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Abstract

We show that the log-likelihood of several
probabilistic graphical models is Lipschitz
continuous with respect to the `p-norm of the
parameters. We discuss several implications
of Lipschitz parametrization. We present
an upper bound of the Kullback-Leibler di-
vergence that allows understanding methods
that penalize the `p-norm of differences of pa-
rameters as the minimization of that upper
bound. The expected log-likelihood is lower
bounded by the negative `p-norm, which al-
lows understanding the generalization ability
of probabilistic models. The exponential of
the negative `p-norm is involved in the lower
bound of the Bayes error rate, which shows
that it is reasonable to use parameters as fea-
tures in algorithms that rely on metric spaces
(e.g. classification, dimensionality reduction,
clustering). Our results do not rely on spe-
cific algorithms for learning the structure or
parameters. We show preliminary results for
activity recognition and temporal segmenta-
tion.

1 Introduction

Probabilistic graphical models provide a way to repre-
sent variables along with their conditional dependen-
cies and therefore allow formalizing our knowledge of
the interacting entities in the real world.

Several methods have been proposed for learning the
structure and parameters of graphical models from
data. We mention only a few references that fol-
low a maximum likelihood approach for Markov ran-
dom fields (Lee et al., 2006), Ising models (Höfling &
Tibshirani, 2009), Gaussian graphical models (Baner-
jee et al., 2006; Friedman et al., 2007) and Bayesian
networks (Guo & Schuurmans, 2006; Schmidt et al.,

2007). One may ask whether the log-likelihood is “well
behaved”, i.e. small changes in the parameters pro-
duce small changes in the objective function. Another
natural question is whether the `p distance between
the learnt parameters and the ground truth provides
some guarantee on their generalization ability, i.e. the
expected log-likelihood.

When learning multiple graphical models, several au-
thors have proposed `p-norm regularizers from the dif-
ference of parameters between two models. (Zhang &
Wang, 2010) proposed a method that detects sparse
structural changes of Gaussian graphical models in
controlled experiments between two experimental con-
ditions. (Kolar et al., 2010) proposed a total varia-
tion regularizer for learning time-varying Ising mod-
els with sparse changes along the time course. (Kolar
et al., 2009) proposed a similar method for Gaussian
graphical models. One natural question is whether the
`p-norm of the difference of parameters between two
graphical models is related to a measure of similarity
between probability distributions, i.e. the Kullback-
Leibler divergence.

There are several experimental results where the pa-
rameters of graphical models were used as features for
classification and clustering. Classification of image
textures from the precision matrix of Gaussian graph-
ical models as features was proposed in (Chellappa &
Chatterjee, 1985), and from parameters of Ising mod-
els in (Chen & Dubes, 1990). The use of the covari-
ance matrix as features for detection of humans in still
images was proposed in (Tuzel et al., 2007). Cluster-
ing by using the Gaussian graphical model parameters
was performed in (Kolar et al., 2009), where they show
discriminability between different type of imaginations
from electroencephalography (EEG) recordings. One
may ask whether the parameters of graphical mod-
els approximately lie in an metric space (`p) that al-
lows for classification and clustering. In other words,
whether the `p-norm of the difference of parameters
between two graphical models is related to a measure



Table 1: Notation used in this paper.

Notation Description

‖c‖1 `1-norm of c ∈ RN , i.e.
∑

n |cn|
‖c‖∞ `∞-norm of c ∈ RN , i.e. maxn |cn|
‖c‖2 Euclidean norm of c ∈ RN , i.e.

√∑
n c2

n

A º 0 A ∈ RN×N is symmetric and positive
semidefinite

A Â 0 A ∈ RN×N is symmetric and positive defi-
nite

‖A‖1 `1-norm of A ∈ RM×N , i.e.
∑

mn |amn|
‖A‖∞ `∞-norm of A ∈ RM×N , i.e. maxmn |amn|
‖A‖2 spectral norm of A ∈ RN×N , i.e. the maxi-

mum eigenvalue of A Â 0
‖A‖F Frobenius norm of A ∈ RM×N , i.e.√∑

mn a2
mn

〈A,B〉 scalar product of A,B ∈ RM×N , i.e.∑
mn amnbmn

∂f/∂c gradient of f with respect to c ∈ RN , i.e.
∂f/∂c ∈ RN

∂f/∂A gradient of f with respect to A ∈ RM×N ,
i.e. ∂f/∂A ∈ RM×N

of discriminability, i.e. the Bayes error rate.

In this paper, we define Lipschitz continuous
parametrization of probabilistic models. Through Lip-
schitz parametrization, we provide an upper bound of
the Kullback-Leibler divergence. Therefore, methods
that penalize the `p-norm of differences of parame-
ters (Kolar et al., 2009; Kolar et al., 2010; Zhang &
Wang, 2010) are minimizing an upper bound of the
Kullback-Leibler divergence. We show that Lipschitz
parametrization also allows understanding the gener-
alization ability of probabilistic models by providing
a lower bound of the expected log-likelihood. Finally,
we provide a lower bound of the Bayes error rate that
depends on the `p-norm of the model parameters. This
allows understanding the use of model parameters as
features for classification and clustering as in (Chel-
lappa & Chatterjee, 1985; Chen & Dubes, 1990; Tuzel
et al., 2007; Kolar et al., 2009).

2 Preliminaries

In this section, we introduce probabilistic graphical
models and Lipschitz continuity. We use the notation
in Table 1.

We assume x ∈ RN for continuous random vari-
ables. For discrete random variables, we assume x ∈
×n{1, . . . , Xn}, i.e. (∀n) xn ∈ {1, . . . , Xn}. First,
we define three general classes of graphical models:
Bayesian networks, Markov random fields and factor
graphs.

Definition 1. A Bayesian network (Koller & Fried-
man, 2009; Lauritzen, 1996) for random variables x
is a directed acyclic graph with one conditional proba-

bility function p(xn|xπn) for each variable xn given its
set of parents πn ⊆ {1, . . . , N}. The joint probability
distribution is given by:

p(x) =
∏
n

p(xn|xπn) (1)

where (∀n,xπn
)

∫
xn

p(xn|xπn
) = 1 and therefore p(x)

is valid, i.e.
∫
x

p(x) = 1.

Definition 2. A Markov random field (Koller &
Friedman, 2009; Lauritzen, 1996) for random vari-
ables x is an undirected graph with one potential func-
tion φc for each maximal clique ϕc ⊆ {1, . . . , N}. The
joint probability distribution is given by:

p(x) =
1
Z

∏
c

φc(xϕc
) (2)

where the partition function Z =
∫
x

∏
c φc(xϕc

) en-
sures that p(x) is valid, i.e.

∫
x

p(x) = 1.

Definition 3. A factor graph (Koller & Friedman,
2009) for random variables x is a bipartite graph where
one set of nodes are the random variables and the
other set are the local functions. Each local func-
tion φc is connected to the set variables of variables
ϕc ⊆ {1, . . . , N} on which it depends on. The joint
probability distribution is given by:

p(x) =
1
Z

∏
c

φc(xϕc) (3)

where the partition function Z =
∫
x

∏
c φc(xϕc) en-

sures that p(x) is valid, i.e.
∫
x

p(x) = 1.

For completeness, we introduce Lipschitz continuity
for differentiable functions.

Definition 4. Given the parameters Θ ∈ RM1×M2 ,
a differentiable function f(Θ) ∈ R is called Lipschitz
continuous with respect to the `p-norm of Θ, if there
exists a constant K ≥ 0 such that:

(∀Θ1,Θ2) |f(Θ1)− f(Θ2)| ≤ K‖Θ1 −Θ2‖p (4)

or equivalently:

(∀Θ) ‖∂f/∂Θ‖p ≤ K (5)

3 Lipschitz Parametrization and
Implications

In this section, we define Lipschitz parametrization of
probabilistic models and discuss its implications.

3.1 Lipschitz Parametrization

We extend the Lipschitz continuity notion to the
parametrization of probability distributions.



Definition 5. A probability distribution P = p(·|Θ)
parameterized by Θ ∈ RM1×M2 is called (`p,K)-
Lipschitz continuous if for all x, the log-likelihood
f(Θ) = log p(x|Θ) is Lipschitz continuous with respect
to the `p-norm of Θ with constant K(x).
Remark 6. Note that (`p, K)-Lipschitz continuity
implies (`p′ ,K

′)-Lipschitz continuity, since all vec-
tor and matrix norms are equivalent, i.e. (∀Θ ∈
RM1×M2) α‖Θ‖p ≤ ‖Θ‖p′ ≤ β‖Θ‖p for some α, β > 0
and M1, M2 < +∞.

If we are interested in Euclidean spaces, we would need
to prove Lipschitz continuity with respect to the `2-
norm for vectors or the Frobenius norm for matrices.
Due to Remark 6, we can chose any particular norm
for proving Lipschitz continuity.

3.2 Kullback-Leibler Divergence

We show that the `p-norm is an upper bound of the
Kullback-Leibler divergence.
Theorem 7. Given two (`p,K)-Lipschitz continuous
distributions P1 = p(·|Θ1) and P2 = p(·|Θ2), the
Kullback-Leibler divergence from P1 to P2 is bounded
as follows:

KL(P1||P2) ≤ K‖Θ1 −Θ2‖p (6)

with constant K = EP1 [K(x)].

Proof. By definition KL(P1||P2) = EP1 [log p(x|Θ1)−
log p(x|Θ2)] ≤ EP1 [| log p(x|Θ1) − log p(x|Θ2)|] ≡ B.
Note that by Definitions 4 and 5, B ≤ EP1 [K(x)‖Θ1−
Θ2‖p] = EP1 [K(x)]‖Θ1 −Θ2‖p = K‖Θ1 −Θ2‖p.

Remark 8. For identifiable distributions P1 =
p(·|Θ1) and P2 = p(·|Θ2) (i.e. P1 = P2 ⇒ Θ1 =
Θ2), the upper bound in Theorem 7 is tight since the
Kullback-Leibler divergence is zero if and only if the
parameters are equal. More formally, KL(P1||P2) =
0 ⇔ P1 = P2 ⇔ Θ1 = Θ2 ⇔ ‖Θ1 −Θ2‖p = 0.
Remark 9. The upper bound in Theorem 7 also ap-
plies for every marginal distribution by properties of
the Kullback-Leibler divergence.

3.3 Expected Log-Likelihood

We show that the negative `p-norm is a lower bound
of the expected log-likelihood.
Theorem 10. Given two (`p,K)-Lipschitz continu-
ous distributions P = p(·|Θ) and P∗ = p(·|Θ∗), the
expected log-likelihood (also called negative cross en-
tropy) of the learnt distribution P with respect to the
ground truth distribution P∗ is bounded as follows:

−H(P∗)−K‖Θ∗ −Θ‖p ≤ EP∗ [log p(x|Θ)] ≤ 0 (7)

with constant K = EP∗ [K(x)].

Proof. Note that 0 = −H(P∗)−EP∗ [log p(x|Θ∗)] and
therefore EP∗ [log p(x|Θ)] = EP∗ [log p(x|Θ)] −
H(P∗) − EP∗ [log p(x|Θ∗)] = −H(P∗) −
EP∗ [log p(x|Θ∗)−log p(x|Θ)] = −H(P∗)−KL(P∗||P).
The upper bound follows from the non-negativity of
the Kullback-Leibler divergence and entropy.

For proving the lower bound, given that KL(P∗||P) ≤
K‖Θ∗ −Θ‖p by Theorem 7, we prove our claim.

In the following Section 4, we prove that for
probabilistic models over discrete random variables,
(∀x) K(x) = 1 and therefore K = 1. For continu-
ous random variables, given its generality, the constant
K(x) depends on x and therefore K is looser and does
not have a closed-form expression; except for specific
cases, e.g. Gaussian graphical models.

3.4 Bayes Error Rate

We show that that the exponential of the negative `p-
norm is involved in the lower bound of the Bayes error
rate. We also motivate a distance measure similar to
the Chernoff bound (Chernoff, 1952), i.e. the negative
log-Bayes error rate.
Theorem 11. Given two classes $1 and $2 with
priors P ($1) = P ($2) = 1

2 and their correspond-
ing (`p,K)-Lipschitz continuous distributions P1 =
p(·|Θ1) and P2 = p(·|Θ2), the Bayes error rate
BE(Θ1,Θ2) = 1

2

∫
x

min(p(x|Θ1), p(x|Θ2)) is bounded
as follows:

BB(Θ1,Θ2)
4

≤ BE(Θ1,Θ2) (8)

log 2 ≤ − logBE(Θ1,Θ2) ≤ log 4+K̃‖Θ1−Θ2‖p (9)

where BB(Θ1,Θ2) =
∑

c EPc [e
−K(x)‖Θ1−Θ2‖p ] and

K̃ = minc EPc [K(x)].

Proof. Let pc ≡ p(x|Θc). We can rewrite
BE(Θ1,Θ2) = 1

2

∫
x

min
(

p1
p1+p2

, p2
p1+p2

)
(p1 + p2) =

1
2

∫
x

e
min

(
log

p1
p1+p2

,log
p2

p1+p2

)
(p1 + p2). We can also

rewrite log p1
p1+p2

= − log
(
1 + p2

p1

)
= −`(z12), where

z12 = log p1 − log p2 and `(z) = log(1 + e−z) is the lo-
gistic loss. Similarly log p2

p1+p2
= −`(−z12). Therefore

min
(
log p1

p1+p2
, log p2

p1+p2

)
= min(−`(z12),−`(−z12)).

Note that (∀z) − |z| − log 2 ≤ min(−`(z),−`(−z)).
Since both P1 and P2 are (`p,K)-Lipschitz continu-
ous, by Definitions 4 and 5, we have −K(x)‖Θ1 −
Θ2‖p − log 2 ≤ min

(
log p1

p1+p2
, log p2

p1+p2

)
.

For proving the lower bound in eq.(8),
BE(Θ1,Θ2) ≥ 1

2

∫
x

e−K(x)‖Θ1−Θ2‖p−log 2(p1 + p2) =
1
4

∫
x

e−K(x)‖Θ1−Θ2‖p(p1 + p2) = 1
4BB(Θ1,Θ2).



The lower bound of eq.(9) follows from the
fact that BE(Θ1,Θ2) ≤ 1

2 . For proving
the upper bound of eq.(9), by Jensen’s inequal-
ity 1

4

∑
c e−EPc [K(x)]‖Θ1−Θ2‖p ≤ BB(Θ1,Θ2)

4 ≤
BE(Θ1,Θ2). Therefore, − logBE(Θ1,Θ2) ≤ log 4 −
log

∑
c e−EPc [K(x)]‖Θ1−Θ2‖p . By properties of the

logsumexp function, we have − logBE(Θ1,Θ2) ≤
log 4 − maxc (−EPc

[K(x)])‖Θ1 − Θ2‖p = log 4 +
minc EPc [K(x)]‖Θ1 −Θ2‖p.

4 Lipschitz Continuous Models

In this section, we show that several probabilistic
graphical models are Lipschitz continuous. This in-
cludes Bayesian networks, Markov random fields and
factor graphs for discrete and continuous random vari-
ables. Dynamic models such as dynamic Bayesian net-
works and conditional random fields are also Lipschitz
continuous.

4.1 Bayesian Networks

We show that a sufficient condition for the Lipschitz
continuity of Bayesian networks is the Lipschitz conti-
nuity of the conditional probability functions.

Lemma 12. Given a (`p,K)-Lipschitz continu-
ous conditional probability function p(xn|xπn ,Θ) for
each variable xn, the Bayesian network p(x|Θ) =∏

n p(xn|xπn ,Θ) is (`p, NK)-Lipschitz continuous.

Proof. Let gn(Θ) = log p(xn|xπn ,Θ) and f(Θ) =
log p(x|Θ) =

∑
n log p(xn|xπn ,Θ) =

∑
n gn(Θ), and

therefore ∂f/∂Θ =
∑

n ∂gn/∂Θ. By Definitions
4 and 5, we have ‖∂f/∂Θ‖p ≤ ∑

n ‖∂gn/∂Θ‖p ≤
NK(x).

Remark 13. When comparing two Bayesian net-
works, the set of parents πn for each variable xn is
not necessarily the same for both networks. Since
Lemma 12 does not use the fact that the joint prob-
ability distribution p(x|Θ) is valid (i.e.

∫
x

p(x|Θ) = 1
which is given by the acyclicity constraints), we can
join the set of parents of both Bayesian networks be-
fore comparing them. More formally, let π

(1)
n and π

(2)
n

be the set of parents of variable xn in Bayesian net-
work 1 and 2 respectively. It is trivial to show that if
p(xn|xπ

(1)
n

,Θ) and p(xn|xπ
(2)
n

,Θ) are Lipschitz contin-
uous, so is p(xn|xπ

(1)
n ∪π

(2)
n

,Θ).

Given the previous discussion, in the sequel, we show
Lipschitz continuity for the conditional probability
functions only.

4.2 Discrete Bayesian Networks

The following parametrization of Bayesian networks
for discrete random variables is equivalent to using
conditional probability tables. We use a representa-
tion in an exponential space that resembles the soft-
max activation function in the neural networks litera-
ture (Duda et al., 2001).

Lemma 14. Let xπn
be one of the possible par-

ent value combinations for variable xn, i.e. xπn
∈

{1, . . . , Xπn
} where Xπn

=
∏

n′∈πn
Xn′ . The

conditional probability mass function for the dis-
crete Bayesian network parameterized by Θ =
{w(n,1), . . . ,w(n,Xπn )}n, (∀n, xπn

) w(n,xπn ) ∈ RXn−1:

P[xn = i|xπn
= j,Θ] =

ew
(n,j)
i 1[i<Xn]

∑
xn

ew
(n,j)
xn + 1

(10)

is (`∞, 1)-Lipschitz continuous.

Proof. Let w ≡ w(n,xπn ). For i < Xn, let f(w) =
logP[xn = i|xπn = j,Θ] = wi − log(

∑
xn

ewxn + 1).
By deriving ∂f/∂wi = 1 − ewi∑

xn
ewxn +1 = 1 − P[xn =

i|xπn = j,Θ]. Since (∀i) 0 ≤ P[xn = i|xπn =
j,Θ] ≤ 1, it follows that |∂f/∂wi| ≤ 1 and therefore
‖∂f/∂w‖∞ ≤ 1. By Definitions 4 and 5, we prove our
claim.

The following parametrization of Bayesian networks
for discrete random variables corresponds to the multi-
nomial logistic regression. It reduces to logistic regres-
sion for binary variables.

Lemma 15. Given a feature function with F fea-
tures ψ(xπn) = (ψ1(xπn), . . . , ψF (xπn))T such that
(∀xπn) ‖ψ(xπn)‖∞ ≤ 1, the conditional probabil-
ity mass function for the discrete Bayesian net-
work parameterized by Θ = {w(n)

(1) , . . . ,w
(n)
(Xn−1)}n,

(∀n, xn) w(n)
(xn) ∈ RF :

P[xn = i|xπn ,Θ] =
e
w

(n)
(i)

T
ψ(xπn )1[i<Xn]

∑
xn

e
w

(n)
(xn)

T
ψ(xπn ) + 1

(11)

is (`∞, 1)-Lipschitz continuous.

Proof. Let w ≡ w(n). For i < Xn, let
f(w) = P[xn = i|xπn ,Θ] = w(i)

Tψ(xπn) −
log(

∑
xn

ew(xn)
Tψ(xπn ) + 1). By deriving ∂f/∂w(i) =

ψ(xπn) − e
w(i)

Tψ(xπn )
ψ(xπn )

∑
xn

e
w(xn)

Tψ(xπn )
+1

= (1 − P[xn =

i|xπn ,Θ])ψ(xπn). Since (∀i) 0 ≤ P[xn = i|xπn ,Θ] ≤
1, it follows that ‖∂f/∂w(i)‖∞ ≤ ‖ψ(xπn)‖∞ ≤ 1. By
Definitions 4 and 5, we prove our claim.



Note that the requirement that (∀x) ‖ψ(xπn
)‖∞ ≤ 1

is not restrictive, since the random variables are dis-
crete and we can perform scaling of the features.

4.3 Continuous Bayesian Networks

We focus on two types of continuous random variables:
Gaussian and Laplace. For the Gaussian Bayesian net-
work, we assume that the weight vector w of linear
regression has bounded norm, i.e. ‖w‖2 ≤ β (please,
see Appendix A1). We also assume that the features
are normalized, i.e. the standard deviation is one.

Lemma 16. Given a feature function with F fea-
tures ψ(xπn) = (ψ1(xπn), . . . , ψF (xπn))T, the condi-
tional probability density function for the Gaussian
Bayesian network parameterized by Θ = {w(n)}n,
(∀n) w(n) ∈ RF :

p(xn|xπn ,Θ) =
1√
2π

e−
1
2 (xn−w(n)Tψ(xπn ))2 (12)

is (`2, ‖ψ(xπn
)‖2|xn|+ β‖ψ(xπn

)‖22)-Lipschitz contin-
uous.

Proof. Let w ≡ w(n) and f(w) = log p(xn|xπn ,Θ) =
1
2 (− log(2π) − (xn − wTψ(xπn))2). By deriving
∂f/∂w = (xn − wTψ(xπn))ψ(xπn). Therefore
‖∂f/∂w‖2 ≤ |xn − wTψ(xπn)| ‖ψ(xπn)‖2 ≤
(|xn| + |wTψ(xπn)|) ‖ψ(xπn)‖2 ≤ (|xn| +
‖w‖2‖ψ(xπn)‖2) ‖ψ(xπn)‖2. By noting that
‖w‖2 ≤ β and by Definitions 4 and 5, we prove
our claim.

Remark 17. In Lemma 16, the expression K(x) =
‖ψ(xπn)‖2|xn| + β‖ψ(xπn)‖22 becomes more familiar
for a linear feature function ψ(xπn) = xπn . In this
case, note that (∀πn) ‖ψ(xπn)‖2 = ‖xπn‖2 ≤ ‖x‖2
and (∀n) |xn| ≤ ‖x‖2. Therefore K(x) ≤ (1+β)‖x‖22.

For the Laplace Bayesian network, we assume that the
features are normalized, i.e. the absolute deviation is
one.

Lemma 18. Given a feature function with F features
ψ(xπn) = (ψ1(xπn), . . . , ψF (xπn))T, the conditional
probability density function for the Laplace Bayesian
network parameterized by Θ = {w(n)}n, (∀n) w(n) ∈
RF :

p(xn|xπn ,Θ) =
1
2
e−|xn−w(n)Tψ(xπn )| (13)

is (`2, ‖ψ(xπn)‖2)-Lipschitz continuous.

Proof. Let w ≡ w(n) and f(w) = log p(xn|xπn ,Θ) =
− log 2− |xn −wTψ(xπn)|. The subdifferential set of
the non-smooth function f can be written as ∂f/∂w =

1Appendices are included in the supplementary material
at http://www.cs.sunysb.edu/~jhonorio/

ψ(xπn)s(xn−wTψ(xπn)), where s(z) = +1 for z > 0,
s(z) = −1 for z < 0 and s(z) ∈ [−1; +1] for z = 0.
Therefore ‖∂f/∂w‖2 ≤ ‖ψ(xπn

)‖2. By Definitions 4
and 5, we prove our claim.

4.4 Discrete Factor Graphs

The following parameterization of factor graphs for
discrete random variables includes Markov random
fields when the features depend on the cliques. A
special case of this parametrization are Ising models
(i.e. Markov random fields on binary variables with
pairwise interactions). The feature function ψ(x) =
(vec(xxT),x) for Ising models with external field, and
ψ(x) = vec(xxT) without external field.
Lemma 19. Given a feature function with F
features ψ(x) = (ψ1(x), ..., ψF (x))T such that
(∀x) ‖ψ(x)‖∞ ≤ 1, the discrete factor graph P =
p(·|Θ) parameterized by Θ = w, w ∈ RF with proba-
bility mass function:

p(x|Θ) =
1

Z(w)
ewTψ(x) (14)

where Z(w) =
∑

x ewTψ(x) is (`∞, 2)-Lipschitz con-
tinuous.

Proof. Let f(w) = log p(x|Θ) = wTψ(x) −
log(

∑
x ewTψ(x)). By deriving ∂f/∂w = ψ(x) −

∑
x ew

Tψ(x)ψ(x)∑
x ewTψ(x) = ψ(x)−EP [ψ(x)]. Since the expected

value for discrete random variables is a weighted
sum with positive weights that add up to 1 and
(∀x) ‖ψ(x)‖∞ ≤ 1 therefore ‖EP [ψ(x)]‖∞ ≤ 1. It fol-
lows that ‖∂f/∂w‖∞ ≤ ‖ψ(x)‖∞+‖EP [ψ(x)]‖∞ ≤ 2.
By Definitions 4 and 5, we prove our claim.

Note that the requirement that (∀x) ‖ψ(x)‖∞ ≤ 1 is
not restrictive, since the random variables are discrete
and we can perform scaling of the features.

4.5 Continuous Factor Graphs

The following parameterization of factor graphs for
continuous random variables includes Markov random
fields when the features depend on the cliques. A spe-
cial case of this parametrization are Gaussian graphi-
cal models (i.e. Markov random fields on jointly Gaus-
sian variables), in which the feature function ψ(x) =
vec(xxT) and Θ Â 0.
Lemma 20. Given a feature function with F features
ψ(x) = (ψ1(x), ..., ψF (x))T such that EP [‖ψ(x)‖p] ≤
α, the continuous factor graph P = p(·|Θ) parame-
terized by Θ = w, w ∈ RF with probability density
function:

p(x|Θ) =
1

Z(w)
ewTψ(x) (15)



where Z(w) =
∫
x

ewTψ(x) is (`p, ‖ψ(x)‖p + α)-
Lipschitz continuous.

Proof. Let f(w) = log p(x|Θ) = wTψ(x) −
log(

∫
x

ewTψ(x)). By deriving ∂f/∂w = ψ(x) −
∫
x

ew
Tψ(x)ψ(x)∫

x
ewTψ(x) = ψ(x) − EP [ψ(x)]. By Jensen’s in-

equality ‖EP [ψ(x)]‖p ≤ EP [‖ψ(x)‖p] ≤ α. It fol-
lows that ‖∂f/∂w‖p ≤ ‖ψ(x)‖p + ‖EP [ψ(x)]‖p ≤
‖ψ(x)‖p + α. By Definitions 4 and 5, we prove our
claim.

The requirement that EP [‖ψ(x)‖p] ≤ α is also use-
ful in deriving a close-form expresion of the Kullback-
Leibler divergence bound.
Lemma 21. Given two continuous factor graphs as
in eq.(15), i.e. P1 = p(·|Θ1) and P2 = p(·|Θ2), the
Kullback-Leibler divergence from P1 to P2 is bounded
as follows:

KL(P1||P2) ≤ 2α‖Θ1 −Θ2‖p (16)

Proof. By invoking Theorem 7, the Lipschitz con-
stant K = EP1 [K(x)]. By invoking Lemma 20,
K(x) = ‖ψ(x)‖p + α and EP1 [‖ψ(x)‖p] ≤ α. Finally,
EP1 [K(x)] = EP1 [‖ψ(x)‖p] + α ≤ 2α.

4.6 Gaussian Graphical Models

A Gaussian graphical model (Lauritzen, 1996) is a
Markov random field in which all random variables
are continuous and jointly Gaussian. This model cor-
responds to the multivariate normal distribution.

We first analyze parametrization by using precision
matrices. This parametrization is natural since it cor-
responds to factors graphs as in eq.(15) and therefore
conditional independence corresponds to zeros in the
precision matrix. We assume that the precision matrix
Ω has bounded norm, i.e. αI ¹ Ω ¹ βI or equivalently
‖Ω−1‖2 ≤ 1

α and ‖Ω‖2 ≤ β. This condition holds for
Tikhonov regularization as well as for sparseness pro-
moting (`1) methods (please, see Appendix B).
Lemma 22. Given the precision matrix Ω Â 0, the
Gaussian graphical model parameterized by Θ = Ω,
Ω ∈ RN×N with probability density function:

p(x|Θ) =
(detΩ)1/2

(2π)N/2
e−

1
2xTΩx (17)

is (`2,
‖x‖22

2 + 1
2α )-Lipschitz continuous.

Proof. Let f(Ω) = log p(x|Θ) = 1
2 (log detΩ −

N log(2π) − xTΩx). By deriving ∂f/∂Ω = 1
2 (Ω−1 −

xxT). Therefore ‖∂f/∂Ω‖2 ≤ 1
2 (‖Ω−1‖2 +‖xxT‖2) =

1
2 (‖Ω−1‖2 + ‖x‖22) ≤ 1

2 ( 1
α + ‖x‖22). By Definitions 4

and 5, we prove our claim.

If we use Lemma 21, we will obtain a very loose bound
of the Kullback-Leibler divergence where the constant
K = 2NβN/2

αN/2+1 (please, see Appendix C). Therefore, we
analyze the specific case of Gaussian graphical models.

Lemma 23. Given two Gaussian graphical models pa-
rameterized by their precision matrices as in eq.(17),
i.e. P1 = p(·|Ω1) and P2 = p(·|Ω2), the Kullback-
Leibler divergence from P1 to P2:

KL(P1||P2) =
1
2

(
log

detΩ1

detΩ2
+ 〈Ω−1

1 ,Ω2〉 −N

)

(18)
is bounded as follows:

KL(P1||P2) ≤ 1
α
‖Ω1 −Ω2‖2 (19)

Proof. First, we show that f(Ω1,Ω2) = KL(P1||P2) is
Lipschitz continuous with respect to Ω2. By deriving
∂f/∂Ω2 = 1

2 (−Ω−1
2 + Ω−1

1 ). Therefore ‖∂f/∂Ω2‖2 ≤
1
2 (‖Ω−1

2 ‖2 + ‖Ω−1
1 ‖2) ≤ 1

2 ( 1
α + 1

α ) = 1
α .

Second, since f is Lipschitz continuous with respect
to its second parameter, we have (∀Ω) |f(Ω,Ω2) −
f(Ω,Ω1)| ≤ 1

α‖Ω2 −Ω1‖2. In particular, let Ω = Ω1

and since f(Ω1,Ω1) = 0 and |f(Ω1,Ω2)| = f(Ω1,Ω2)
by properties of the Kullback-Leibler divergence, we
prove our claim.

We also analyze parametrization by using covariance
matrices (please, see Appendix D). We point out to
the reader that this parametrization does not corre-
spond to factors graphs as in eq.(15) and therefore
conditional independence does not correspond to ze-
ros in the covariance matrix.

4.7 Dynamic Models

The following lemma shows that dynamic Bayesian
networks are Lipschitz continuous. Note that dy-
namic Bayesian networks only impose constraints on
the topology of directed graphs, and therefore the ex-
tension to the dynamic case is trivial.

Lemma 24. Let x(t) be the value for variable x at
time t, and let x(t,...,t−L) be a shorthand notation that
includes the current time step and the previous L time
steps, i.e. x(t), . . . ,x(t−L). Let the set of parents for
x

(t)
n be πn ⊆ {1, . . . , N}×{0, . . . , L}. Given a (`p,K)-

Lipschitz continuous conditional probability function
p(x(t)

n |x(t,...,t−L)
πn ,Θ) for each variable x

(t)
n , the L-order

Bayesian network p(x(t)|x(t−1), . . . ,x(t−L),Θ) =∏
n p(x(t)

n |x(t,...,t−L)
πn ,Θ) is (`p, NK)-Lipschitz contin-

uous.

Proof. Similar to proof of Lemma 12.



The following lemma establishes Lipschitz continuity
for conditional random fields.

Lemma 25. Given a feature function with F fea-
tures ψ(y,x) = (ψ1(y,x), ..., ψF (y,x))T, the condi-
tional random field parameterized by Θ = w, w ∈ RF

with probability distribution:

p(y|x,Θ) =
1

Z(x,w)
ewTψ(y,x) (20)

where Z(x,w) =
∫
y

ewTψ(y,x) is (`p,K)-Lipschitz con-
tinuous.

Proof. Similar to proof of Lemma 19 for discrete ran-
dom variables, or Lemma 20 for continuous random
variables.

5 Experimental Results

First, we show the similarities between the Kullback-
Leibler divergence, test log-likelihood and Frobenius
norm for some probabilistic graphical models: Gaus-
sian graphical models for continuous data and Ising
models for discrete data. Note that if we assume that
the test data is generated by a ground truth model,
the expected value of the test log-likelihood is the ex-
pected log-likelihood that we analyzed in Section 3.

Gaussian graphical models were parameterized by
their precision matrices as in eq.(17). We consider
Ising models without external field. Therefore, in both
cases conditional independence corresponds to param-
eters of value zero. The ground truth model contains
N = 50 variables for Gaussian graphical models. For
Ising models, since computing the log-partition func-
tion is NP-hard, we restrict our experiments to N = 10
variables. For each of 50 repetitions, we generate edges
in the ground truth model with a required density (ei-
ther 0.2,0.5,0.8), where each edge weight is generated
uniformly at random from [−1;+1]. For Gaussian
graphical models, we ensure positive definiteness by
verifying that the minimum eigenvalue is at least 0.1.
We then generate training and testing datasets of 50
samples each. Gaussian graphical models were learnt
by the graphical lasso method of (Friedman et al.,
2007), and Ising models were learnt by the pseudolike-
lihood method of (Höfling & Tibshirani, 2009). Figure
1 shows that the Kullback-Leibler divergence, negative
test log-likelihood and Frobenius norm behave simi-
larly.

Next, we test the usefulness of our theoretical results
that enable us to perform classification, dimension-
ality reduction and clustering from the parameters
of graphical models. We use the CMU motion cap-
ture database (http://mocap.cs.cmu.edu/) for activity
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Figure 1: Kullback-Leibler divergence, negative test log-
likelihood and Frobenius norm for Gaussian graphical mod-
els (top) and Ising models (bottom), for low (left) moderate
(center) and high (right) graph density. Note that all the
measurements behave similarly.

Table 2: Leave-one-subject-out accuracy for walking vs.
running on the CMU motion capture database (chance =
58%).

Regularization level 0.001 0.01 0.1 1
`1 Covariance 78 78 74 76

Tikhonov Covariance 78 78 78 78
`1 Precision 96 93 90 75

Tikhonov Precision 97 96 93 92

recognition and temporal segmentation. In both cases,
we only used the Euler angles for the following 8 mark-
ers: left and right humerus, radius, femur and tibia.
Our variables measure the change in Euler angles, i.e.
the difference between the angle at the current time
and 0.05 seconds before. Variables were normalized to
have standard deviation one.

For activity recognition, we test whether it is possi-
ble to detect if a person is either walking or running
from a small window of 0.25 seconds (through the use
of classification). The CMU motion capture database
contains several sequences per subject. We used the
first sequence labeled as “walk” or “run” from all avail-
able subjects (excluding 3 pregnant and post-pregnant
women). This led to 14 walking subjects and 10 run-
ning subjects (total of 21 distinct subjects). From each
subject we extracted 3 small windows of 0.25 seconds,
at 1/4, 2/4 and 3/4 of the whole sequence. Covariance
and precision matrices of Gaussian graphical models
were learnt by Tikhonov regularization and the covari-
ance selection method of (Banerjee et al., 2006). Table
2 shows the leave-one-subject-out accuracy for a lin-
ear SVM classifier with the parameters of the Gaussian
graphical models as features.

For temporal segmentation, we test whether it is pos-
sible to separate a complex sequence that includes
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Figure 2: Clusters from a complex sequence of the CMU
motion capture database. Each point represents a Gaus-
sian graphical model, the Kullback-Leibler divergence be-
tween two points is bounded by the distance between them.

Table 3: Confusion matrix for temporal segmentation from
a complex sequence of the CMU motion capture database.
Ground truth labels on each row, predicted labels on each
column (each row add up to 100%).

walk squats run stop stretch jump drink punch
walk 93 1 2 4

squats 87 7 6
run 13 83 4

stop 6 73 3 3 15
stretch 70 30

jump 4 96
drink 6 4 1 78 11
punch 16 4 80

walking, squats, running, stopping, stretching, jump-
ing, drinking and punching (through dimensionality
reduction and clustering). We used the sequence 2 of
subject 86 from the CMU motion capture database.
We extracted small windows of 0.75 seconds, taken
each 0.125 seconds. Each window was labeled as the
action being executed in the middle. Precision ma-
trices of Gaussian graphical models were learnt by
Tikhonov regularization with regularization level 0.1.
We first apply PCA by using the parameters of the
Gaussian graphical models as features and then per-
form k-means clustering with the first 3 eigenvectors.
Figure 2 shows the resulting clusters and Table 3 shows
the confusion matrix of assigning each window to its
cluster.

6 Concluding Remarks

There are several ways of extending this research.
Lipschitz continuity for the parameterization of other
probability distributions (e.g. mixture models) needs
to be analyzed. We hope that our preliminary results
will motivate work on proving other theoretical proper-
ties as well as on learning probabilistic graphical mod-
els by using optimization algorithms that rely on Lip-
schitz continuity of the log-likelihood as the objective
function. Finally, while Lipschitz continuity defines
an upper bound of the derivative, lower bounds of the

derivative will allow for finding a lower bound of the
Kullback-Leibler divergence as well as upper bounds
for the Bayes error and the expected log-likelihood.
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A Bound for Linear Regression

We show that the weight vector w of the linear regres-
sion has bounded norm, i.e. ‖w‖2 ≤ β.

Given the dependent variable for T samples y ∈ RT

and the matrix of N regressors for each of the T sam-
ples X ∈ RN×T , the Tikhonov regularized linear re-
gression problem is given by:

min
w∈RN

‖y −wTX‖22 + ρ‖w‖22 (21)

for ρ > 0. It is well known (Boyd & Vandenberghe,
2006) that the optimal solution of the above problem
is w∗ = (XXT + ρI)−1Xy. Let X = UDVT be the
singular value decomposition of X, where UTU = I,
VTV = I and D is a diagonal matrix with diagonal
entries (∀n) dn ≥ 0 (i.e. the non-negative singular
values). Then the optimal solution can be written as
w∗ = VD′UTy, where D′ is a diagonal matrix with
diagonal entries (∀n) dn

d2
n+ρ > 0.

In order to find an upper bound for ‖D′‖2, we need to
find the maximum possible value of f(dn) = dn

d2
n+ρ . By

deriving with respect to dn we can find that the opti-
mal value is d∗n =

√
ρ and therefore f(d∗n) = 1

1+
√

ρ . Fi-
nally, ‖w∗‖2 ≤ ‖V‖2‖D′‖2‖U‖2‖y‖2 ≤ ‖D′‖2‖y‖2 ≤

1
1+
√

ρ‖y‖2 = β.

B Bound for Gaussian Graphical
Models

We show that the precision matrix Ω has bounded
norm, i.e. αI ¹ Ω ¹ βI. Similarly, since the covari-
ance matrix is the inverse of the precision matrix, we
show that the covariance matrix Σ has bounded norm,
i.e. 1

β I ¹ Σ ¹ 1
αI.

Given a dense sample covariance matrix Σ̂ º 0, con-
sider the Tikhonov regularized precision matrix Ω =
(Σ̂ + ρI)−1. Note that the minimum eigenvalue of
Σ̂ + ρI is ρ and the maximum eigenvalue is ‖Σ̂‖ + ρ.
Therefore, α = 1

‖Σ̂‖+ρ
and β = 1

ρ .

Similar bounds can be obtained for sparseness pro-
moting (`1) methods. The problem of finding a sparse
precision matrix Ω by regularized maximum likelihood
estimation is given by:

max
ΩÂ0

(
log detΩ− 〈Σ̂,Ω〉 − ρ‖Ω‖1

)
(22)

for ρ > 0. (Banerjee et al., 2006) proved that the
optimal solution to the above problem is bounded by
α = 1

‖Σ̂‖2+Nρ
and β = N

ρ .

C Loose Kullback-Leibler Bound for
Gaussian Graphical Models

If we use Lemma 21 for factor graphs, we will ob-
tain a loose bound of the Kullback-Leibler diver-
gence for Gaussian graphical models. More specifically
EP [‖ψ(x)‖p] for ψ(x) = vec(xxT) and p = 2 becomes

EP [‖x‖22] = EP [xTx] =
∫
x

(detΩ)1/2

(2π)N/2 e−
1
2xTΩxxTx ≡

B. Since detΩ ≤ βN and (∀x) xTΩx ≥ αxTx, we
have B ≤ βN/2

(2π)N/2

∫
x

e−
α
2 xTxxTx = NβN/2

αN/2+1 .

Finally, the bound in Lemma 21 becomes K = 2NβN/2

αN/2+1 .

D Parametrization of Gaussian
Graphical Models by Covariance
Matrices

In Section 4, we analyzed parametrization of Gaussian
graphical models by using precision matrices. Here,
we also analyze parametrization by using covariance
matrices. Similarly, since the covariance matrix is the
inverse of the precision matrix, we assume that the
covariance matrix Σ has bounded norm, i.e. 1

β I ¹
Σ ¹ 1

αI or equivalently ‖Σ−1‖2 ≤ β and ‖Σ‖2 ≤ 1
α .

Lemma 26. Given the covariance matrix Σ Â 0, the
Gaussian graphical model parameterized by Θ = Σ,
Σ ∈ RN×N with probability density function:

p(x|Θ) =
1

(2π)N/2(detΣ)1/2
e−

1
2xTΣ−1x (23)

is (`2,
β2‖x‖22

2 + β
2 )-Lipschitz continuous.

Proof. Let f(Σ) = log p(x|Θ) = 1
2 (− log detΣ −

N log(2π) − xTΣ−1x). By deriving ∂f/∂Σ =
1
2 (−Σ−1 + Σ−1xxTΣ−1). Therefore ‖∂f/∂Ω‖2 ≤
1
2 (‖Σ−1‖2 + ‖Σ−1‖2‖xxT‖2‖Σ−1‖2) = 1

2 (‖Σ−1‖2 +
‖Σ−1‖22‖x‖22) ≤ 1

2 (β + β2‖x‖22). By Definitions 4 and
5, we prove our claim.

Lemma 27. Given two Gaussian graphical models pa-
rameterized by their covariance matrices as in eq.(23),
i.e. P1 = p(·|Σ1) and P2 = p(·|Σ2), the Kullback-
Leibler divergence from P1 to P2:

KL(P1||P2) =
1
2

(
log

detΣ2

detΣ1
+ 〈Σ1,Σ−1

2 〉 −N

)

(24)
is bounded as follows:

KL(P1||P2) ≤ β‖Σ1 −Σ2‖2 (25)

Proof. First, we show that f(Σ1,Σ2) = KL(P1||P2) is
Lipschitz continuous with respect to Σ1. By deriving



∂f/∂Σ1 = 1
2 (−Σ−1

1 + Σ−1
2 ). Therefore ‖∂f/∂Σ1‖2 ≤

1
2 (‖Σ−1

1 ‖2 + ‖Σ−1
2 ‖2) ≤ 1

2 (β + β) = β.

Second, since f is Lipschitz continuous with respect
to its first parameter, we have (∀Σ) |f(Σ1,Σ) −
f(Σ2,Σ)| ≤ β‖Σ1 −Σ2‖2. In particular, let Σ = Σ2

and since f(Σ2,Σ2) = 0 and |f(Σ1,Σ2)| = f(Σ1,Σ2)
by properties of the Kullback-Leibler divergence, we
prove our claim.


