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Abstract

In this paper we discuss illumination estimation from a
single image in general scenes and associate it with the
existence of shadow edges, avoiding several pitfalls that
burden previous illumination estimation approaches, which
rely on associating a parametrization of illumination with
the per pixel intensity of shadows or shading. We show a
way to couple shadow and illumination estimation, rely-
ing only on the subset of shadow edges that is relevant to
the provided geometry. In our approach, illumination esti-
mation is posed as the minimization of an energy function
that penalizes the matching between the expected shadow
outline and observed image edges. Minimizing this en-
ergy function is strongly tied to selecting the appropriate
set of potential shadow edges in the image. Our approach
leads to an illumination estimation algorithm that performs
on par with or better than the state of the art, even when
scene geometry knowledge is limited, while having much
lower computational complexity than state-of-the-art meth-
ods. We demonstrate the effectiveness of this approach both
with quantitative results on synthetic data and qualitative
evaluation on real images.

1. Introduction
The process of image formation depends on three com-

ponents: the 3D geometry of the scene, the reflectance prop-
erties of the surfaces in it, and illumination. The interaction
among these three components means that estimation of one
or two of them requires knowledge or strong assumptions
about the rest ([10, 13, 15, 17, 18]). Most previous work in
illumination estimation depends on strong assumptions on
3D geometry and reflectance, such as accurate knowledge
of scene geometry, while only recently some approaches
have appeared that allow the estimation of a set of illumi-
nants having only coarse knowledge of geometry [12].

In this paper we discuss illumination estimation in gen-
eral scenes and associate it with the existence of shadow
edges. Most general illumination estimation methods from

shadows (or shading) associate a parametrization of illumi-
nation with the per pixel intensity of shadows or shading.
As a result, estimating illumination from shadows in a gen-
eral scene generally needs a way to separate shadows from
scene albedo and other effects as initial input. Two signif-
icant types of errors can be introduced this way: errors in
the initial shadow estimate propagate throughout the illu-
mination estimation process, altering the final results, even
in the case where the shadow estimate is refined during il-
lumination estimation [12]; on the other hand, the knowl-
edge of scene structure may not be adequate to explain a
lot of correctly detected shadows in complex scenes, lead-
ing to erroneous illumination solutions that try to explain
every observed shadow with inadequate geometry data. In
this paper we propose a way to couple shadow and illumina-
tion estimation, trying to detect only the shadow edges that
are relevant to the provided geometry, as part of the illumi-
nation estimation process. This leads to illumination esti-
mation algorithms that perform on par with or better than
the state of the art, even when scene geometry knowledge
is limited, while not requiring an initial and potentially dif-
ficult to obtain shadow estimate, and having lower compu-
tational complexity than state-of-the-art methods. In our
approach, illumination estimation is posed as the minimiza-
tion of an energy function, and coupled with the detection
of salient shadow edges.

As mentioned earlier, illumination estimation from cast
shadows in a single image usually necessitates obtaining an
estimate of the cast shadows in the image, which can be
challenging in complex natural images. Shadow detection,
in the absence of illumination estimation or knowledge of
3D geometry is a well studied problem. Salvador et al [14]
use invariant color features to segment cast shadows in still
or moving images. Finlayson et al [2, 3] propose a set of il-
lumination invariant features to detect and remove shadows
from a single image, making several assumptions about the
lights and the camera. Recently, Zhu et al [20] combined a
number of cues in a complex method to recognize shadows
in monochromatic images, while in [9], Lalonde et al pro-
pose a learning approach to detect shadows in consumer-
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grade photographs, focusing on shadows on the ground.
The above methods detect the majority of shadow pixels,
but they are not always accurate since they are based only
on image statistics.

Extracting illumination from shading, specular reflec-
tions or cast shadows has been studied extensively in the
past. Yang and Yuille ([18]) detect a small number of light
source directions using critical points, and Wang et al [17]
extend it to an image of an arbitrary object with known
shape and estimate not only light source directions but also
virtual lights. A method for estimating the illumination dis-
tribution of a real scene from shadows is proposed by Sato et
al [15], assuming known geometry illuminated by infinitely
distant light sources, casting shadows onto a planar lamber-
tian surface. Hara et al [6] remove the distant illumination
assumption, while simultaneously estimating illumination
and reflectance. In [19], Zhou et al propose a unified frame-
work to estimate both distant and point light sources.

The prior art on illumination estimation from shadows
cast on textured surfaces is limited. Sato et al [15] require
an extra image to deal with texture. Li et al [10] propose a
method that integrates multiple cues from shading, shadow,
and specular reflections. Kim et al [7] use regularization
by correlation to estimate illumination from shadows when
texture is present, but require extra user-specified informa-
tion and assume lambertian reflectance and known geome-
try. Panagopoulos et al [11] proposed a method able to deal
with inaccurate geometry and texture, but the shadow de-
tection results when texture is present are limited. In the
more limited case of daytime outdoor scenes, Lalonde et al
[8] proposed an approach that combines cues from the sky,
cast shadows on the ground and surface brightness to esti-
mate illumination where the sun is the single light source.
The previous approach that is more relevant to the work pro-
posed in this paper was recently presented in [12], where a
small set of distant light sources is estimated in the pres-
ence of inaccurate knowledge of geometry, by formulating
the interaction of geometry and illumination for the creation
of cast shadows as a Markov Random Field (MRF) model.
That approach results in a difficult inference problem on a
higher-order MRF, while at the same time requiring an ini-
tial shadow estimate and the initialization of the illumina-
tion solution through a separate algorithm.

In this paper we will explicitly associate illumination
with the existence of shadow edges, instead of per-pixel
shadow intensities. We do so by defining an energy that
corresponds to the quality of the matching between the ob-
served shadow edges in the image and the shadow edges
expected by the illumination solution. Shadow edge de-
tection is based on comparing gradients in the original im-
age and two illumination invariant representations of it; in
the limit, our approach can work without performing any
shadow edge detection at all, assuming that all image edges

are potential shadow edges (as we demonstrate in figure 6).
The potential shadow edges are encoded in a shadow edge
confidence map, and a simple approach is described to min-
imize the solution energy given this map, obtaining the illu-
mination parameters that correspond to a good matching of
the expected shadow edges with observed image edges.

The contributions of this paper are the following:

• We explicitly associate illumination with shadow
edges instead of per-pixel shadow intensities. This al-
lows our approach to ignore errors in shadow detec-
tion, and concentrate only on potential shadow silhou-
ettes that are meaningful given the scene geometry.

• This fact further allows our approach to estimate illu-
mination using 3D geometry that only partially models
a complex scene; for example, approximate knowledge
of a single shadow-casting object and the rough shape
of the surface its shadow is cast on can be adequate to
estimate illumination in a larger, complex scene.

• Our approach is robust to inaccurate knowledge of 3D
geometry, allowing us to model objects in real im-
ages using very coarse geometry, such as 3D bounding
boxes. Our quantitative results demonstrate the robust-
ness of our method with regard to geometry inaccura-
cies.

We present both quantitative and qualitative results.
Quantitative results show the accuracy of our approach
when estimating illumination in a synthetic dataset, demon-
strating that our approach performs better than the state of
the art in the case of errors in the shadow estimation and
inaccuracies in the modeling of 3D geometry. Qualitative
results show how our method performs in a set of real im-
ages collected from Flickr, and are compared to the results
obtained by [12]. At the same time, the computational cost
of our approach is significantly lower than comparable ap-
proaches, corresponding to a much simpler implementation.

This paper is organized as follows: in section 2 we for-
mulate illumination estimation as the minimization of an
energy function that measures the quality of the match be-
tween the expected shadow gradient and an edge map ex-
tracted from the image. Section 3 describes how we obtain
this edge map, while in section 4 we describe energy mini-
mization and we extend our solution to the case of multiple
light sources. Results are presented in section 5, while sec-
tion 6 concludes the paper.

2. Formulation
We will first examine the case where the scene is illu-

minated by a single distant light source, with direction d0

and intensity α0. Let E = {ei} be a set of edges detected
from the original image, and Q(ei) ∈ [0, 1] be a confidence
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value that edge ei is generated by a cast shadow (larger val-
ues indicate higher confidence). A geometric model G is
also known. Geometry G may model only a small part of
the scene and may be approximate - e.g. in many of our ex-
periments we approximate objects by 3D bounding boxes.

Our goal is to find the light parameters θL = (d0, α0)
that produce a shadow with shadow borders Ê(θL|G) that:

• best coincide with image edges that have high confi-
dence values Q(ei) to belong to shadows, and

• have a similar orientation with the corresponding ob-
served image edges.

We express this requirement by defining an energy for each
set of light parameters:

Ematch(θL) =
1∣∣∣Ê(θL|G)∣∣∣

 ∑
i∈Ê(θL|G)

(1−Q(i))+ (1)

+
∑

i∈Ê(θL|G)

∇̂Ii, ei
2

 , (2)

where ∇̂Ii, ei is the angle between the observed image gra-
dient∇Ii at pixel i and the direction of the synthetic shadow
edge at i, ei.

Notice that in this formulation, we have already removed
several important requirements of traditional illumination
estimation methods:

1. We do not need to know or estimate the intensity of
ambient illumination

2. We are not defining the energy over all possible
shadow edges in the scene, but only for that set of
edges that is generated by the geometry G and the set
of light parameters θL.

3. We do not need to estimate the intensity of light
sources while estimating light source directions, be-
cause the set of edges Ê(θL|G) depends only on the
light source direction. The light source intensity can
be included in the energy minimization (see Eq.3) or,
as we preferred here, it can be estimated after the light
source directions have been estimated.

Therefore, the matching cost Ematch(θL) only depends
on the light directions and the confidences assigned to ob-
served shadow edges.

If we wish to estimate light source intensity α0 concur-
rently with light source direction, we can minimize the sum
of Ematch(θL) and a term Eα(θL):

Eα(θL) =
∑

i∈Ê(θL|G)

(
α0 −

Iout − Iint
max{ni · d0, 0}

)2

, (3)

Figure 1. a.The original image; b. The edge confidence map Q
(right) extracted from the original image. Brighter pixels indi-
cate higher confidence; c. The gradient directions after smooth-
ing (used to penalize the expected shadow gradient). The x and
y components of the gradient are encoded in the red and green
channels.

where Iin and Iout are the mean pixel intensities of two
image patches placed on the two sides of pixel i, in the in-
side and outside of the expected shadow respectively, ni is
the normal vector at pixel i, as given by the provided 3D
geometry (if any for that pixel), and d0 is the light source
direction. Eq.3 assumes Lambertian reflectance - our es-
timates, however, do not deteriorate significantly when this
assumption is violated, and no such assumption is necessary
to estimate only the light source directions.

We therefore manage to associate the light source direc-
tions with only the subset of observed edges in the image
that matches the shadow borders Ê(θL|G) produced by the
current illumination estimate. One obvious issue that arises,
though, is that in some cases there are trivial solutions that
do not produce any cast shadows and such solutions will be
preferred because they lead to minima of Ematch(θL). To
avoid this, we encourage solutions that have a larger num-
ber of well-explained shadow edge pixels, by defining the
final energy to be minimized as:

E(θL) =
1

1 + |Êg|
(Ematch(θL) + wαEα(θL)) , (4)

where wα is a weight and the term wαEα(θL) can be omit-
ted if there is no need to estimate light directions and inten-
sities concurrently. The set Êg is the set of all the expected
shadow edge pixels in Ê(θL|G) that coincide with observed
edges of high confidence:

Êg =
{
ei ∈ Ê(θL|G) | Q(ei) > θQ

}
, (5)

where θQ is a confidence threshold. We set θQ = 0.5 in our
experiments.

3. Extracting the edge map
The main term of the energy we want to minimize is

Ematch(θL), which is mainly a sum of confidence values
along the expected shadow borders, the form of the confi-
dence map is important for finding the light parameters that
minimize E(θL).

LetQ = {Q(i)} be the confidence map. For each image
pixel i, the confidence Q(i) expresses the probability that
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i belongs to a shadow edge, if there is an edge at i, or the
probability that a shadow edge lies in the vicinity of i. Map
Qmust contain confidence values that smoothly increase as
we approach observed edges in the image, in order to allow
effective minimization of E(θL).

Therefore, to compute Q, we first detect edges in the
image and compute the probability that they correspond to a
shadow. Then we perform a series of smoothing operations
to propagate the appropriate confidence values to pixels in
Q that do not lie on image edges. The form of the final
confidence map can be seen in Figure 1.

We first apply the Sobel edge detector to the original im-
age I , obtaining a set of gradients, ∇I . We also calculate
a set of illumination invariant representations of the orig-
inal image I . We refer to the k-th illumination invariant
representation of I as I(k). An illumination-invariant rep-
resentation of the original image I will, ideally, not con-
tain any effects of illumination, such as cast shadows and
shading [4, 16, 1, 3]. Having such a representation, we can
compare the gradients in the original image with gradients
in the illumination-invariant representation to attribute the
gradient to either shadows/shading or texture. The illumi-
nation invariants we chose to use for our experiments are
the normalized RGB and c1c2c3 representations [5]. We
apply the Sobel edge detector to each illumination-invariant
image representation I(k) to obtain the corresponding gra-
dients∇I(k).

To compute a confidence that each pixel i belongs to a
shadow border, we compare the gradients from the original
image and each illumination invariant. We define the confi-
dence value for pixel i as:

Q(i) = max
k

{
max

{
‖∇I(i)‖ − wkI

∥∥∥∇I(k)(i)∥∥∥ , 0}} .
(6)

Because in practice some gradients related to illumination
appear in the illumination invariant representations, we take
the maximum of the differences between gradients in the
original image and illumination invariants. The weights wkI
were learned from a training set of images, which was a sub-
set of the dataset of images with hand-annotated cast shad-
ows provided by [20].

After obtaining this initial set of confidences, we apply
a smoothing operation for a fixed number of iterations to
propagate the confidences to pixels that do not belong to
detected image edges. In this smoothing operation, the new
confidence value Q̂(i) of pixel i with previous confidence
Q(i) is set to be:

Q̂(i) =

{
(1− λ)Q(i) + λQ(i), if ‖∇I(i)‖ < θe
max{Q(i), Q(i)}, otherwise

,

(7)
where Q(i) is the average of confidence values in a 3x3
neighborhood centered at pixel i. The value of λ was set to

0.5 and θe is a small threshold, so that edges with gradient
magnitudes less than θe are not significant.

Similarly, we create a smoothed version of the edge gra-
dients by setting the new gradient direction of each pixel to
be the average of itself and its neighbors, weighted by their
relative confidence values. The resulting confidence map
and gradient directions can be seen in Fig.1.

4. Energy minimization
To find the optimal light parameters, we need to mini-

mize the energy E(θL) in Eq.4. This energy contains mul-
tiple local minima, while we also cannot get a good approx-
imation to its gradient. The evaluation of the energy for
different parameters, however, is relatively fast. We there-
fore use a move-making approach, where we start from a
random initial set of parameters, and perform a number of
iterations, examining at each iteration a random step from
the current parameter values:

Algorithm 1 Minimization of E(θL)

Light parameters: θL ← random parameters
Energy minimum: Emin = E(θL)
loop

generate proposed parameters θ̂L given θL
if E(θ̂L) < E(θL) then
Emin ← E(θ̂L)
θL ← θ̂L

end if
end loop

For the first K iterations, the generation of proposed
parameters θ̂L is done randomly, to randomly sample the
whole parameter space. After the first K iterations, θ̂L is
generated by choosing the proposed light direction by sam-
pling a von Mises-Fisher distribution centered at the previ-
ous estimate of light direction (if we want to estimate inten-
sities at the same time, we also choose a proposed intensity
as a sample from a normal distribution around the previous
intensity estimate).

If the light intensity is not estimated as part of the energy
minimization, we estimate it afterwards, using the estimate
d̂0 of light direction we obtained. The intensity estimate α̂0

is the median of local intensity estimates along the expected
shadow edges:

α̂0 = mediani∈Ê(θL|G)

{
Iout − Iint

max{ni · d̂0, 0}

}
. (8)

This very simple approach to minimize the energy
E(θL) proved effective because it samples the whole pa-
rameter space, avoiding many of the local minima, and then
concentrates its effort to the area around the best solution
so far. However, it would be very desirable in the future
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to examine other approaches that can give some guarantees
about optimality, while also reducing the number of times
the energy E(θL) has to be evaluated during minimization.

4.1. Dealing with multiple light sources

In our discussion so far we have examined only the case
of a single light source. When multiple light sources are
present, there will be multiple shadow outlines that can be
explained by the provided geometry G. We can deal with
this case by discovering light sources one-by-one: We esti-
mate the direction and intensity of each light source j, and
then remove the corresponding edges from the edge confi-
dence map Q (removing the corresponding edge pixels and
then re-applying the smoothing operation). We then repeat,
estimating the next light source from the new, reduced edge
confidence map. The process stops when the last discov-
ered light source has very low average confidence values
along its projected shadow border, or has near-zero inten-
sity. This procedure can allow not only the estimation of
the parameters of multiple light sources, but also to deter-
mine the number of light sources illuminating the scene.

5. Results
We evaluated our approach quantitatively using a syn-

thetic dataset of 3D models rendered with a known distant
point light source, as well as qualitatively with images col-
lected from Flickr [12]. A total of 1000 iterations was per-
formed for each image.

Results on the synthetic dataset are shown in Table 1.
Examples of the synthetic images and models used are
shown in Fig.2. The direction and intensity of the light
source was chosen randomly. We examined four different
cases:

Exact geometry: We used the same 3D model to render
the image and to estimate illumination.

Approximate geometry: We used a 3D model that
coarsely approximated the original geometry by a bound-
ing box and a ground plane to estimate illumination.

Exact geometry and noisy shadow input: We used the
same 3D model to render the image and to estimate illumi-
nation, as above, and a noisy initial shadow estimate. The
latter was obtained by adding random dark patches to the
rendered shadow (Fig.2). We used this form of noise be-
cause, on one hand our methods are relatively insensitive
to spatially-uniform random noise, and on the other, in real
data the errors generally affect large image regions which
get mislabeled, which is emulated by this patch-based noise.

Approximate geometry and noisy shadow input: We
estimated illumination parameters using a coarse 3D model
and a noisy initial shadow estimate, as described above.

Table 1 shows the average error in light direction esti-
mation, in degrees. It is easy to notice that our approach is
almost unaffected by errors in the initial shadow estimate,

Figure 2. Examples of synthetic images used for quantitative eval-
uation. Image size was 100x100 pixels. From left to right: a) the
full-resolution 3D model, rendered with 1 point light source; b)
the full-resolution 3D model, after the addition of noise, as de-
scribed in the paper (noise is random and may coincide with the
shadow); c) the approximate 3D model corresponding to the full-
resolution model on the left, rendered under the same illumination
(for demonstration; this model is used for the illumination estima-
tion only, in the experiments with approximate geometry).

Figure 3. Convergence of our algorithm. Left: the error in the es-
timated light direction, averaged over a set of synthetic examples,
per iteration; right: the average energy per iteration.

which have been simulated by the noisy shadow input. On
the other hand, [12] shows a reduction in accuracy, espe-
cially when inaccurate shadow estimates are combined with
inaccurate geometry. Notice that the synthetic dataset we
used is different than that used in [12].

Figure 3 shows the convergence of our approach in the
case of synthetic data.

Figure 4 shows results with our approach on a set of im-
ages of cars from Flickr. The geometry in these images con-
sists of a ground plane and a 3D bounding box representing
the car. We compare our results with the results obtained
in [12]. The estimated illumination is shown by rendering
a synthetic orange sun dial, illuminated by the illumination
estimate obtained with our method, into the original image.
Although accurate comparisons are difficult since there is
no ground truth for illumination in these images, a visual
inspection shows that our results are equally or more con-
vincing than those obtained by [12].

Figure 6 demonstrates the flexibility of our method with
regard to shadow detection. In this case, we compare the il-
lumination estimate obtained when using all image edges
(obtained with a Sobel detector) compared to using only
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method exact geometry exact geom.+noise approximate geom. approximate geom.+noise
[12] (MRF) 0.39 5.06 2.55 17.87
our method, all samples 1.82 1.67 4.00 4.76
our method, 20% of edges 2.06 2.03 5.86 6.28

Table 1. Average error in light direction estimation for a set of synthetic images. The images were rendered using 1 known point light
source, and the displayed error is the angle between the real and estimated light directions, in degrees. We compare with the state-of-the-art
approach recently proposed in [12]. Examples of the images and geometry used are shown in Fig.2. The second row shows results with
our approach when all expected shadow border pixels are used to evaluate the energy, and the third row shows results with our approach
when only 20% of expected shadow border pixels is used, achieving a 5-fold speedup with small deterioration of the results. In every case,
our approach is influenced much less than [12] by noisy shadow input, while being robust to inaccurate geometry.

Figure 4. Results with images of cars from Flickr. The results of illumination estimation are presented by rendering a synthetic orange
sundial to the original image, using the estimated illumination. Top: the results with our method; bottom: results with the much more
computationally intensive method proposed in [12]. Our results are equivalent or better than the results from [12], although our method
uses only simple shadow edge detection and a much more efficient optimization to estimate illumination parameters.

potential shadow edges (by utilizing illumination invariants
as described earlier). Our approach can select those image
edges that correspond to plausible cast shadows, and obtain
a good illumination estimate, even when no initial shadow
edge detection is performed.

Examples of the 3D geometry used for illumination esti-
mation in the case of Flickr images is shown in figure 7.

Excluding the cost of raytracing shadows, the computa-
tional cost of our method is linear to the number of edge
samples; the number of edge samples used can be reduced
without significant impact to the final results, in order to
improve performance. In our unoptimized implementation,
on a system with an Intel i5 CPU, each iteration took 4-
10msec depending on image size, or 1-3msec when using
one of every 5 shadow edge samples (in the case of syn-
thetic results in Table 1). Paired with a GPU raytracer, the
total time for our algorithm can be limited to 5-60 seconds
per image, which is a significant improvement compared to
previous, computationally intensive methods such as [12].
As our results show, this improvement usually comes at no
cost to the accuracy of the estimated results.

One big difference compared to [12] is that, in the pro-
posed approach, potential shadow edges that are far from
the shadow edges generated by the known geometry are

not penalized at all. The advantages of this approach are
that our method will ignore real shadows that cannot be ex-
plained by the geometry, if the geometry models only small
part of the actual scene, while at the same time wrongly de-
tected shadow edges need not be accounted for, and have
no effect on the energy of the final solution. This advantage
of our approach is demonstrated in figure 5. In this exam-
ple only one of two nearby objects is modeled, causing the
approach of [12] (and probably most approaches that are
based on an error computed over all shadow pixels) to try to
explain all shadows using the provided geometry, resulting
in erroneous illumination estimation. Our approach, on the
other hand, correctly estimates illumination by associating
it only with a subset of the observed shadow edges. One
drawback is that this kind of approach could potentially ig-
nore real shadows when the geometry differs substantially,
but in our experiments modeling objects with 3D bounding
boxes, even with inaccurate modeling, was enough to asso-
ciate the illumination solution with the correct set of shadow
edges.

We only used light sources that produce sharp shadows
in our experiments. A limitation of the proposed approach
is that it cannot handle well soft shadows produced by area
light sources.
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Figure 5. Advantages of our approach: in this figure we compare the behavior of our method with [12] when the geometry is only partially
modeled. a) original image from Flickr [11], depicting 2 persons; b) the illumination estimation result when both people are modeled, with
our method (illustrated by rendering an orange sundial into the original image with the estimated illumination).; c) illumination estimate
with [12] when only one of the two people is modeled. The algorithm tries to explain both shadows with one object, resulting in a light
source placed under the scene; d) our approach using the same 3D model as in (c), when only one of the two people is modeled - the
illumination estimate is convincing and almost the same as in (b) where full geometry was given. In (e), (f) and (g) we show the 3D model
used to estimate illumination in (b),(c) and (d) respectively, rendered with the estimated illumination. Notice that (f) and (g) show the
same 3D model, but because the estimated light is under the scene in (f), we marked the model with a red outline to make it visible.

method running time (sec)
[12] (MRF) 244
our method, all samples 4.4
our method, 20% of samples 1.2

Table 2. Running times for our algorithm compared to the state-
of-the-art approach of [12], for a 500x300 pixel image. The times
exclude the time spent raytracing (which is the same for both ap-
proaches and can be reduced to less than 1 sec using hardware
acceleration).

6. Conclusions

In this paper, we presented an approach to estimate il-
lumination from a subset of shadow borders. The advan-
tages of this approach, as we demonstrated, are that illumi-
nation estimation relies much less in the quality of shadow
detection, while at the same time allowing the partial and
coarse modeling of the 3D geometry of the scene. Our re-
sults show that our approach can estimate illumination even

when no shadow detection is performed (Fig.6), since the
sets of image edges that match potential shadow outlines are
limited. The accuracy of our results is comparable or bet-
ter than state of the art approaches, as the comparison with
the method recently proposed in [12] demonstrates, while
achieving relatively low computational complexity, which
can be further controlled by limiting the number of edge
samples used in our computations as desired. In the future,
we would like to examine optimization approaches that can
give us guarantees on the optimality of the solution and to
examine other ways to build the shadow edge confidence
map and the corresponding map of edge orientations, for
example through a diffusion process. Another exciting di-
rection for future work would be to associate the matching
of the synthetic shadow silhouette with deformable geomet-
ric models, allowing some refinement of geometry concur-
rently with illumination estimation.
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Figure 6. Results comparing illumination estimation based on po-
tential shadow edges (left) and all edges in the image (right). It
is clear that our method can work even when we do not explicitly
detect shadow edges, because few image edges match potential
shadow silhouettes. The results of illumination estimation are pre-
sented in the bottom by rendering a synthetic orange sundial to
the original image, using the estimated illumination. Maps Q are
in the top row. This is an image where we failed to obtain any
meaningful illumination estimate with the method of [12].

Figure 7. The geometry used to approximate the cars in images
from Flickr (from [12]). The geometry consists of a bounding
box (green) that encloses the body of the car, and a plane for the
ground. Camera parameters were selected by hand to match each
scene.
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