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Abstract—Ricci flow is a powerful curvature flow method, which is invariant to rigid motion, scaling, isometric, and conformal

deformations. We present the first application of surface Ricci flow in computer vision. Previous methods based on conformal

geometry, which only handle 3D shapes with simple topology, are subsumed by the Ricci flow-based method, which handles surfaces

with arbitrary topology. We present a general framework for the computation of Ricci flow, which can design any Riemannian metric by

user-defined curvature. The solution to Ricci flow is unique and robust to noise. We provide implementation details for Ricci flow on

discrete surfaces of either euclidean or hyperbolic background geometry. Our Ricci flow-based method can convert all 3D problems

into 2D domains and offers a general framework for 3D shape analysis. We demonstrate the applicability of this intrinsic shape

representation through standard shape analysis problems, such as 3D shape matching and registration, and shape indexing. Surfaces

with large nonrigid anisotropic deformations can be registered using Ricci flow with constraints of feature points and curves. We show

how conformal equivalence can be used to index shapes in a 3D surface shape space with the use of Teichmüller space coordinates.

Experimental results are shown on 3D face data sets with large expression deformations and on dynamic heart data.

Index Terms—Ricci flow, shape representation, surface matching and registration.

Ç

1 INTRODUCTION

RICCI flow is a powerful curvature flow method in
Riemannian geometry. In particular, three-manifold

Ricci flow has been successfully applied to recently prove
the Poincaré conjecture [1]. In this work, we apply Ricci
flow to 3D shape analysis. Intuitively, Ricci flow deforms
the Riemannian metric of a manifold according to its
curvature such that the curvature evolves according to a
heat diffusion process; eventually, curvature becomes
constant everywhere. The Riemannian metric with constant
curvature at the steady state is called the uniformization
metric. Fig. 1 illustrates the surface Ricci flow. From the left
column in the figure, it is clear that any genus zero closed
surface will be conformally deformed to the unit sphere SS2.
Similarly, the middle column shows that any genus one
closed surface can be flattened onto the plane IR2

periodically, where each period is a parallelogram. The
right column shows that any genus two surface will be
deformed onto the hyperbolic space HH2 periodically, where
each period is a hyperbolic octagon. By conformally
deforming all shapes to three canonical domain
(SS2; IR2;HH2), all 3D shape analysis problems can be
converted to 2D ones. Our first contribution in this paper
is the introduction of a general framework for the
computation of Ricci flow that can design Riemannian
metrics by arbitrary user-defined curvatures. To ensure the
generality of our framework, we generalize conventional
circle packing metric to inversive distance metric (see Fig. 4)

and provide a novel convexity theorem for Ricci energy
(Theorem 3.8) that can apply to all metric designs. We
furthermore provide implementations of this framework for
discrete surfaces with both euclidean and hyperbolic
background geometries.

This work offers two more contributions by addressing
two basic 3D shape analysis problems: shape indexing and
deformable surface matching using Ricci flow. Shape
indexing is mainly based on Teichmüller space theory, first
introduced by Sharon and Mumford in their seminal work
on the curve space work [2]. This work generalizes the
curve shape space to 3D surface shape space. The main idea
is as follows: Two surfaces are conformally equivalent if
there exists an angle-preserving map between them. Fixing
the topology, all of the conformal equivalence surface
classes form a finite-dimensional Riemannian manifold, the
so-called Teichmüller space. Each point in Teichmüller
space represents a class of shapes, and the curve segment
represents the deformation from one class to the other. The
Riemannian metric in Teichmüller space is well defined and
computable. Theoretic treatments can be found in [3].
Therefore, Teichmüller space coordinates can be used to
index shapes. The Teichmüller coordinates can be explicitly
computed using Ricci flow. Although this work focuses on
genus zero surfaces with multiple holes, the method can be
generalized to surfaces with arbitrary topologies.

The matching of 3D surfaces with large anisotropic
deformation can be tackled efficiently by Ricci flow. The 3D
surfaces are mapped to canonical planar domains using
Ricci flow; therefore, 3D matching problems are converted
to 2D matching problems. Feature constraints can be
incorporated naturally to the mapping process in order to
define 2D one-to-one maps that respect such constraints
while still optimizing the matching energy.

Compared to existing methods, Ricci flow methods have
the following merits:

Generality. None of the existing methods can handle high
genus surfaces directly. For genus zero surfaces with multi-
ple holes, none of the existing methods, such as harmonic
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map [4], [5], [6], or least square conformal map (LSCM) [7],
[8], can produce a one-to-one map, as demonstrated in Fig. 2.
Ricci flow can handle surfaces with arbitrary topologies, and
can produce one-to-one maps between surfaces with
complicated topologies.

Dimension reduction. Ricci flow deforms arbitrary
shapes to three canonical shapes SS2, IR2, and HH2. Therefore,
it converts 3D geometric problems to 2D ones. See Fig. 4.

Flexibility. In this paper, we show that previous
conformal map methods [7], [9], [10], [11], [8] are subsumed
by Ricci flow. The results of all existing conformal mapping
methods can be achieved by the Ricci flow method, which
can produce a Riemannian metric with arbitrary user-
defined curvatures. In our later discussion, as examples we
will concentrate all the curvature to a single feature point or
several feature points using Ricci flow and make every

other point have zero curvature. This cannot be achieved by
any other method. See Fig. 10.

Discriminative power. Using Ricci flow, the intrinsic
conformal geometric invariants can be computed, such as
Teichmüller space coordinates, which can be used to classify
surfaces accurately. None of the existing methods can
compute the Teichmüller coordinates. See Figs. 13 and 14.

Invariance. Ricci flow only depends on the Riemannian
metric. The results are invariant under rigid motion, scaling,
and more general conformal deformations. For example,
gesture change of human limbs is a conformal deformation.
Running Ricci flow on the body skin surface with different
gestures will produce the same result. For most elastic
deformations, even when anisotropic, such as human organ
deformation, their conformal images on the canonical space
will be more similar than the original 3D data sets, which
greatly helps for registration and matching. See Fig. 8.

Robustness. Ricci flow is intrinsic to the geometry of the
surface. It is robust to triangulation of the meshes and local
noises, as demonstrated in Fig. 3. While the same face
surface is approximated by meshes with different resolu-
tions, the computational results are very similar.

Rigor. The theoretic foundation for surface Ricci flow has
been laid down for both smooth surfaces [12], [13] and
discrete meshes [14]. This work introduces a generalized
version of discrete Ricci flow; the convexity of the Ricci
energy is given in Theorem 3.8.

Our experimental results demonstrate the advantages of
the Ricci flow method. We show how shape indexing can be
used to qualify expression changes as well as different facial
geometries corresponding to different subjects. In deform-
able surface matching, the Ricci flow method is more
accurate than existing methods [8], [6]. We show results in
matching faces through different expressions as well as
dynamic heart matching.

The rest of the paper is organized as follows: Previous
works are reviewed briefly in Section 2. Mathematical
background of the Ricci flow conformal maps is introduced
in Section 3. Discrete euclidean and hyperbolic Ricci flow
algorithms are explained in Section 4. Shape indexing and
deformable surface matching algorithms are elaborated
thoroughly in Section 5. Experimental results are reported
in Section 6. Conclusions and future directions are briefly
discussed in Section 7.

2 PREVIOUS WORK

In recent decades, there has been much research into
surface representations for 3D shape analysis, which is
fundamental for many computer vision applications, such
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Fig. 2. Comparison of different conformal maps. Only the Ricci flow
method can produce a one-to-one map for a genus zero surface with
three inner holes. Neither the Least-Square Conformal Map (LSCM)
method nor the Harmonic Map method can produce a one-to-one map.
The LSCM result has self-intersection near the lips. The Harmonic Map
result has flipped faces near the inner boundaries. (a) Multiply
connected domain. (b) Ricci flow. (c) Lease-square conformal map.
(d) Harmonic map.

Fig. 3. Euclidean Ricci flow method is intrinsic to geometry and robust to
resolution change and local noises.

Fig. 1. Surface Uniformization Theorem: Ricci flow deforms all surfaces
conformally (angle preserving) to three canonical shapes, the sphere,
the plane, and the hyperbolic disk, depending on their topologies.



as 3D shape registration, partial scan alignment, 3D object
recognition, and classification [15], [16], [17], [18].

In particular, as 3D scanning technologies improve, large
databases of 3D scans require automated methods for
matching and registration. However, matching surfaces
undergoing nonrigid deformation is still a challenging
problem, especially when data are noisy and with compli-
cated topology. Different approaches include curvature-
based representations [19], regional point representations
[17], [20], spherical harmonic representations [21], [22],
shape distributions [23], harmonic and conformal shape
images [4], [8], [25], physics-based deformable models [26],
Free-Form Deformation (FFD) [27], and Level-Set-based
methods [28]. However, many surface representations
using local shape signatures are not stable and cannot
perform well in the presence of nonrigid deformation.

Elad and Kimmel [29] used isometric invariance as
descriptors for 3D nonrigid shapes, such as geodesic
distances. They achieved good results for expression invar-
iant 3D face recognition in [30], where the facial expression
change was modeled as near-isometries. Mémoli and Sapiro
[31] proposed an isometry invariant and the Gromov-
Hausdorff distance, for 3D shape comparison using point
clouds. These methods handle near-isometric deformations.

Quasi-conformal deformations are more general than
isometric deformations. Conformal geometric methods have
been used in several applications of computer vision [4], [5],
[32], [25], [2], [8], [34]. In the medical imaging field,
conformal maps have been applied to brain cortex mapping.
Angenent et al. [35] gave an explicit method for flattening
the brain surface using certain conformal mappings from
complex function theory. Gu et al. introduced a different
approach for conformal brain cortex mapping using the
harmonic map method [32]. Most existing conformal
geometric methods can only handle genus zero surfaces.

Ricci flow can compute conformal maps for surfaces
with arbitrary topologies. Surface Ricci flow was invented
by Hamilton [12]. The convergence of Ricci flow on surfaces
with positive Euler number is proven by Chow [13].
Discrete surface Ricci flow theory was developed by Chow
and Luo [14] and a computational algorithm was intro-
duced in [36]. Euclidean Ricci flow has been applied to
shape analysis in [37]. Hyperbolic Ricci flow has been
applied to 3D face matching and registration in [38]. Prior
Ricci flow works were based on the conventional circle
packing metric. This work generalizes the circle packing

metric to include the inversive distance metric (see Fig. 4).
The theoretic results for inversive circle packing metric can
be found in [39]. Furthermore, this work introduces a
general framework to unify both euclidean and hyperbolic
Ricci flows.

Conformal geometric methods have also been applied to
the 2D shape space problem. Sharon and Mumford
pioneered the curve space using the conformal welding
method in [2] based on Teichmüller theory. The space of
curves was modeled as an infinite-dimensional Riemannian
manifold and endowed with a distance structure, which
was used to measure the similarity of two curves. Later,
curve space was extended in Michor and Mumford [40],
Yezzi and Mennucci [41], Mio et al. [42], and Charpiat et al.
[43]. This work applies Teichmuller theory to generalize
curve space to 3D shape space.

3 THEORETICAL BACKGROUND

This section briefly introduces the theoretic background of
Teichmüller space theory and surface Ricci flow. We refer
readers to a classical text book [3] for Teichmüller theory
and the seminal papers on surface Ricci flow [12], [13].

3.1 Riemannian Metric and Curvature

Definition 3.1 (Riemannian metric). Suppose S is a surface,
the Riemannian metric is a tensor g ¼ ðgijÞ which is
positive definite and defines an inner product for the tangent
spaces of S.

Suppose ðx; yÞ are local coordinates of S, two tangent
vectors v1 ¼ ðdx1; dy1Þ, v2 ¼ ðdx2; dy2Þ are on the tangent
plane at a point p 2 S, then their inner product is defined as

<v1;v2>g ¼
X
ij

gijdxidyj:

The angle between v1;v2 measured by g is given by

�g ¼ cos�1 <v1;v2>gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
<v1;v1>g<v2;v2>g
p : ð1Þ

Definition 3.2 (Conformal Riemannian metric). Two
Riemannian metrics on S are conformal if there is a function
defined on the surface u : S ! IR such that �g ¼ e2ug, where u
is called the conformal factor.

Using (1), we can show that, for all angles between two
tangent vectors, �g ¼ ��g.

If surface metric g is conformal to the euclidean metric
dx2 þ dy2, then they are called isothermal coordinates:
g ¼ e2uðx;yÞðdx2 þ dy2Þ.
Definition 3.3 (Gaussian curvature). Let S be a surface with a

Riemannian metric g and ðx; yÞ be isothermal coordinates of S,
then the Gaussian curvature is defined askðx; yÞ ¼ �guðx; yÞ,
where �g is the Laplace-Beltrami operator induced by the
original metric g [44], �g ¼ 1

e2uðx;yÞ ð @
2

@x2 þ @2

@y2Þ.

Conformal metric deformation will change the curva-
tures accordingly. When the metric of S is changed from g
to �g ¼ e2ug, then the Gaussian curvature k of interior points
changes by �k ¼ e�2uðk��guÞ. The geodesic curvature kg on
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Fig. 4. Generalized circle packing metric. In this work, the circle packing
metric is generalized from the conventional case to include the inversive
distance metric. This greatly improves the generality and flexibility of
discrete Ricci flow. (a) Conventional circle packing metric. (b) Inversive
distance circle packing metric.



the boundary points changes as �kg ¼ e�uðkg � @u
@nÞ, where n

is the normal to the boundary of the surface @S.
Curvature is determined by the Riemannian metric and

different metrics induce different curvatures. But, the total
curvature is solely determined by the topology.

Theorem 3.1 (Gauss-Bonnet). Let ðS;gÞ be a metric surface,
the total curvature is

R
S KdAg þ

R
@S kgds ¼ 2��ðSÞ, where

�ðSÞ is the Euler number of the surface.

A direct corollary of Gauss-Bonnet theorem is:

Corollary 3.2 (Uniqueness of geodesic). Let ðS;gÞ be a metric
surface such that g induces nonpositive Gaussian curvature
and p; q are two points on S (p may be identical to q), then
there exists a unique geodesic connecting p and q in each
homotopy class.

In each conformal metric class, there is a unique metric
that produces constant curvature.

Theorem 3.3 (Uniformization). Let ðS;gÞ be a closed metric
surface, then there exists a Riemannian metric �g, which induces a
constant Gaussian curvature, according to �ðSÞ < 0,�ðSÞ ¼ 0
and �ðSÞ > 0, the constant is �1; 0;þ1, respectively.

Fig. 1 illustrates the uniformization theorem. Uniformi-
zation metric can be computed using Ricci flow method.

3.2 Surface Ricci Flow

Ricci flow is a powerful curvature flow method, invented
by Hamilton [12] for the proof of the Poincaré conjecture
[46], [47], [1]. Intuitively, it describes the process to deform
the Riemannian metric according to curvature such that the
curvature evolves like a heat diffusion process:

dg

dt
¼ �2kg: ð2Þ

Hamilton [12] and Chow [13] proved the convergence of
surface Ricci flow.

Theorem 3.4 (Surface Ricci flow). For a closed surface, if the
total area of the surface is preserved during the flow, the Ricci
flow will converge to a metric such that the Gaussian
curvature is constant everywhere.

In our work, we compute the euclidean and hyperbolic
uniformization metric using the surface Ricci flow method.

3.3 Hyperbolic Geometry

In our computational algorithms, we require the basic
knowledge of hyperbolic geometry. Here, we briefly
introduce the elementary concepts in hyperbolic geometry.

The hyperbolic space HH2 cannot be realized in IR3,
instead we use the following Poincaré model to represent it.

Definition 3.4 (Poincaré disk). The Poincaré disk is the unit
disk on the complex plane jzj < 1, z ¼ xþ iy, with Rieman-
nian metric ds2 ¼ 4dzd�z

ð1��zzÞ2 .

The rigid motion in the hyperbolic space is a Möbius
transformation z! ei� z�z0

1��z0z
. A hyperbolic line (a geodesic) is

a circular arc which is orthogonal to the unit circle jzj ¼ 1. A
hyperbolic circle ðc; rÞ (where c is the center and r is the

radius) looks like a euclidean circle ðC;RÞ, where
C ¼ 2�2�2

1��2jcj2 , and R2 ¼ jCj2 � jcj2��2

1��2jcj2 , where � ¼ er�1
erþ1 .

There are other models of hyperbolic space. Another
commonly used one is the Klein model [48]. The Klein model
is also the unit disk, where all geodesics are straight
euclidean lines. This fact greatly simplifies the computation
in practice. The conversion from the Poincaré disk to the
Klein model is straightforward:

z! 2z

1þ �zz
: ð3Þ

The Poincaré model is conformal, whereas the Klein model
is not. In our work, we compute the shortest path
connecting two hyperbolic lines. The following lemma
ensures the uniqueness of such kind of curve:

Lemma 3.5 (Shortest path). Given two hyperbolic lines �1; �2

at the general position, there exists a unique hyperbolic line �3

orthogonal to both of them. �3 is the shortest path between �1

and �2.

The proof is straightforward. Using the Poincaré disk
model, from the euclidean geometry point of view, �3 is a
geodesic, which is a euclidean circle orthogonal to three
circles: the unit circle, the circle including �1, and the circle
including �2. Such a circle exists and is unique.

3.4 Discrete Theory

In computer vision, surfaces are approximated by piecewise
linear triangular meshes. In this section, smooth surface
Ricci flow is generalized to the discrete setting.

Suppose MðV ;E; F Þ is a simplicial complex (triangle
mesh) with vertex set V , edge set E, and face set F ,
respectively. We use vi to denote the ith vertex, ½vi; vj� the
edge connecting vi and vj, and ½vi; vj; vk� the face formed by
vi; vj; vk.

Definition 3.5 (Discrete metric). A discrete metric on M is a
function l : E ! IRþ such that, on each face ½vi; vj; vk�, the
triangle inequality holds lij þ ljk > lki.

Given a discrete metric, each face on the mesh can be
treated as a triangle embedded in different spaces. This
defines the background geometry.

Definition 3.6 (Background geometry). Let M be a 2D
simplicial complex, with a discrete metric. If each face of M is a
euclidean triangle, then the mesh is with euclidean IE2

background geometry. If each face is a hyperbolic triangle,
then the mesh is with hyperbolic HH2 background geometry.

The discrete metric determines the corner angles on each
face by the cosine law,

�i ¼
cos�1 l

2
jþl2k�l

2
i

2ljlk
; IE2;

cos�1 cosh lj cosh lk�cosh li
2 sinh lj sinh lk

; HH2:

8<
: ð4Þ

The discrete Gaussian curvature is defined as angle
deficient.

Definition 3.7 (Discrete Gaussian curvature). Suppose M is
a mesh with a discrete metric, which either in euclidean or
hyperbolic background geometry. ½vi; vj; vk� is a face in M
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and �jki represents the corner angle at vi on the face. The

discrete Gaussian curvature of vi is defined as

Ki ¼
2��

P
jk �

jk
i ; vi 62 @M;

��
P

jk �
jk
i ; vi 2 @M:

(
ð5Þ

The total Gaussian curvature is controlled by the

topology of the mesh:X
i

Ki þ �
X
ijk

Aijk ¼ 2��ðMÞ; ð6Þ

where Aijk is the area of the face ½vi; vj; vk�, � is zero if M is
with euclidean background metric, �1 if M is with
hyperbolic background metric.

3.5 Generalized Discrete Ricci Flow

The discrete Ricci flow method used in this work
generalizes the conventional discrete Ricci flow [14], [37].
The conventional discrete Ricci flow can only handle the
cases, as shown in Fig. 4a. The inversive distance metric is
introduced to generalize the discrete Ricci flow, which
handles both cases in the figure. This improves generality
and flexibility of the discrete Ricci flow method.

A circle packing associates each vertex with a circle. The

circle at vertex vi is denoted as ci. The two circles ci and cj on
an edge ½vi; vj� are disjoint, as shown in Fig. 4b, or intersect
each other at acute angle �ij <

�
2 , as shown in the left frame.

Definition 3.8 (Inversive distance). Suppose the length of

½vi; vj� is lij, the radii of ci and cj are �i and �j, respectively,

then the inversive distance between ci and cj is given by

Iðci; cjÞ ¼
l2ij��2

i��2
j

2�i�j
; IE2;

cosh lij�cosh �i cosh �j
sinh �i sinh �j

; HH2:

8<
: ð7Þ

The generalized circle packing metric is defined as

Definition 3.9 (Generalized circle packing metric). A
generalized circle packing metric on a mesh M is to associate
each vertex vi with a circle ci, whose radius is �i, associate each
edge ½vi; vj� with a nonnegative number Iij. The edge length is
given by

lij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
i þ �2

j þ 2Iij�i�j
q

; IE2;

cosh�1ðcosh �i cosh �j þ Iij sinh �i sinh �jÞ; HH2:

(
ð8Þ

The circle packing metric is denoted as ð�; I;MÞ, where

� ¼ f�ig, I ¼ fIijg.

A discrete conformal deformation is to change radii �is only,
and preserve inverse distance Iijs. The discrete Ricci flow is
defined as follows: Let

ui ¼
log �i; IE2;

log tanh �i
2 ; HH2:

�

Definition 3.10 (Discrete Ricci flow). Given a circle packing

metric ð�; I;MÞ, the discrete Ricci flow is

dui
dt
¼ �Ki �Ki; ð9Þ

where �Ki is the user-defined curvature at vertex vi.

Given a triangle ½vi; vj; vk� with a circle packing, there

exists a unique circle c, which is orthogonal to ci; cj; ck,

shown as the red circles in Fig. 4. The center of c is O. The

distance from O to edge ½vi; vj� is denoted as hk, and the

edge length of ½vi; vj� is denoted as lk.

Lemma 3.6. The following symmetric relation holds for euclidean

Ricci flow:

@�i
@uj
¼ @�j
@ui
¼ hk
lk

ð10Þ

and

@�i
@ui
¼ � @�i

@uj
� @�i
@uk

: ð11Þ

For the hyperbolic Ricci flow, similar symmetry holds,

albeit with a more complex formula. On one face ½v1; v2; v3�,

d�1

d�2

d�3

0
@

1
A ¼ �1

sin �1 sinh l2 sinh l3
M

du1

du2

du3

0
@

1
A; ð12Þ

M ¼
1� a2 ab� c ca� b
ab� c 1� b2 bc� a
ca� b bc� a 1� c2

0
B@

1
CA�

0 ay� z az� y
bx� z 0 bz� x
cx� y cy� x 0

0
B@

1
CA;

� ¼
1

a2�1 0 0
0 1

b2�1 0
0 0 1

c2�1

0
@

1
A;

where

ða; b; cÞ ¼ ðcosh l1; cosh l2; cosh l3Þ

and

ðx; y; zÞ ¼ ðcosh �1; cosh �2; cosh �3Þ:

Lemma 3.7. The following symmetric relation holds for

hyperbolic Ricci flow:

@�i
@uj
¼ @�j
@ui

:

Let u represent the vector ðu1; u2; . . .unÞ and K represent

the vector ðK1; K2; . . . ; KnÞ. where n ¼ jV j. Fixing the

inversive distances, all possible us that ensure the triangle

inequality on each face form the admissible metric space of M,

which is a simply connected domain in Rn. The above

lemma proves that the differential one-form ! ¼
P

ið �Ki �
KiÞdui is a closed one-form. The discrete euclidean Ricci

energy and hyperbolic Ricci energy have the same formula.

Definition 3.11 (Discrete Ricci energy). The discrete

euclidean and Hyperbolic Ricci energy is defined as
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EðuÞ ¼
Z u

u0

X
i

ð �Ki �KiÞdui;

where u0 ¼ ð0; 0; . . . ; 0Þ.

The discrete Ricci flow in (9) is the negative gradient flow
of the Ricci energy. The following convexity theorem lays
down the theoretic foundation of our algorithm:

Theorem 3.8 (Convexity of Ricci energy). The discrete

euclidean Ricci energy is convex on the hyperplane
P

i ui ¼ 0

in the admissible metric space. The discrete hyperbolic Ricci

energy is convex in the admissible metric space.

Detailed proof for the conventional circle packing metric

can be found in [14] and for the inversive distance circle

packing metric can be found in [39]. The metric inducing the

target curvature is the unique global optimum of the Ricci

energy. Therefore, the discrete Ricci flow will not get stuck at

any local optimum, and converges to the global optimum.

4 ALGORITHMS

This section provides the implementation details for

generalized discrete Ricci flow on triangular meshes with

euclidean and hyperbolic background geometries. In the

following discussion, we simply call them euclidean and

hyperbolic Ricci flow.

4.1 Generalized Circle Packing Metric

Algorithm 1 computes the initial generalized circle pack-

ing metric on meshes for both euclidean and hyperbolic

Ricci flow.

Algorithm 1. Initial Circle Packing Metric

Require: A triangular mesh M, embedded in IR3.

1: for all face ½vi; vj; vk� 2M do

2: Compute �jki ¼
lijþlki�ljk

2 .

3: end for

4: for all vertex vi 2M do

5: Compute the radius �i ¼ minjk�
jk
i .

6: end for

7: for all edge ½vi; vj� 2M do

8: Compute the inversive distance using (7).

9: end for

4.2 Discrete Ricci Flow

The discrete euclidean and Hyperbolic Ricci flow algorithm

is explained in Algorithm 2, which produces a metric,

inducing user-defined target curvature �K.

Algorithm 2. Generalized Euclidean and; Hyperbolic

Ricci Flow

Require: A triangular mesh M, the target curvature �K.

1: Compute the initial circle packing metric using
Algorithm 1.

2: repeat

3: For each edge, compute the edge length using (8)

4: For each face ½vi; vj; vk�, compute the corner angles

�i; �j and �k, using IE2 or HH2 cosine laws (4).

5: For each face ½vi; vj; vk�, compute @�i
@uj
;
@�j
@uk

, and @�k
@ui

using
(10) for IE2 case and (12) for HH2 case.

6: For each face ½vi; vj; vk�, compute @�i
@ui
;
@�j
@uj

and @�k
@uk

using

(11) for IE2 case, and (12) for HH2 case.

7: Construct the Hessian matrix H.

8: Solve linear system H�u ¼ �K �K.

9: Update discrete conformal factor u uþ �u.

10: For each vertex vi, compute the Gaussian

curvature Ki.
11: until maxvi2M j �Ki �Kij < 	

4.3 Embedding

After computing the discrete metric of the mesh, we can
embed the mesh onto IR2 or HH2. As described in Algorithm 3,
basically, we isometrically flatten triangle by triangle using
the euclidean or hyperbolic cosine law.

Algorithm 3. Embedding
Require: A triangular mesh M, a set of fundamental group

generators intersecting only at the base point p, using

the algorithm in [49].

1: Slice M along the fundamental group generators to

form a fundamental domain �M.

2: Embed the first triangle ½v0; v1; v2� 2 �M, map each vi
to 
ðviÞ on the complex plane CC. ð
ðv0Þ; 
ðv1Þ; 
ðv2ÞÞ are

IR2 : ð0; l01; l20e
i�12

0 Þ

HH2 : ð0; tanh l01

2 ; tanh l02

2 e
i�12

0 Þ:
3: Put all the neighboring faces of the first face to a face

queue.

4: while the face queue is not empty do

5: Pop the first face ½vi; vj; vk� from the queue.

6: Suppose vi and vj has been embedded, compute the

intersection of two circles ð
ðviÞ; likÞ \ ð
ðvjÞ; ljkÞ.
7: 
ðvkÞ is chosen the keep the orientation of the face

upward.

8: Put the neighboring faces of ½vi; vj; vk�, which haven’t

been accessed yet, to the queue.

9: end while

5 SHAPE ANALYSIS APPLICATIONS

This section focuses on two major applications of Ricci flow
in shape analysis. One is shape indexing and the other is
deformable surface matching.

5.1 Shape Indexing

Surfaces can be classified by the conformal equivalence
relation; two surfaces are conformally equivalent if there
exists a conformal mapping between them. A conformal
mapping preserves angles.

Definition 5.1 (Conformal map). Suppose ðS1;g1Þ and
ðS2;g2Þ are two metric surfaces, a map � : S1 ! S2 is
conformal if the pull back metric induced by �, ��g2 is
conformal to g1, ��g2 ¼ e2ug1.

It is unnecessary to really find the conformal mapping
to verify whether two shapes are conformally equivalent.
Instead, we can compute some conformal invariants for
each surface, the so-called conformal module; if two
surfaces share the same conformal module, then they
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are conformally equivalent. The conformal module can be
applied as the fingerprint of the shape.

Definition 5.2 (Teichmüller space [3]). Given a topological
surface S, the Teichmüller space of S is a manifold, denoted
as TS , whose points present all conformal equivalence classes of
surfaces whose underlying topological structure is the same as
that of S.

In Teichmüller space, each point represents a class of
surfaces, and a curve represents a deformation process from
one shape to the other shape. The Teichmüller space has a
Riemannian metric, which measures the angle distortion
between the shapes. For genus one tori surfaces, the
Teichmüller space is 2D. For genus g > 1 closed surfaces,
the Teichmüller space is 6g� 6-dimensional. If two surfaces
share the same Teichmüller coordinates, then they are
conformally equivalent. Therefore, Teichmüller coordinates
can be applied to shape indexing.

In the following discussion, we focuses on genus zero
surfaces with multiple boundaries. The computation of
Teichmüller coordinates of general surfaces will be our
future research direction.

5.1.1 Doubly Connected Domains

A genus zero surface with two boundaries is called a doubly

connected domain, as shown in Fig. 5. The following theorem
postulates that the Teichmüller space of a doubly connected
domain is 1D:

Theorem 5.1 (Doubly connected domain [3]). Suppose ðS;gÞ
is a doubly connected domain, then it can be conformally
mapped to a planar annulus, with two concentric circular

boundaries. Suppose the radii of the outer boundary and inner

boundary are R and r, respectively, then the conformal module

of S is 1
2� log R

r .

Therefore, the Teichmüller space of doubly connected
domains is of one dimension, and the Teichmüller
coordinates are given by 1

2� log R
r . Algorithm 4 computes

the conformal module for a doubly connected domain.

Algorithm 4. Conformal Module for Doubly Connected

Domains

Require: A triangular mesh M, which is a doubly connected

domain.
1: Set target curvature equal to zero everywhere.

2: Compute a flat metric using euclidean Ricci flow

Algorithm 2.

3: Compute the shortest path � between two boundaries.

4: Slice the M along � to get �M.

5: Flatten �M onto the plane using euclidean embedding

Algorithm 3.

6: Scale and translate the planar image of �M, such that the

image of the outer boundary is aligned with the

imaginary axis, the length of outer boundary is 2�.

7: Use the exponential map z! ez to map the planar
image of �M to an annulus.

8: Measure the radii of inner and outer boundary circles r

and R respectively. The conformal module is given by
1

2� log R
r .

5.1.2 Triply Connected Domains

A genus zero surface with three boundaries is a triply
connected domain. There are two ways to represent its
conformal module: One uses the euclidean metric and the
other uses the hyperbolic metric. Therefore, its conformal
module can be computed using either euclidean or
hyperbolic Ricci flow.

Theorem 5.2 (Triply connected domain). Suppose ðS;gÞ is a
triply connected domain, the boundary is ordered as
@S ¼ c0 � c1 � c2, where c0 is the outer boundary and c1

and c2 are the two inner boundaries, then S can be conformally
mapped to a unit disk with circular holes. All such mappings
differ by a Möbius transformation. A canonical mapping can
be obtained such that c0 is mapped to the unit circle, the center
of c1 is the origin, and the center of c2 is a real number. Then
the centers and the radii of c1; c2 are the conformal module. The
Teichmüller space of triply connected domains is 3D.

Fig. 6 shows both euclidean and hyperbolic conformal
modules for a triply connected domain. In Algorithm 5, we
use euclidean Ricci flow to compute the canonical con-
formal map.

Algorithm 5. Conformal Module for Triply Connected

Domain by Euclidean Ricci Flow (Generalized Koebe’s

Method)

Require: A triangular mesh M, which is a triply connected

domain, the boundary of the mesh is @M ¼ c0 � c1 � c2.

1: repeat

2: Fill c1 by a topological disk, to get M1.

3: Use Algorithm 4 to map M1 to a canonical planar
annulus ~M1.

4: On ~M1, remove the hole of c1 and fill the hole c2 to

get M2.

5: Use Algorithm 4 to map M2 to a canonical planar

annulus ~M2.
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Fig. 5. A doubly connected domain is conformally mapped onto a planar
annulus, and the fingerprint (conformal module) of the shape is 1

2� log R
r .

Fig. 6. A triply connected domain can be conformally mapped onto a
planar disk with two circular holes using euclidean Ricci flow, and the
fingerprint (conformal module) is the centers and radii of the inner
circular holes. It can also be mapped onto the Poincaré disk periodically
using hyperbolic Ricci flow, with all boundaries becoming geodesics.
The lengths of the boundaries are the conformal module.



6: On ~M2, remove the hole of c2, to get ~M.
7: M  ~M.

8: until The curvatures on the boundaries are close to

constants

9: Suppose the center of c1 is z0, define a Möbius

transformation z! z�z0

1��z0z
to map the center of c1 to the

origin.

10: Rotate the planar image, such that the center of c2 is on

the imaginary axis.

The following theorem gives another way to define the
conformal module of a triply connected domain using the
hyperbolic metric:

Theorem 5.3 (Triply connected domain). Suppose ðS;gÞ is a
triply connected domain, the boundary is ordered as c0; c1; c2.
Let �g be the hyperbolic uniformization metric such that all of
the interior points have �1 Gaussian curvature and the
boundaries are geodesics (hyperbolic lines). Then the conformal
module is given by the hyperbolic lengths of c0, c1, and c2.

Algorithm 6 explains the computational details for the
hyperbolic conformal module.

Algorithm 6. Conformal Module for Triply Connected

Domain by Hyperbolic Ricci Flow

Require: A triangular mesh M, which is a triply connected

domain, the boundary of the mesh is @M ¼ c0 � c1 � c2.

1: Set the target curvature to be zero for all vertices,

including boundary vertices.

2: Compute the hyperbolic metric using the hyperbolic
Ricci flow Algorithm 2.

3: Find the shortest paths from c1, c2 to c0.

4: Slice the mesh along the shortest paths to get �M.

5: Embed �M onto the Poincaré disk using the Algorithm 3.

6: Measure the hyperbolic lengths of c0, c1 and c2, which

give us the conformal module.

The proof for the convergence of Koebe’s algorithm can
be found in [50]. The middle frame in Fig. 6 shows the IE2

conformal module computed using Algorithm 5. The right
frame in Fig. 6 shows the HH2 conformal module computed
using Algorithm 6.

5.1.3 Multiply Connected Domains

Genus zero surfaces with multiple holes n > 2 are called
multiply connected domains. Similarly to the triply connected
domain case, the surface can be conformally mapped onto a
planar disk with circular holes and all such mappings differ
by Möbius transformations.

Theorem 5.4 (Multiply connected domain [3]). Suppose
ðS;gÞ is a multiply connected domain, the boundary is ordered as

@S ¼ c0 � c1 � c2 � � � � cn; n > 2;

where c0 is the outer boundary. Then S can be conformally
mapped to a unit disk with circular holes. A canonical
mapping can be obtained such that c0 is mapped to the unit
circle, the center of c1 is the origin, and the center of c2 is a real
number. Then the centers and radii of c1; c2; . . . ; cn are the
conformal module. The Teichmüller space of triply connected
domains is 3n� 3-dimensional (because the center of c1 and
the x-component of c2 are fixed).

In practice, the boundary cks are ordered by their lengths.

The computational algorithm is explained in Algorithm 7,

which is very similar to that for triply connected domain.

Algorithm 7. Conformal Module for Multiply Connected

Domain by Euclidean Ricci Flow (Generalized Koebe’s
Method)

Require: A triangular mesh M, which is a multiply

connected domain, the boundary of the mesh is

@M ¼ c0 � c1 � c2 � � � � cn.

1: repeat

2: Randomly choose two circles ci; cj, 1 � i < j � n, fill

all other holes, to get �M.

3: Use Algorithm 4 to map �M to a canonical planar
annulus ~M.

4: Remove all the filled disks from ~M

5: Update M  ~M.

6: until The curvatures on the boundaries are close to

constants

7: Suppose the center of c1 is z0, define a Möbius

transformation

z! z� z0

1� �z0z

to map the center of c1 to the origin.

8: Rotate the planar image, such that the center of c2 is on

the real axis.

Fig. 7 shows the conformal module for a multiply

connected domain with nine holes using Algorithm 7 based

on euclidean Ricci flow.
Using hyperbolic Ricci flow, we can compute the

hyperbolic uniformization metric of a multiply connected

domain, but the hyperbolic lengths of all the boundaries are

not enough to define the complete conformal module. For

details, we refer readers to [3].

5.2 Deformable Surface Matching

Ricci flow can be applied to deformable surface matching.

The approach is explained by the following commutative

diagram:
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Fig. 7. A multiply connected domain is conformally mapped onto a planar
disk with circular holes, and the fingerprint (conformal module) of the
shape is represented as the centers and radii of the inner circular holes.



where S1 and S2 are two given surfaces and � : S1 ! S2 is
the desired matching. We use Ricci flow to compute

i : Si ! Di, which maps Si conformally onto the canonical
domain Di. Dis are domains on the plane IR2 or the
hyperbolic disk HH2. We call them conformal parameter domains

of the surfaces. Then a planar mapping �� : D1 ! D2 is
constructed using image matching techniques. The desired
map � is induced by � ¼ 
�1

2 � �� � 
1. This framework
converts a 3D deformable surface matching problem to a
2D planar domain matching problem.

The mappings 
1 and 
2 are one-to-one and conformal. If
�� is a diffeomorphism, so is �. If �� is conformal, so is �. As
shown in Fig. 8, S1 is a mask surface in Fig. 8a, S2 is a
deformed mask in Fig. 8b, and � : S1 ! S2 is the deforma-
tion between them. In our experiment, we bent S1 to S2

without stretching; therefore, � is an isometric map. We use
euclidean Ricci flow to compute 
1 : S1 ! D1, where D1 is
shown in Fig. 8c; 
2 : S2 ! D2, where D2 is shown in frame
Fig. 8d. From the figure, it is clear that Figs. 8c and 8d are
identical. So, the planar map �� : D1 ! D2 is the identity.
Therefore, � is given by 
�1

2 � 
1.
The matching based on hyperbolic Ricci flow is shown in

Fig. 8. The hyperbolic conformal parameter domains are
shown in Figs. 8e and 8f, where all the boundaries
c0; c1; c2; c3 are mapped to hyperbolic lines. �k is the shortest

path connecting c0 and ck, which is a hyperbolic line
orthogonal to both c0 and ck. The surface is sliced along �k,
then the conformal parameter domains become right-
angled hyperbolic polygons, as shown in Figs. 8e and 8f.
Similar to the method using euclidean Ricci flow, the planar
map �� is also the identity.

For the general case, our method can guarantee that the
planar map �� is a diffeomorphism; therefore, the matching
� is also a diffeomorphism. Our method is based on
Rado’s theorem.

Theorem 5.5 (Rado [51]). Let ðS;gÞ be a simply connected
surface, D be a convex planar domain. f is a harmonic map
such that the restriction of f on the boundary f : @S ! @D is
a homeomorphism, then f is a diffeomorphism.

Basically, we decompose the conformal parameter
domains Dk to convex planar polygons, and construct
harmonic maps between corresponding convex polygons
with consistent boundary conditions. This ensures the map
to be a diffeomorphism.

5.2.1 Surface Matching by Euclidean Ricci Flow

For a surface S with a simple topology, such as a simply
connected domain, the conformal parameter domain D can
be chosen as the unit disk, as shown in the middle frame of
Fig. 9. We can also choose four points on the boundary
p0; p1; p2; p3, then set the target curvature �KðpiÞ ¼ �

2 , and
zero everywhere else, the euclidean Ricci flow will
conformally map the surface onto a square, as shown in
the right frame of Fig. 9.

For a multiply connected domain, the conformal para-
meter domain is more complicated. According to Gauss-
Bonnet Theorem 3.1, the total curvature is a constant. Ricci
flow allows users to allocate curvatures. One approach for
curvature allocation is to concentrate all the curvature on
the boundaries. As shown in Fig. 8, the surface is
conformally mapped to the unit disk with circular holes.
But constructing homeomorphisms between nonconvex
planar domains is more difficult.

Another approach is to concentrate all the curvature on
several major feature points and decompose the domain to
several convex planar polygons. Fig. 10 illustrates one
example. The input surface is a triply connected domain
with two holes. A point p at the nose tip is chosen, such that
all the curvature is concentrated at p, which is called the
cone singularity. Then we set the target curvature at p equal
to �2�, and zero everywhere else and use euclidean Ricci
flow to compute the flat metric with one-cone singularity.

Under the flat metric, each boundary is a geodesic (local
straight line). According to Corollary 3.2, we can compute
a unique geodesic loop (local straight line) from p to itself,
which is homotopic to ck, denoted as �k, k ¼ 1; 2. Then we
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Fig. 8. Top row: isometrically deformed surfaces. Middle row: euclidean
conformal parameter domains. Bottom row: hyperbolic conformal
parameter domains. The isometric mapping between the original
surfaces correspond to identity maps between parameter domains from
(c) to (d), and from (e) to (f). (a) Mask surface. (b) Bent surface from (a).
(c) Conformal parameter domain of (a) on IR2. (d) Conformal parameter
domain of (b) on IR2. (e) Conformal parameter domain of (a) on HH2.
(f) Conformal parameter domain of (b) on HH2.

Fig. 9. A simply connected domain is mapped to the unit disk or the
rectangle using euclidean Ricci flow.



compute the shortest path from p to each boundary, which

is a geodesic orthogonal to the boundary. 
1; 
2 are the

shortest paths from p to c1 and c2, respectively. There are

two geodesics from p to c0. The shortest loops �1; �2 and the

shortest paths 
1; 
2; 

1
0 ; 


2
0 partition the surface into four

segments; each segment is mapped to a planar convex

polygon, as shown in Fig. 10b. Then a constrained

harmonic map can be applied to match the corresponding

convex polygons.
Algorithm 8 explains the details for surface matching

using this approach.

Algorithm 8. Surface Matching by Euclidean Ricci Flow

Require: Two multiply-connected domains M1 and M2.

1: Choose singularities pk 2Mk, k ¼ 1; 2.
2: Set target curvature to be zeros for all vertices except at

pk, the target curvature at pk is �2��ðMkÞ.
3: Compute the flat metric with the cone singularity using

euclidean Ricci flow in Algorithm 2.

4: Compute the shortest paths from pk to the each

boundary.

5: For each inner boundary, compute the shortest loop

(geodesic) through pk, which is homotopic to the
boundary.

6: Decompose Mk to convex planar polygons

fD1
k;D

2
k . . .Dn

kg; k ¼ 1; 2.

7: Construct the harmonic map ��j : Dj
1 ! Dj

2 with

consistent boundary constraints using the method

in [6].

8: Glue the maps together to �� : D1 ! D2, where

Dk ¼ [jDj
k,

��jDj
1
¼ ��j.

The performance of the algorithm can be further

improved using the following methods:

. The cone singularities are chosen at the major feature
points such that the alignment of these feature points
is enforced.

. We can choose multiple cone singularities on each
surface. The shortest paths among these cone
singularities, from singularities to the boundaries,
and the shortest loops through singularities homo-
topic to the inner holes are used to segment the
surface to convex polygons.

. More feature point constraints can be incorporated
to the local maps ��j from Dj

1 to Dj
2.

5.2.2 Surface Matching by Hyperbolic Ricci Flow

Similarly to the matching method using euclidean Ricci

flow, Algorithm 9 computes the hyperbolic metric first, then

computes the shortest paths between pairs of boundaries,

partitioning the surface to hyperbolic right-angled polygons

(see Fig. 11). Each hyperbolic polygon in the Poincareé

model is transformed to the Klein model and becomes a

euclidean convex planar polygon (see Fig. 12). Harmonic

maps are constructed on these convex polygons.

Algorithm 9. Surface Matching by Hyperbolic Ricci Flow

Require: Two multiply-connected domains M1 and M2.

1: Compute the hyperbolic metric of M1 and M2 using
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Fig. 11. The process for computing the shortest path 
k from boundary c0

to boundary ck on the Poincaré disk. (a) Shortest path in EE2.

(b) Embedding of (a). (c) Gluing copies. (d) Computing geodesics in

HH2. (e) Zoomed region. (f) Further Zoomed region. (g) Shortest path

under hyperbolic metric. (h) Right-angled hyperbolic polygon.

Fig. 10. A triply connected domain is decomposed to convex polygons
using a flat metric with cone singularity at p by euclidean Ricci flow.
(a) Original surface. (b) Conformal parameter domains.



hyperbolic Ricci flow Algorithm 2, such that their

boundaries become hyperbolic geodesics.

2: Compute the shortest paths under the hyperbolic

metric between pairs of boundaries, which are

orthogonal to the two boundaries.
3: Partition Mk consistently along the shortest paths to

fD1
k;D

2
k; . . .Dn

kg, k ¼ 1; 2, where each Dj
k is a

right-angled hyperbolic polygon.

4: Construct the harmonic map ��j : Dj
1 ! Dj

2 with

consistent boundary constraints.

5: Glue the maps together to �� : D1 ! D2, where

Dk ¼ [jDj
k,

��jDj
1
¼ ��j.

The second step in the algorithm is to compute the

shortest path between two boundaries. This step needs

more elaboration. Fig. 11 explains the details.

1. The shortest path 
k, k ¼ 1; 2; 3 from c0 to ck is
computed using the original induced euclidean
metric, as shown in Fig. 11a.

2. The surface is sliced open along 
1, 
2, and 
3. The open
surface is denoted as �M. The open surface is flattened
onto the Poincaré disk, as shown in Fig. 11b. The
cutting boundaries 
þk and 
�k are not geodesics in HH2.

3. Compute the Möbius transformation �k such that �k
maps 
þk to 
�k , k ¼ 1; 2; 3 in Fig. 11b. Suppose @
þk ¼
pþk � qþk and @
�k ¼ q�k � p�k , then define

�þk ¼ e�i�
z� pþk
1� pþk z

; � ¼ arg q
þ
k � pþk

1� pþk qþk
;

where �þk maps pþk to the origin and qþk to a positive

real number. Similarly, we can define ��k , which

maps p�k to the origin and q�k to a positive real

number. Then the composition �k ¼ ��k � �þk maps


þk to 
�k . Glue �M in Fig. 11b with �kð �MÞ and ��1
k ð �MÞ,

k ¼ 1; 2; 3. The union is shown in Fig. 11c.
4. Compute the geodesics homotopic to 
þk and 
�k .

Boundary cks are mapped to circles. The geodesic
homotopic to 
�1 is a circle orthogonal to the unit
circle (blue circle), c1 and c2

0, as shown in Fig. 11d.
We denote the geodesics homotopic to 
þk (or 
�k )
using the same symbol 
þk (or 
�k ).

5. Figs. 11e and 11f show the zoomed region of 
þ3 . Slice
the union in Fig. 11c by the geodesics 
þk and 
�k to

get the right-angled hyperbolic polygon, as shown in
Fig. 11h.

6. Map back the geodesics of 
ks to the original surface,
and slice the surface as shown in Fig. 11g.

Then we can transform the hyperbolic polygon from the

Poincaré disk to the Klein model. The polygon becomes a

euclidean convex polygon on the Klein disk. Fig. 12 illustrates

the conversion. The mapping �� can be computed as the

harmonic map between two convex euclidean polygons, with

the boundary constraints such that �� is consistent on �þk and

��k . Harmonic maps between convex planar polygons are

diffeomorphisms, and this guarantees the map � between

two original surface to be one-to-one and onto.
In practice, there are several variations and improve-

ments of the algorithm:

. The surface can be decomposed to several hyper-
bolic right-angled polygons fDj

1g and fDj
2g, instead

of only one polygon.
. The user can specify feature points on the bound-

aries. Instead of using the shortest path, the cutting
curve �k could be the geodesic connecting the
corresponding feature points on c0 and ck.

. Further feature constraints can be added to the
harmonic maps ��j : Dj

1 ! Dj
2, either as soft con-

straints or hard constraints.

In general, the computation of Hyperbolic Ricci flow is
more expensive than euclidean Ricci flow. Both methods
enforce feature point constraints by treating them as singula-
rities for curvature allocation purposes. However, hyperbolic
Ricci flow does not require such singularities, whereas
euclidean Ricci flow has to introduce them, according to the
discrete Gauss-Bonnet Formula (6). Both methods map
boundaries to geodesics, thus ensuring the alignment of
boundary curves. For surfaces with more complex topolo-
gies, the euclidean method becomes more complex, due to the
computation of the shortest paths and loops. In such cases, the
hyperbolic method is more straightforward and automatic.

6 EXPERIMENTAL RESULTS

We thoroughly tested our algorithms on both 3D human
face data and dynamic heart surface extracted from medical
images. We captured 3D facial expression data using a
phase-shifting structured light ranging system [6] at
30 frames per second.
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TABLE 1
Computational Time (s)

Fig. 12. Conversion from Poincaré hyperbolic hexagon to Klein
hyperbolic hexagon, which is a euclidean convex polygon. (a) Original
surface. (b) Upper Poincaré. (c) Lower Poincaré. (d) Upper Klein.
(e) Lower Klein.



We developed our algorithms using generic C++ on
windows platform. The numerical systems are solved using
Matlab C++ library. The experiments are conducted on a
desktop with 3.40 GHZ CPU and 3.93 GB RAM. The
complexities of the testing models and the computational
time are reported in Table 1 for euclidean Ricci flow (ERF)
and hyperbolic Ricci flow (HRF).

6.1 Shape Indexing

6.1.1 Expression Indexing

We designed an experiment to analyze human facial
expressions using Ricci flow. As shown in Fig. 13, we
capture a sequence of 3D facial surfaces with an expression
change. Each frame has about 265k faces and 133k vertices.
In order to isolate and study the effects of expression
change without ambiguities due to 3D scanning, we
carefully mark the external boundaries of the face and

remove the lip boundary regions from each frame. The
surface thus becomes a doubly connected domain. We use
Algorithm 4 to conformally flatten the face onto the planar
annuli and compute the conformal module. As we
expected, as the size of the opening of the mouth increases,
the conformal module decreases monotonically. This
experiment indicates that the conformal module can be
useful in indexing the amount of expression change.

6.1.2 Facial Geometry Indexing

We conduct another experiment to analyze human facial
geometry. We capture 3D faces of different persons with
the same expression. Then we extract the contour of the
lips and both eyes and remove the inside regions, making
the surfaces into multiply connected domains. We use
Algorithm 7 to compute the conformal module of the
surfaces. In details, we use euclidean Ricci flow to map
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Fig. 13. Dynamic human faces with expression changes and their conformal modules. The conformal module decreases monotonically.

Fig. 14. Conformal modules for faces of different people with the same expression. c1 is the mouth boundary and c2 and c3 are the left and right eyes.
After normalization, c1 is centered at the origin and the center of c2 is on the positive y-axis. The conformal module is given as ðr1; y2; r2; x3; y3; r3Þ.
The distance between two surfaces is the euclidean distance between their conformal modules. The surfaces are sorted by the distance to the face
on the left.



the surface onto the unit disk with circular holes. Let the
center of ck is ðxk; ykÞ and the radius is rk. We use a
Möbius transformation to normalize the mapping such
that r0 is 1, ðx0; y0Þ is the origin, ðx1; y1Þ is the origin, and
x2 is 0. Then the conformal module is given by ðr1; y2; r2;
x3; y3; r3Þ. The Teichmüller space is 6D. Fig. 14 shows the
conformal modules for faces of different persons with
similar expression.

6.2 Deformable Surface Matching and Registration

Ricci flow is applied to the registration of surfaces with large
deformations. We evaluate the accuracy of the matching
result � : S1 ! S2 by using the following error metrics:

dgðS1; S2Þ ¼
R
S1
jr1ðpÞ � r2 � �ðpÞjdp

A1jDðS2Þj
; ð13Þ

dtðS1; S2Þ ¼
A2

R
S1
jt1ðpÞ � t2 � �ðpÞjdp
A1

R
S2

t2ðqÞdq
; ð14Þ

where dg represents the shape error and dt represents the
texture error. rkðpÞ represents the position vector of p on Sk.
tkðpÞ represents the texture value of p. Ak is the area of Sk.
jDðS2Þj is the diagonal of S2. The shape error is formulated
as the relative Hausdorff average distance (RHAD). In
detail, the shape error is the average distance between the
source point and the corresponding image point, normal-
ized by the diagonal of the bounding box of the target
surface. The texture error is formulated as the average
texture distance between matched surfaces, normalized by
the average of the texture value in the target image.

Two facial surfaces S1; S2 of the same person with large
deformation are shown in Fig. 15, where S1 is a neutral face
and S2 is a laughing face. The mouth and both eye regions
are removed from the surface. The surfaces become a three-
holed disk.

Euclidean Ricci flow method. We first use euclidean
Ricci flow to map Sk to circular domains, as shown in
Fig. 15. It is clear that the conformal structures of S1 and S2

are quite different, therefore, their conformal parameter
domains exhibit significant difference. It is difficult to

construct the map between two circular domains directly.
Instead we use Algorithm 8 to decompose the surface into
planar polygons. We choose the nose tip as the major
feature points pk 2 Sk. Then we set the target curvature at pk
to �4�, and zero everywhere else. We use euclidean Ricci
flow to compute a flat metric with one-cone singularity pk.
Then we compute the shortest paths from pk to all the
boundaries. The shortest paths partition Sk to D1

k, D
2
k, and

D3
k. For each pair of polygons Dj

1 and Dj
2, we compute a

harmonic map ��j with the consistent boundary constraints.
Eventually, by combining all the local map ��js, we get the
global map � from S1 to S2.

The registration texture error between two faces in
Fig. 15 is 0.0447 by the euclidean Ricci flow method. In
order to demonstrate the robustness of the feature detection
accuracy in our matching method, we randomly perturb the
feature points around the nose tips for the two faces. The
average error of three different perturbations within a 3 mm
(respectively, 6 mm) radius is 0.045 (respectively, 0.048).

Hyperbolic Ricci flow method. We then register the
surfaces using hyperbolic Ricci flow in Algorithm 9. We use
two methods: intrinsic domain decomposition and feature-based
domain decomposition.

Fig. 16 shows the intrinsic domain decomposition. Sk has
four boundaries. The unique shortest paths between each
pair of boundaries are computed. We slice the surface open
along these shortest paths, to decompose the surface to four
right-angled hyperbolic hexagons. Then we transform each
hyperbolic hexagon in the Poincaré disk to a convex
hexagon in the Klein model using (3). We use harmonic
maps to match the corresponding hexagons and merge the
local maps to one global map. The registration texture error
is 0.0724.

Fig. 17 shows the feature-based domain decomposition.
The user specifies feature points on the boundaries. Then
the shortest paths connecting each pair of boundaries and
through the corresponding feature points are computed.
The surface is decomposed to hyperbolic hexagons. The
maps are constructed on these hexagons. The difference
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Fig. 15. Matching by euclidean Ricci flow method with features. Two
face scans are with large deformation. Because of the large deforma-
tion, there is a significant difference between the planar domains.
Selecting the nose tip as the feature point, the surfaces are decomposed
to canonical planar domains. The surfaces are registered by matching
the corresponding planar domains. The registration texture error is
0.0447. (a) Calm face A0. (b) Laughing face A1.

Fig. 16. Matching by the hyperbolic Ricci flow method using intrinsic
domain decomposition. The shortest paths between two boundaries are
computed automatically. The surfaces are decomposed by the shortest
paths to right-angled hexagons. The surfaces are registered by
matching the corresponding hexagons. The registration texture error is
0.0724.



between intrinsic domain decomposition and feature-based

domain decomposition is obvious by comparing the

corresponding frames in Figs. 16 and 17. The feature-based

domain decomposition method improves the registration

texture error to 0.0403.
More experiments have been conducted for registering

faces with expression changes using intrinsic domain

decomposition based on Hyperbolic Ricci flow. Surfaces

in Figs. 18a and 19 are with two holes, and decomposed to

two right-angled hyperbolic hexagons. The matching

results are illustrated using checker board texture mapping.

Surfaces in Figs. 18b and 20 are with three holes.
Table 2 reports the registration error using different

algorithms: Iterative Closest Point (ICP), ERF, and HRF with

intrinsic domain decomposition. It can be seen that Ricci flow

method achieves much better accuracy than ICP method.

6.3 Tracking Deforming Heart

In the biomedical domain, we experimented with a
deforming heart sequence. The original tagged data were
acquired using a 3T MRI machine. The data are image
sequences from end diastole to end systole. The reconstruc-
tion was done based on methods developed by the authors
of [42], who made the data available to us. The output from
the analyzed data result is 3D corresponding points over
time from end diastole to end systole. We experimented
using a sequence of 21 frames of 3D corresponding points.
Experiments were performed on the deforming 3D surface.
The given 3D correspondences were not used in the
experiments, but only as ground truth.
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Fig. 18. Registration by the hyperbolic Ricci flow method using intrinsic
domain decomposition. The registration shape errors are 1) dg ¼ 0:0022
and 2) dg ¼ 0:0041, and texture errors are 1) dt ¼ 0:0813 and
2) dt ¼ 0:0731. (a) Triply connected domain. (b) Multiply connected
domain.

Fig. 19. Registration by the hyperbolic Ricci flow method using intrinsic
domain decomposition. The registration errors between the first two
faces are dg ¼ 0:0025 and dt ¼ 0:0405. The registration errors between
the first and the third faces are dg ¼ 0:0030 and dt ¼ 0:0411.

Fig. 20. Registration by the hyperbolic Ricci flow method using intrinsic
domain decomposition. The registration errors between the first two
faces are dg ¼ 0:0042 and dt ¼ 0:0416. The registration errors between
the first and the third faces are dg ¼ 0:0041 and dt ¼ 0:0416.

Fig. 17. Matching by the hyperbolic Ricci flow method using feature-
based domain decomposition. The user specifies feature points on the
boundaries; the shortest paths between two boundaries that connect
corresponding feature points are computed. The surfaces are decom-
posed by the shortest paths to hexagons. The surfaces are registered by
matching the corresponding hexagons. The registration texture error is
0.0403. TABLE 2

Registration Error under ICP, ERF, and HRF Methods



In order to test the robustness of our method to initial

surface segmentation, we experiment using only the left

ventricle data. We first detect and segment the boundary

between the surface of the left ventricle and the rest of the

heart. After segmenting the heart data for each frame, we

apply the euclidean Ricci flow algorithm to map each heart

shape into its canonical planar domain and register each

adjacent frame by mapping the corresponding planar

domains. In the first experiment, we manually defined a

boundary on the first frame and consistently kept these

points as the boundary points throughout the sequence.

Even though there are large interior deformations, the

boundary is sufficient in establishing almost perfect surface

correspondences, with an average registration error of

0.006197. In the second experiment, the boundary was

automatically determined based on curvature, using the

VTK software package. These boundary points are not

guaranteed to be consistent across frames. The method is still

very robust with an average registration error of 0.030331.
Fig. 21 illustrates the effectiveness of registration using

Ricci flow. The first frame is texture-mapped with a grid
pattern both in the experimental and ground truth data, in
order to better visualize the deformation. Although the
nonrigid deformation of the heart is significant between
different frames, our method captures the deformation
almost indistinguishably from the ground truth.

7 CONCLUSION AND FUTURE WORK

This paper developed the Ricci flow method for 3D shape
analysis. For shape indexing, Ricci flow is used to compute
Teichmüller space coordinates for multiply connected
domains. For deformable surface matching, Ricci flow is
applied to map the surfaces to canonical domains, and the
mapping is constructed on the 2D domains. Feature points
can be incorporated to the matching process. Two computa-
tional techniques, euclidean and hyperbolic Ricci flows,
were derived from the same general theoretic framework
and compared.

Numerical experiments have been conducted on 3D real
human face surfaces with complicated topologies and a
dynamic heart sequence reconstructed from medical
images. Our experimental results demonstrate that the
Ricci flow method reduces the complexity of 3D geometric
problems, and it is general to arbitrary surfaces, flexible for

any target shapes, discriminative for shape analysis, and

invariant under isometric deformations.
In the future, we will generalize shape analysis methods

based on Ricci flow to high genus surfaces. We will explore

Teichmüller space coordinates as compact shape signatures

that can be used for object or category recognition. We will

use Ricci flow for broader vision applications, such as facial

expression tracking and biomedical applications.
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