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ABSTRACT

We propose a simple, well grounded classification tech-
nique which is suited for group classification on brain fMRI
datasets that have high dimensionality, small number of sub-
jects, high noise level, high subject variability, imperfect reg-
istration and capture subtle cognitive effects. We propose
threshold-split region as a new feature selection method and
majority vote as the classification technique. Our method
does not require a predefined set of regions of interest. We
use average across sessions, only one feature per experimen-
tal condition, feature independence assumption, and simple
classifiers. The seeming counter-intuitive approach of using a
simple design is supported by signal processing and statistical
theory. Experimental results in two block design datasets that
capture brain function under distinct monetary rewards for
cocaine addicted and control subjects, show that our method
exhibits increased generalization accuracy compared to com-
monly used feature selection and classification techniques.

Index Terms— Pattern classification, magnetic reso-
nance imaging

1. INTRODUCTION

Despite the tremendous progress in brain studies, still little is
known about brain function for specific activities. One way to
understand this process is through statistical analysis of brain
imaging datasets. Neural activity can be captured by func-
tional magnetic resonance imaging (fMRI) by taking advan-
tage of the hemodynamics response.

In this paper, we propose a method for group classifica-
tion on brain fMRI data. We apply our method to find func-
tional differences between cocaine addicted versus healthy
non-drug-using control subjects. In this two-class classifi-
cation problem, we need to address two main questions: (i)
what are the appropriate features and (ii) which classifier or
ensemble of classifiers are good for discrimination.

In order to devise appropriate techniques for classification
from brain fMRI, the main issues that must be taken into ac-
count when dealing with this modality are: (i) the datasets
are very high dimensional, with tens of thousands of vox-
els per subject (ii) the number of available subjects (sample
size) is small due to the cost and time needed to capture in-
formation; in practice, most datasets have only a few tens of

subjects (iii) high noise level due to the high magnetic field
in the acquisition (iv) high subject variability, such that intra-
class differences could potentially hide inter-class differences
and (v) imperfect spatial registration between subjects, due to
non-affine deformations in the fMRI data with respect to the
true anatomy which are caused by the high magnetic field and
fast acquisition (i.e. the functional versus the anatomical MRI
of the same subject show important deformations that are not
due to scale, translation, rotation).

Several group classification techniques have been pro-
posed for Schizophrenia [1, 2], Alzheimer and mild traumatic
brain injury [2] and depression [3]. Prediction of cognitive
states has been applied for lie detection [4], for prediction
of size and shape of an observed object (e.g. chair) [5] or
for detecting if a person is examining a sentence or a picture
[6, 7].

Some methods require a predefined set of regions of in-
terest (ROIs) [1, 7]. The main drawback for such methods is
that in the absence of prior knowledge they are of little help.
Even if the researcher has remarkable knowledge regarding
the underlying brain process, such prior could significatively
skew the results. In practice, people might perform “double
dipping” [8] in the dataset in order to find the set of ROIs
for classification, and therefore destroy the significance of the
cross-validation results. Given those disadvantages, fully ex-
ploratory methods are preferred. Our method does not require
a predefined set of ROIs.

Section 2 introduces the design principles behind our
method. Section 3 presents our technique. Experimental
results are shown and discussed in Section 4. Main contribu-
tions and results are summarized in Section 5.

2. DESIGN PRINCIPLES

We present the principles from signal processing and statis-
tical theory that guide the design of a simple, well grounded
classification technique.

Our datasets were collected at 4Tesla which allows captur-
ing subtle cognitive effects, e.g. monetary reward processing.
Such high magnetic field introduces several signal artifacts.
We use the average of contrast maps across different sessions
in order to reduce noise and avoid using single session con-
trasts or difference of contrasts.



In order to alleviate the effects of imperfect spatial regis-
tration of brains between subjects, we use the average activity
in a brain region instead of independent voxel activity.

We use a very small number of features in order to avoid
the curse of dimensionality problem, since the number of
samples is small. To illustrate the possible pitfalls of hav-
ing more features than samples, consider a dataset with S
subjects and V À S voxels. We can train a linear support
vector machine with several training sets of S − 1 subjects
(in a leave-one-out fashion) and S voxels picked at random.
Every training set will obtain 0% training error, which shows
over-fitting, and therefore the generalization error will be
extremely high.

We observed that if feature selection is unstable under
cross-validation, i.e. different regions are picked for differ-
ent training sets, then generalization accuracy drops. We use
stable features under cross-validation in order to ensure good
performance.

Several authors have noticed that for high dimensional
datasets with small number of samples, assuming full inde-
pendence often performs better than learning dependencies
among features, even for domains where the full indepen-
dence assumption may not be valid [9, 10]. We assume in-
dependence of features, since the number of samples is insuf-
ficient for reliably learning dependencies among features.

Due to the very small number of samples, we use very
simple classifiers in order to reduce the number of parame-
ters to be learnt. We also avoid the assumption of underlying
probabilistic distributions or the use second-order statistics as
parameters (e.g. variance), since those also require having
larger number of samples to obtain reliable results.

3. METHODS

The above principles lead us to propose the following feature
selection and classification techniques.

Our feature selection method, threshold-split region,
picks the biggest region (on the training set) that activates
for one class and deactivates for the other class. This feature
selection method is very simple, but it leads to regions that
allow good classification and are very stable under cross-
validation. We also experimentally observed that picking two
regions is unstable under cross-validation and leads to poor
generalization accuracies.

We propose using decision stump classifiers since we are
only interested in activations and deactivations, i.e. voxel val-
ues being higher or lower than a specified threshold. Let x
be the value of a feature, e.g. the activation for one voxel.
A decision stump, formally defined as in eq.(1), classifies its
input x by comparing it with a threshold θ and a polarity
p ∈ {−1,+1}. We learn the parameters p and θ by mini-
mizing the classification error in the training set.

hp,θ(x) =

{
“Cocaine”, if px < pθ

“Control”, otherwise
(1)

For each experimental condition (e.g. 45¢, 1¢, 0¢), we
rank each voxel independently according to their training er-
ror. We keep only voxels in the top 99.5% percentile and
compute spatial clusters by using 18-connectivity. We take
the mean activation from the voxels in the biggest cluster as
the single feature that is used for each condition.

Our classifier is a decision stump on the single feature
that was previously selected on the training set. When several
conditions are used, we perform majority vote on the decision
stump classifiers. When there is a tie, the classifier outputs the
“Control” class.

4. EXPERIMENTS

4.1. Datasets

We apply our method on two fMRI datasets that capture the
difference in brain function under distinct monetary rewards
for cocaine addicted as well as healthy control subjects.

First Money Task. The overall neuropsychological exper-
iment follows a block design that includes six sessions, each
consisting of three monetary reward conditions (45¢, 1¢, 0¢).
The dataset contains 16 cocaine addicted individuals and 12
control subjects [11]. Only sessions complying to the follow-
ing requirements were used: motion <2mm translation, <2◦

rotation. The previous requirements reduce the effect of mo-
tion confounders in the contrast maps. At least four out of the
six sessions were used per subject.

Second Money Task. The overall neuropsychological ex-
periment follows a block design that includes six sessions,
each of them under different conditions, i.e. one of three
monetary reward conditions (50¢, 25¢, 0¢) and one of two
cues (drug words, neutral words). In this paper, we focus on
monetary conditions only. The dataset contains 16 cocaine
addicted individuals and 17 control subjects [12]. Only sub-
jects with all six sessions complying to the following require-
ments were used: motion <2mm translation, <2◦ rotation,
and at least 50% performance of the subject in an unrelated
task (see [12] for details). The previous requirements reduce
noise by having the maximum number of sessions to average
for all subjects. They also minimize the effect of confounders
in the contrast maps, i.e. motion or poor performance.

Contrast maps were computed by using the statistical
parametric mapping package SPM2 (http://www.fil.ion.
ucl.ac.uk/spm/). We applied grand mean scaling, since
scale between different subjects and experimental conditions
can be significantly different.

4.2. Generalization Accuracy

When performing cross-validation in order to approximate the
generalization accuracy, the common practice is to use leave-
one-out, as it is evident in all referenced papers. Therefore,
we chose that cross-validation method for our experiments.

Table 1 shows the generalization accuracy of our method
for different sets of experimental conditions on the first



Conditions(s) 45¢ 1¢ 0¢ 45¢,1¢ 1¢,0¢ 45¢,1¢,0¢
Accuracy 82.1% 82.1% 82.1% 85.7% 85.7% 89.3%
(chance=57.1%)

Table 1. Leave-one-out classification accuracy of our method on
the first money task. Note that better accuracy is obtained by mixing
different conditions in the classifier.

(a)

(b)

(c)
Fig. 1. Most selected regions by our method under leave-one-
out for the first money task for different conditions: (a) 45¢:
center (42,-15,44), 100 voxels, Brodmann areas 3,4,6, frequency
92.9% (b) 1¢: center (22,-76,-13), 147 voxels, Brodmann ar-
eas 18,19 and (c) 0¢: center (22,-72,-11), 114 voxels, Brodmann
areas 18,19. Images were generated on the MRIcroN package
(http://www.mricro.com/).

money task. Note that better accuracy is obtained by mixing
different conditions in the classifier. Figure 1 shows the brain
regions associated with each condition. Brodmann areas
3,4,6 (sensorimotor cortex) are selected for the 45¢ condi-
tion. We hypothesize that those areas are affected due to
the fact that cocaine is a stimulant. Broadmann areas 18,19
(visual association cortex) are selected for the 1¢ and 0¢
conditions. We hypothesize that since cocaine addicted sub-
jects are withdrawn from cocaine for the experiments, they
possibly undergo vivid visual experiences.

Table 2 shows the generalization accuracy of our method
for different sets of experimental conditions on the second
money task. Note that better accuracy is obtained by mix-
ing different conditions in the classifier. Figure 2 shows
the brain regions associated with each condition. Brodmann
areas 24,32 (anterior cingulate cortex) are selected for the
50¢ condition. The cerebellar tonsil is selected for the 25¢
and 0¢ conditions. It is very interesting to observe that, in
both datasets, prefrontal cortical regions (Brodmann areas
3,4,6,24,32) are associated with the high monetary condi-
tions, while the posterior regions (Brodmann areas 18,19 and
cerebellum) are implicated in the lower monetary conditions.
We hypothesize that only high monetary reward elicits such
a prefrontal cortex response, possibly due to more effort or
anticipation.

4.3. Comparison to Other Techniques

We compare our proposed technique to several feature se-
lection and classification methods, common in the literature.
The feature selection methods in our evaluation include:
threshold-split region (our proposed method), principal com-
ponent analysis (PCA) [2, 3], independent component anal-

Conditions(s) 50¢ 25¢ 0¢ 50¢,25¢ 50¢,25¢,0¢
Accuracy 78.8% 66.7% 72.7% 81.8% 90.9%
(chance=51.5%)

Table 2. Leave-one-out classification accuracy of our method on
the second money task. Note that better accuracy is obtained by
mixing different conditions in the classifier.

(a)

(b)

(c)
Fig. 2. Most selected regions by our method under leave-one-
out for the second money task for different conditions: (a) 50¢:
center (0,35,5), 116 voxels, Brodmann areas 24,32 (b) 25¢: cen-
ter (13,-42,-34), 93 voxels, cerebellar tonsil, frequency 75.8%
and (c) 0¢: center (-23,-43,-30), 148 voxels, cerebellar ton-
sil, culmen. Images were generated on the MRIcroN package
(http://www.mricro.com/).

ysis (ICA) [1], average value on a coarse image resolution
by using non-overlapping 16×16×16mm3 cubes of voxels
[4], most discriminative voxels [6] by ranking them indepen-
dently with Gaussian classifiers, most active voxels [7] by
ranking them independently with a two sample T-statistic for
the difference of means, unequal sample sizes and unequal
variances; searchlight accuracy [13] by using a Gaussian
Naı̈ve Bayes classifier on the 3×3×3 voxel neighborhood as
feature set.

The classification methods in our evaluation include: ma-
jority vote (MV) on decision stump classifiers (our proposed
method), Gaussian naı̈ve Bayes (GNB) [6], k-nearest neigh-
bors (kNN) [7] with number of neighbors k selected by nested
cross-validation from {1,2,5,10,20}; Fisher linear discrimi-
nant (FLD) [1, 2], logistic regression (LR), linear support vec-
tor machines (LSVM) [3, 5, 6, 7], Gaussian support vector
machines (GSVM) [4] with kernel size γ selected by nested
cross-validation from {1,10,100,1000,10000}, and Adaboost
(AB) on decision stump classifiers with number of iterations
selected by nested cross-validation from {5,10,20,50,100}.

We report the generalization accuracy for the optimal
set of experimental conditions and the ranking for each
method in all possible sets of conditions for the first and
second money tasks in Table 3 (e.g. for the first money task:
{45¢},{1¢},{0¢},{45¢,1¢},{45¢,0¢},{1¢,0¢},{45¢,1¢,0¢}).
The ranking uses a normalized scale from 1 to 10, where
10 means that the method outperforms all others for every
possible set of conditions, and 1 means that the method loses
against all others. We observe that: (i) the only combination
of feature and classifier that obtains very good classication
accuracy in both datasets, is our proposed method (around
90%); furthermore, it almost always outperforms all other



Accuracy on First Money Task (chance=57.1%)
Feature Classifier

MV GNB kNN FLD LR LSVM GSVM AB
Threshold 89.3% 82.1% 82.1% 78.6% 82.1% 71.4% 75.0% 85.7%
split 10.0 8.9 9.1 8.3 9.1 5.1 8.0 9.6
PCA 64.3% 82.1% 78.6% 57.1% 64.3% 71.4% 64.3% 82.1%
(3 comps) 3.0 8.4 6.1 2.3 3.0 6.6 4.0 6.4
ICA 71.4% 82.1% 78.6% 57.1% 60.7% 71.4% 64.3% 71.4%
(3 comps) 6.9 7.9 6.1 2.3 3.0 5.9 4.0 5.1
Cubes 57.1% 71.4% 67.9% 60.7% 57.1% 64.3% 53.6% 85.7%

4.1 6.1 3.6 2.3 2.0 4.0 2.3 8.7
Discrim. 71.4% 78.6% 71.4% 85.7% 82.1% 82.1% 85.7% 71.4%
(100 voxels) 6.9 8.0 6.3 4.4 4.0 9.3 8.6 3.9
Active 75.0% 75.0% 82.1% 60.7% 64.3% 85.7% 82.1% 78.6%
(100 voxels) 8.0 6.7 7.6 3.9 3.6 9.0 8.3 4.7
Searchlight 71.4% 75.0% 71.4% 67.9% 60.7% 75.0% 78.6% 67.9%
(100 voxels) 5.1 7.4 5.7 3.6 2.3 6.6 9.3 5.1

Accuracy on Second Money Task (chance=51.5%)
Feature Classifier

MV GNB kNN FLD LR LSVM GSVM AB
Threshold 90.9% 81.8% 81.8% 81.8% 72.7% 66.7% 75.8% 78.8%
split 9.9 9.9 9.3 9.7 9.0 6.4 7.1 9.6
PCA 48.5% 57.6% 60.6% 48.5% 57.6% 54.5% 63.6% 63.6%
(3 comps) 2.3 4.0 4.7 3.4 3.4 5.0 3.1 4.7
ICA 63.6% 48.5% 60.6% 48.5% 63.6% 78.8% 63.6% 66.7%
(3 comps) 6.7 2.7 4.7 3.4 3.6 5.4 3.1 6.4
Cubes 36.4% 66.7% 63.6% 63.6% 60.6% 63.6% 54.5% 48.5%

1.3 7.0 4.9 6.3 6.6 6.1 2.7 2.7
Discrim. 75.8% 69.7% 69.7% 72.7% 63.6% 63.6% 66.7% 72.7%
(100 voxels) 8.0 7.1 8.0 6.3 6.9 7.0 6.1 7.9
Active 72.7% 72.7% 69.7% 72.7% 69.7% 69.7% 69.7% 69.7%
(100 voxels) 6.7 5.3 4.1 5.4 6.7 6.6 6.0 6.3
Searchlight 33.3% 63.6% 63.6% 66.7% 75.8% 72.7% 69.7% 75.8%
(100 voxels) 1.1 5.1 5.0 6.1 7.7 6.7 7.0 7.1

Table 3. Leave-one-out classification accuracy for different fea-
ture selection and classification methods on the first (top) and second
money task (bottom) for the optimal set of conditions (first line) and
ranking for each method in all possible sets of conditions (second
line, from 1 to 10, higher is better). Methods with an accuracy in the
top 90% quantile and a ranking ≥ 8.5 are highlighted.

methods for all possible sets of conditions (ranking almost
10) (ii) some combinations of features and classifiers obtain
good results on the first money task but not as good results on
the second money task, e.g. linear SVM on most active vox-
els (iii) some combinations of features and classifiers appear
to achieve good accuracy for the optimal set of conditions but
otherwise perform rather poorly on other sets of conditions
(low ranking), e.g. FLD on most discriminative voxels for the
first money task.

5. CONCLUSIONS

We have shown that the use of principles from signal pro-
cessing and statistical theory allowed for the design of very
simple, fully automated, and successful methods for feature
selection and classification. This led to a model with very
low complexity (six parameters, i.e. polarity and threshold of
one brain region per each of three experimental conditions)
and good generalization accuracy.

Our method has shown approximately 90% of generaliza-

tion accuracy in two completely different datasets: different
subjects, different tasks and different acquisition protocols,
i.e. interscan interval (TR=3500ms for the first money task,
TR=1600ms for the second money task). Furthermore, it al-
most always outperforms all other methods for all possible
sets of experimental conditions. Since only one region per
condition is used, our model is also easy to interpret from a
neuropsychological point on view.

There are several ways of extending this research. It
would be very interesting to apply our method to other group
classification problems (e.g. canabis addicted, Schizophrenia
or Alzheimer versus control patients), or to the prediction
of cognitive states. Another very interesting line of research
is to measure the generalization accuracy of our method for
different magnetic field and noise levels, larger number of
samples, or for event-related tasks.
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