as a first step every time we are provided with a new image to recon-
struct and the corresponding light source direction. Generating the distribution
of appearances for a dictionary of 30000 patches, such as the one used in our ex-
periments, takes 1-3 minutes. This time is significantly less than the time needed
to reconstruct the image from the dictionary, making this solution feasible.

This way, the dictionary does not have to capture the ambiguities caused
by varying light source directions, which would lead to both an extremely large
dictionary and a very difficult reconstruction problem.

3 Shape reconstruction

In this section we describe how we reconstruct the geometry when provided with
a new image I and a learned dictionary D. We first divide the input image into
a set of overlapping patches. We then find the dictionary patches in D that are
closest in appearance to the patches extracted from the test image I. Finally,
we reconstruct the 3D shape from the results of the dictionary look-up using a
Markov Random Field (MRF) model.

We divide the image I into a set of overlapping patches. We define an image
patch Pj for each image pixel j, so that Pj is centered at pixel j and has size
n × n. This way, we extract all possible image patches from the input image I.
For each image patch, we search the dictionary for dictionary patches of similar
appearance. We retrieve the kD dictionary patches that are closest in terms of
appearance to image patch Pj (we define the metric to compare patch appear-
ances in the next section, Sec.3.1). Because we defined image patches centered
at each pixel, a given pixel i is covered by up to n2 overlapping image patches.
As a result, there are up to kDn

2 dictionary matches that include pixel i, with
each dictionary match defining a normal vector for pixel i. Each of these results
is considered a hypothesis about the vector at pixel i.

Because of the dependency of patches on scale, we repeat this search for a
set of different scales S. We use re-scaled versions of the original image, at scales
both coarser and finer. We examine every patch at the coarsest scale. At finer
scales, we only examine those image patches that have image variance above a
given threshold (0.001 in our experiments). Moving to finer scales, the patches
get smaller relative to the image. As a result, the average image variance per
patch reduces, so that only finer details are examined at finer scales (see Fig.2).
The dictionary matches of size n×n at each scale are then re-scaled to the scale
of the original image. As a result, the final set of dictionary matches contains
patches of varying sizes, corresponding to the different image scales used for the
search.

The above procedure generates up to |S|kDn2 normal vector hypotheses for
each image pixel i. From this large set of hypotheses, we keep only the k normal
vectors that correspond to the k dictionary patches with the lowest matching
cost that contain this image pixel. These candidate normal vectors will be sub-
sequently used in the MRF optimization described in section 3.2 to obtain the
final normal map.
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3.1 Dictionary search

To determine how well a dictionary patch (consisting of a normal map patch and
a set of appearance statistics) matches an image patch (consisting of a patch of
image intensities) we use the Mahalanobis distance.

Let Pj be an image patch consisting of appearance PA
j (a n × n patch of

per-pixel intensities) and a foreground/background mask PM
j . Projecting the

foreground pixels of appearance PA
j onto the appearance wavelet basis, we obtain

a set of coefficients αA
j that describe the image patch appearance. We compute

the distance between the appearance of Pj and that of a dictionary patch Di by
the Mahalanobis distance:

DA(Di, Pj) =

√√√√MA∑
m=1

(
αA
j (m)− µA

i (m)
)2(

σA
i (m)

)2 , (2)

where µA
i and σA

i are the mean and variance of the appearance coefficients of
the appearances produced by dictionary patch Di under different reflectances,
as computed during training 1.

To compute the quality of the match between dictionary patch Di and image
patch Pj , we also compute the similarity of the foreground/background masks
of the two patches:

DM (Di, Pj) =
1

n2

n∑
x=1

n∑
y=1

[
DM

i (x, y) = PM
j (x, y)

]
, (3)

where
[
DM

i (x, y) = PM
j (x, y)

]
= 1 if both masks agree for pixel (x, y) and 0

otherwise.
Finally, we can take into account the similarity of dictionary patch Di to a

rough 3D shape prior. This term allows us to utilize the normal map estimate
from the previous scale while searching for dictionary matches at the next scale,
when examining multiple scales. Similarly, this term can allow the incorporation
of rough geometry knowledge. Such an example is the refinement of 3D shape
captured by a commercial 3D camera, such as a Kinect sensor. The geometry
prior cost is defined as:

DG(Di, Pj) =

M∑
m=1

(
αG
i (m)− αG

j (m)
)2
, (4)

where αG
i (m) is the m-th coefficient of the geometry of dictionary patch Dj ,

αG
j (m) is the m-th coefficient of the coarse geometry of the test patch j. As-

suming that the geometry prior is coarse, only the first M geometry coefficients
are taken into account, corresponding to the low-frequency components of the
geometry prior. In our experiments, M = 3.

The final cost of using dictionary patch Di to explain image patch Pj is then:

cost(Di, Pj) = DA(Di, Pj) + wMDM (Di, Pj) + wGDG(Di, Pj), (5)

where wM and wG are weight that control the relative strength of match and
geometry prior matching ((wM , wG) = (1000, 1) in our experiments).

1 We have assumed that covariances between appearance coefficients are 0, which lead
to no significant deterioration in results, but significantly faster training and testing.
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Fig. 2. Combining matches over different scales to produce an initial guess about the
normal map. a) original image; b-d) the normal maps produced by averaging dictionary
matches at 3 different scales; e) the combination of all scales to produce an initial guess
about the normal map; f) the final result from our method.

3.2 Combination of dictionary matches

Having obtained a set of dictionary matches, we then produce an initial guess
for the normal map. For each pixel i, we have recovered a potentially large
set of normal vectors {ni

k}, across different scales. We compute the mean ni

of all normals at pixel i. Then, we recompute the mean normals iteratively. At
each iteration, we take the weighted mean of normals {ni

k} at pixel i, where
each normal is weighed by 1/||ni

k − ni||2. This allows us to reduce the effect of
outliers to the initial estimate [17]. The results we obtain at each scale and their
combination to produce the initial guess are shown in Fig.2.

We refine this initial guess to produce the final normal map by modeling
the problem as an MRF model. Through the MRF optimization, we estimate a
normal map for the image that is both close to the discovered dictionary matches
and that satisfies anisotropic smoothness constraints.

Our MRF model can be represented by a 4-connected 2D lattice, where each
node corresponds to an image pixel. Each random variable xi at pixel i indicates a
normal vector ni. Therefore, the labels xi take values from a continuous domain.
The energy of the MRF model is:

E(x) =
∑
i∈I

φi(xi) + w2

∑
i,j∈N

ψij(xi, xj), (6)

where I is the set of image pixels, N is the set of neighboring pixels in the
4-connected grid, φi(xi) is the singleton potential that associates the labels xi
with the geometry hypotheses recovered from the dictionary D and ψij(xi, xj)
is the pairwise potential associating neighboring pixels i and j. The weight w2

was set to 0.1 in our experiments.

The form of the singleton potential is:

φi(xi) = wI
i

Di∑
j=1

arccos (n(xi) · n(Dj)) cost(Dj), (7)

where n(xi) is the normal vector at pixel i as indicated by label xi, Di is the
number of dictionary matches that contain pixel i, n(Dj) is the normal vector at
pixel i as predicted by match Dj , and cost(Dj) is the cost associated with match
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Dj . Furthermore, wI
i is a weight that corresponds to how reliable we expect the

dictionary matches at pixel i to be.
We express wI

i based on two observations: dictionary matches are more re-
liable when there is enough local image variability (flat image regions are the
least informative), and dictionary matches are not reliable when the matches in
different scales differ significantly from each other. Therefore, we define wI

i as:

wI
i =

σi
1 + q(i)

, (8)

where σi is the local image variance at pixel i, which is computed as the variance
of the image pixel intensities in a 6× 6 patch centered at pixel i. The term q(i)
represents how much the recovered dictionary patches differ at pixel i, and is
defined as:

q(i) =
1

π

|S|∑
s=0

∑
j

arccos
(
n(Ds

j ) · ni

)
, (9)

where S is the set of different scales we are examining, Ds
j indicates the j-

th recovered dictionary patch for pixel i using scale s, and ni is the normal
vector at pixel i obtained by averaging the normals at pixel i from all recovered
dictionary matches at all scales.

The pairwise potentials ψij(xi, xj) enforce smoothness between the normals
of neighboring pixels i and j:

ψij(xi, xj) = wij arccos (n(xi) · n(xj)) , (10)

where wij is a weight computed as a function of the image gradient between
pixels i and j:

wij = max {0, 1− w∇∇Iij} , (11)

and w∇ determines how sensitive the smoothing term is to image gradients (we
set w∇ = 4 in our experiments).

We infer the final shape by minimizing the MRF energy over the labels x.We
chose to use the QPBO [23, 24] and fusion-move [25] algorithms to perform
inference. The QPBO algorithm is used to solve a binary MRF labeling problem
between the current set of node labels x̂ and a set of proposed labels x′. The
solution is initialized to our initial guess about the normal map, produced by
keeping the average normal of the finest scale available for each pixel. We perform
a predefined number of iterations, and at each iteration we generate the set of
proposed normals (indicated by labels x′) by adding a small random offset to
each normal vector in the current solution x̂.

4 Experimental Evaluation

We evaluated our method on both real (Fig.5) and synthetic (Fig.3) data. For
evaluation on synthetic data, we used a set of 3D models rendered assuming
Lambertian reflectance. The set consisted of 6 models of real objects captured
with a 3D scanner [26, 27] and rendered from 142 different viewpoints and a
set of 2.5D range images of 11 different objects [28], captured from 66 different
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Fig. 3. Reconstruction of normal maps of synthetic images. The images are generated
by rendering depth maps of objects collected by 3D scanning [26, 27]. We show the
reconstructed normal maps and renderings of the reconstructed shape under different
illuminations.

Fig. 4. Effect of non-lambertian reflectance: a-d) reconstruction using the Mahalanobis
distance metric, e) reconstruction using Euclidian distance. a) Lambertian reflectance;
b) Lambertian reflectance, under-exposed image; c,d,e) Specular reflectance using the
Ward model. Our approach achieves results that are robust to reflectance and photo-
metric calibration, while it is impossible to reconstruct a specular surface using just
the Euclidian distance. Notice also that the surface in (d) is more specular than the
most specular reflectance parameters used while training, showing the ability of our
approach to generalize over reflectance parameters.

viewpoints. We used a subset of the viewpoints available, resulting in a set of
150 images. We used leave-one-out cross-validation to evaluate our algorithm:
we reconstructed the shape from an image of model i using a dictionary trained
on all models other than i (excluding multiple views of the same object as well).
We used 4 scales (1/4, 1, 2 and 4 times the size of the original image) to recover
matching patches from the dictionary. The smaller scale better captures the
overall shape of the object, while finer scales can better capture detail. A total
of 5000 iterations was performed during MRF inference. The running time of our
algorithm was 20-40 minutes per image, depending on image size and the size of
the dictionary (running time measured on an Intel Core i5 machine). Training
for a dataset of 150 images takes slightly over an 1hr. We integrated the normal
maps estimated by our method using the M-estimator [29], in order to produce
the final 3D surfaces (Fig 6).

For our experiments, we used a dictionary of 30000 patches of size 12 × 12
pixels. We used a Haar wavelet basis of size 16 and the first 90 PCA eigen-
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Fig. 5. Reconstruction from a real photograph. From left to right, original image (from
[9]); the normal map estimated with our method; the normal map after integrating
our estimate using the M-estimator [29]; 3 rendered images with the normal map we
estimated and different light directions.

vectors for the patch normal maps. We observed that dictionaries of at least
10000 patches were necessary in order to get satisfactory reconstructions, while
having more than 30000 patches (for the selected patch size) was usually only
marginally beneficial to our results. Furthermore, it was apparent from our ex-
periments that the patch size needs to be at least 8×8 pixels in order to properly
capture local shape. We can demonstrate this through a custom dictionary con-
taining only patches of spherical surfaces. Reconstructing an image from that
dictionary is significantly more accurate with patch sizes over 8×8 pixels, which
would imply that relatively large patch sizes are required to reliably capture
the local curvature of surfaces, since this custom dictionary ignores finer details.
Furthermore, in these experiments, using a 16× 16 patch size on an image that
has been rescaled to be 4 times larger than the original (without adding any
detail/information) is significantly more accurate than using 4 × 4 patches on
the original image.

In our experiments, our method significantly outperforms previous shape-
from-shading approaches (Fig.7,8). It is able to reliably capture the general ori-
entation of surfaces and is able to reconstruct much more local detail than other
approaches [20, 21, 9]. This can be attributed to the fact that most shape-from-
shading approaches rely on some kind of smoothness constraint, whereas in our
case such constraints are replaced by the learned primitives. Smoothness needs
to be enforced much more weakly during our MRF inference, allowing the solu-
tion to retain a lot of local detail. In our experiments with real data, our method
also outperforms the shape-from-shading approach of [9] that applies to spe-
cific cases of the problem that can be well-posed. The ability of our method to
handle surfaces that are not lambertian is one extra reason for the improved per-
formance on real images. The use of the Mahalanobis distance further allows us
to cope with images that are not photometrically calibrated (e.g. underexposed
images), which can be challenging when matching the local patch appearance,
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Fig. 6. Examples of 3D surfaces reconstructed from the normal maps estimated with
our method, using the M-estimator [29].

Fig. 7. Comparison of our method with other approaches: a) original image; Surface
estimates by: b) [20]; c) [21]; d) [9]; e) our approach. Our approach captures both the
overall shape of the object as well as the details better, resulting in a 3D face with
clearly discernible features and a closer resemblance to the original face.

since in the set of reflectances used to build the distributions of appearances in
the dictionary we have also included surfaces with lower uniform albedo.

One weakness of our method is that the quality of the results diminishes in
the case of objects with large flat surfaces, indicating that flat patches are signifi-
cantly more ambiguous than patches that contain even slight shading variations.

Refining coarse geometry We can also use our approach to refine a coarse
normal map. We obtain the initial geometry using a Microsoft Kinect (a con-
sumer device that includes a 3D scanner and a camera). The collected data are
an image and a depth map. The depth values in the depth map are reliable but
of low resolution. Therefore, computing the normal vectors from the depth map
leads to unsatisfactory results, even when smoothing is used on the depth values,
as shown in Fig.9. Furthermore, the collected depth map contains a lot of holes,
especially around the occlusion borders of objects. We can use our approach to
refine such results, by including the geometry information captured in Eq.5.

Fig.9 shows the results for an example scene captured using a Kinect. Our
method is able to complete the holes in the collected depth map, and to obtain
a convincing normal map. We show the normal maps we obtain from the Kinect
depth data using various levels of smoothing on the depth values for comparison.

5 Conclusions

In this paper we presented a data-driven approach to the problem of shape-
from-shading from a single image. We described how we can build a dictionary
that captures the correlations between different structures in local shading and
geometry. We propose a way to recover hypotheses about the local 3D geometry
from the local appearance in a way that is robust to non-lambertian reflectance
and photometric calibration. We recover the final 3D shape by combining these
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Fig. 8. Comparison of our method with [17] on a real image (from [17]): a) original
image; Surface estimates: b) Result as shown in [17]; c) by our approach. Our method
is able to recover more detail and a more accurate overal shape.

Fig. 9. Refinement of geometry captured with a Kinect: a) the image captured by the
Kinect; b) the depth map captured by the Kinect; c) normals computed by the depth
map; d) normals computed by the depth map after gaussian smoothing of depth values;
e) normals computed by refining the smoothed normal map (d) using our method. We
have correctly completed all the object edges, as well as increased the detail in the
object while removing noise.

hypotheses in an MRF model. The advantages the proposed data-driven ap-
proach are that it removes a lot of typical considerations in SfS algorithms, such
as boundary conditions or the choice of camera model, and enables us to explic-
itly deal with surfaces that deviate from the lambertian reflectance model. The
results with this approach outperform previous shape-from-shading approaches,
even when such approaches make significantly more assumptions than ours. The
versatility of such an approach also allows us to use it in order to refine coarse
geometric data captured from other sources. Future work will incorporation of
priors about albedo in our dictionary representation.
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