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Abstract We present a novel automatic method for high
resolution, non-rigid dense 3D point tracking. High quality
dense point clouds of non-rigid geometry moving at video
speeds are acquired using a phase-shifting structured light
ranging technique. To use such data for the temporal study
of subtle motions such as those seen in facial expressions, an
efficient non-rigid 3D motion tracking algorithm is needed
to establish inter-frame correspondences. The novelty of this
paper is the development of an algorithmic framework for
3D tracking that unifies tracking of intensity and geomet-
ric features, using harmonic maps with added feature cor-
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respondence constraints. While the previous uses of har-
monic maps provided only global alignment, the proposed
introduction of interior feature constraints allows to track
non-rigid deformations accurately as well. The harmonic
map between two topological disks is a diffeomorphism
with minimal stretching energy and bounded angle distor-
tion. The map is stable, insensitive to resolution changes and
is robust to noise. Due to the strong implicit and explicit
smoothness constraints imposed by the algorithm and the
high-resolution data, the resulting registration/deformation
field is smooth, continuous and gives dense one-to-one inter-
frame correspondences. Our method is validated through a
series of experiments demonstrating its accuracy and effi-
ciency.

Keywords Vision and graphics · Face and gesture ·
Registration · Motion analysis and tracking

1 Introduction and Previous Work

Automatic tracking of non-rigid 3D motion is essential in
many computer vision and graphics applications, especially
dynamic facial expression analysis, such as facial expression
recognition, classification, detection of emotional states, etc.
In the literature, most non-rigid object tracking and registra-
tion algorithms utilize image data from 2D image sequences,
e.g. (Witkin et al. 1987; Black and Yacoob 1995; Essa and
Pentland 1997; Lien et al. 1998; Akgul and Kambhamettu
1999; Brand and Bhotika 2001; Torresani et al. 2001; Gok-
turk et al. 2001; Rittscher et al. 2002; Goldenstein et al.
2003; Wen and Huang 2003; Tomasi et al. 2003; Ramanan
and Forsyth 2003). Previous methods establishing 3D inter-
frame correspondences for non-rigid motion largely fall into
two categories: One depends on markers attached to the
object (Guenter et al. 1998; Kalberer and Van Gool 2001;
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Allen et al. 2003) or on feature correspondences manually
selected by the users (Noh and Neumann 2001); the other
calculates correspondences based on the geometry using a
3D deformable/morphable model (Essa and Pentland 1997;
Basu et al. 1998; Pighin et al. 1999; Tao and Huang 1999;
DeCarlo and Metaxas 2002; Goldenstein et al. 2003; Yezzi
and Soatto 2003; Chai et al. 2003; Blanz and Vetter 2003;
Xiao et al. 2004; Dimitrijevic et al. 2004), or other 3D shape
registration algorithms such as (Chen and Medioni 1991;
Besl and McKay 1992; Zhang 1994). In general, most of
the existing methods rely on templates with relatively few
degrees of freedom. While the recovered low dimensional
configurations can often be used effectively in classification,
they are hardly sufficient in many analysis applications, es-
pecially dynamic facial expression analysis, since many dis-
tinct characteristics of a person’s expression lie in the subtle
details such as the wrinkles and the furrows that are gener-
ated by highly local skin deformations. This paper presents
an algorithmic framework which makes use of the elements
of conformal geometry theory for the 3D facial expression
tracking problem. Although our method was implemented
in the context of facial expression tracking, it is general and
could be applied to other classes of similarly deforming ob-
jects.

Recent technological advances in digital imaging, digi-
tal projection display and personal computers have made
real time 3D shape acquisition increasingly more feasible.
Such ranging techniques include structured light (Huang and
Zhang 2004; Rusinkiewicz and Hall-Holt 2002), and space-
time stereo (Zhang et al. 2004; Davis et al. 2003). These
systems can capture dense 3D data at a high frame rate. Re-
cently, a high-resolution 3D expression data acquisition sys-
tem was developed in (Huang and Zhang 2004) which cap-
tures highly accurate geometry at speeds that exceed regular
video frame rate. Such high-quality data is very attractive
for the analysis of facial expressions. However, since the
dense data samples in these 3D face scans are not registered
in object space, inter-frame correspondences can not be es-
tablished, which makes the tracking of facial features, tem-
poral study of facial expression dynamics and other analy-
sis difficult. For this purpose, a number of tracking algo-
rithms have been proposed recently for 3D facial expression
data (Zhang et al. 2004; Wang et al. 2004). Tracking meth-
ods based on optical flow estimation (Zhang et al. 2004;
Goldenstein et al. 2003) can be sensitive to noise for texture-
less regions. A hierarchical tracking framework for high res-
olution 3D dynamic expression data was presented in (Wang
et al. 2004), using a deformable generic face model. How-
ever, it suffers from problems like folding and clustering,
which are inherent to the methods employing local opti-
mization techniques such as Free-Form Deformation (FFD).
Furthermore, this face model needs to be manually divided
into several deformable regions, with associated shape and

motion control parameters. This initial segmentation, along
with the associated parameters has to be recovered statisti-
cally, requiring many experiments for each different expres-
sion of every subject. Although this might be acceptable for
certain applications like motion capture for computer graph-
ics, it requires prohibitive amounts of time and effort for
processing of the large number of data-sets required for data
driven applications in facial expression analysis and synthe-
sis (Blanz and Vetter 2003).

In this paper, we present a novel method for high res-
olution, non-rigid dense 3D point tracking. This proposed
method is fully automatic, except for the initial fitting step
on the first frame. (Automatic initial fitting can be achieved
using the automated correspondence selection technique
(Noh and Neumann 2001) but it is outside the scope of this
paper.) High quality dense point clouds of facial geometry
moving at video speeds are acquired using a phase-shifting
structured light ranging technique (Huang and Zhang 2004).
To use such data for the temporal study of the subtle dy-
namics in expressions, an efficient non-rigid 3D motion
tracking algorithm is needed to establish inter-frame corre-
spondences. In this paper, we propose such an algorithmic
framework that uses a mathematical tool called harmonic
maps (Schoen and Yau 1997; O’Neill 1997; Eck et al. 1995;
Eells and Sampson 1964). Harmonic maps were used in
(Zhang and Hebert 1999) to do surface matching, albeit fo-
cusing on rigid transformations. Given the source manifold
M and the target manifold D, only the boundary condition
u|∂M : ∂M → ∂D was used to constrain and uniquely deter-
mine the harmonic map u : M → D. For applications like
high resolution facial tracking though, we need to account
for non-rigid deformations, with a high level of accuracy.
To this end, we introduce additional feature correspondence
constraints, in addition to the boundary constraint in our im-
plementation of harmonic maps. Similar idea was also used
in (Litke et al. 2005) where user-defined feature sets are
used to constrain the surface deformation. We select a set
of motion-representative feature corners (for example, for
facial expression tracking, we select corners of eyes, lips,
eye brows etc.) and establish inter-frame correspondences
using commonly used techniques (for example, hierarchi-
cal matching used in Witkin et al. 1987). We can then in-
tegrate these correspondence constraints with the boundary
condition to calculate harmonic maps, which not only ac-
count for global rigid motion, but also subtle non-rigid de-
formations and hence achieve high accuracy registration and
tracking. It is important to point out that there are other
approaches proposed to perform surface matching based
on Riemannian geometry, such as generalized multidimen-
sional scaling (GMDS) (Bronstein et al. 2006a, 2006b),
where an isometry-invariant embedding is used to compute
an intrinsic-geometric representation of the surface. Further-
more, combined the canonical parameterization, other fea-
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tures, such as the texture information, can also be incorpo-
rated into the representation to improve the matching perfor-
mance (Bronstein et al. 2005).

An important contribution of our tracking method is to re-
duce the non-rigid 3D tracking problem to a 2D image reg-
istration problem, which has been extensively studied. We
are dealing with 3D surfaces, but since they are manifolds,
they have an inherent 2D structure, which can be exploited
to make the problem more tractable using harmonic maps.

The theory of harmonic maps is based on conformal
geometry theory (Gu and Yau 2003; Sharon and Mumford
2004); the harmonic map between two topological disks
is a diffeomorphism with minimal stretching energy and
bounded angle distortion. Harmonic maps are invariant for
the same source surface with different poses, thus making it
possible to account for global rigid motion. Harmonic maps
are highly continuous, stable and robust to noise. A very im-
portant property, which governs our registration and track-
ing algorithm is that the harmonic map is one-to-one. To reg-
ister two frames, we align their respective harmonic maps as
closely as possible by imposing the suitable boundary and
feature constraints. The motivation to do so is to establish
a common parametric domain for the two surfaces, which,
coupled with the above mentioned property, allows to re-
cover 3D registration between the two frames. In our case,
the harmonic maps are diffeomorphisms, that is one to one
and on-to, and hence lend themselves as a natural choice for
surface parameterization in tracking applications. Because
the harmonic mapping between two surfaces is computed by
solving an elliptic P.D.E., the resulting map has a higher con-
tinuity than the boundary condition (Schoen and Yau 1997;
Evans 1998). This implies that the harmonic maps depend
on the geometry in a continuous manner, and allow certain
approximation scheme to handle boundary variation and oc-
clusion as demonstrated in (Zhang and Hebert 1999). Fur-
thermore, in order to reduce the inconsistency caused by
the changing boundaries during the tracking process, we
use the Neumann boundary condition as the soft boundary
constraint to give the boundary condition a relatively lower
weight, and use the interior feature constraints as the hard
constraints to minimize the overall harmonic energy.

As part of our framework, a deforming generic face
model is employed to track the dense 3D data sequence
moving at video speeds, with the harmonic maps guiding the
deformation field. The harmonic maps are constrained, and
hence driven by the feature correspondences established be-
tween adjacent frames using an iterative scheme; the feature
correspondences are made on texture and curvature images
using standard techniques, such as corner detection and op-
tical flow. Most surface regions have strong features either in
intensity or shape images. Our framework uses both simulta-
neously providing denser feature tracking. Harmonic maps,
thus, help us to simplify a 3D surface registration problem

to a 2D image matching problem. The resulting harmonic
map provides dense registration between the face model and
the target frame, thereby computing the motion vectors for
the vertices of the generic face model. Our system can not
only track global facial motion that is caused by muscle ac-
tion, but also subtler expression details that are generated
by highly local skin deformations. We have achieved high
accuracy tracking results on facial expression sequences,
which are comparable to those reported in (Wang et al. 2004;
Huang et al. 2004), using the same dense 3D data, while
minimizing the amount of human labor required for pre-
processing and initialization. The above mentioned level of
accuracy, coupled with the automatic nature of our method,
demonstrates the merits of our framework for the purpose of
high resolution tracking of non-rigid 3D motion.

The remainder of the paper is organized as follows: In
Sect. 2, we give an overview of harmonic mapping. Sec-
tion 3 explains our tracking method in detail. We first de-
scribe the global alignment of 3D scans, followed by a de-
scription of the registration algorithm based on harmonic
mapping and an iterative refinement scheme using local fea-
tures. Experimental results are presented in Sect. 4. We con-
clude with a discussion and future directions in Sect. 5.

2 Harmonic Mapping

A harmonic map H : M → D can be viewed as an em-
bedding from a manifold M with disk topology to a planar
graph D. A harmonic map is a critical point for the harmonic
energy functional,

E(H) =
∫

M

|dH |2dμM,

and can be calculated by minimizing E(H). The norm of
the differential |dH | is given by the metric on M and D, and
dμM is the measure on M (Schoen and Yau 1997; O’Neill
1997; Eck et al. 1995; Eells and Sampson 1964). Suppose
we want to compute a harmonic map, H : M → D, where
M is the domain manifold and D is the target manifold, H

can be represented as two functions (H1,H2), Hi : M → R.
More specifically, in our case, M is the 3D face scan, D is
the unit disk on the plane R2, and (H1,H2) is the parametric
coordinate (u, v) in the unit disk D. Thereby the harmonic
energy can be represented as

E(H) =
∫

M

|∇H1|2 + |∇H2|2.

By minimizing the harmonic energy, a harmonic map can
be computed using the Euler–Lagrange differential equa-
tion for the energy functional, i.e. �H = 0, where � is the
Laplace–Beltrami operator (Schoen and Yau 1997; O’Neill
1997; Eck et al. 1995; Eells and Sampson 1964).
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Fig. 1 Illustration of two conjuncted triangle faces: {v0, v1, v2} and
{v0, v1, v3}, where α and β are the two angles used in (2)

Since our source manifold M is in the form of a dis-
crete triangular mesh, we approximate the harmonic energy
as (Eck et al. 1995; Zhang and Hebert 1999; Gu and Yau
2003),

E(H) =
∑

[v0,v1]
k[v0,v1]|H(v0) − H(v1)|2, (1)

where [v0, v1] is an edge connecting two neighboring ver-
tices v0 and v1, and k[v0,v1] is defined as

1

2
(cotα + cotβ) = 1

2

(
(v0 − v2) · (v1 − v2)

|(v0 − v2) × (v1 − v2)|

+ (v0 − v3) · (v1 − v3)

|(v0 − v3) × (v1 − v3)|
)

, (2)

where {v0, v1, v2} and {v0, v1, v3} are two conjuncted trian-
gular faces, and α and β are the two angles against the edge
[v0, v1], as illustrated in Fig. 1.

By minimizing the harmonic energy, a harmonic map can
be computed using the Euler–Lagrange differential equa-
tion for the energy functional, i.e. �E = 0, where � is the
Laplace–Beltrami operator (Schoen and Yau 1997; O’Neill
1997; Eck et al. 1995; Eells and Sampson 1964). This
will lead to solving a sparse linear least-square system
for the mapping H of each vertex vi (Eck et al. 1995;
Zhang and Hebert 1999; Gu and Yau 2003). If the bound-
ary condition is given,

H |∂M : ∂M → ∂D, (3)

then the solution exists and is unique.
For tracking purposes though, we need to align the two

harmonic maps closely together (as explained in Sect. 1),
and hence track interior non-rigid deformations as well. For
this purpose, we also incorporate additional hard constraints
to establish interior feature correspondences and to han-
dle non-disk topologies (e.g., a 3D face scan with an open
mouth). Suppose we have a point on an inner-boundary or
an interior feature point vi on the 3D mesh M , which should
be mapped to a corresponding point wi on the target 2D

plane D. We can add it as a hard constraint H(vi) = wi

to the system from (1) and (3). However, the resulting har-
monic energy is expected to increase due to the additional
hard constraints introduced. In order to reduce the energy to
achieve a smoother mapping, we use the Neumann boundary
condition, a soft constraint. This condition just constrains
the boundary points of M to lie on the boundary of the 2D

disk D, the exact positions being governed by the minimiza-
tion of harmonic energy criteria. It is different from the fixed
boundary condition used for surface matching (Zhang and
Hebert 1999), in which each boundary point on the 3D mesh
M is mapped to a fixed point on the 2D disk, making it a
hard constraint. In our method, all the interior feature cor-
respondences on the face scans which can be reliably estab-
lished are given the maximum weight, and hence are cho-
sen as hard constraints. However, because the boundary is
not reliable due to the boundary variation and occlusion, we
give the boundary condition a relatively lower weight, in the
absence of any strong features on the boundary, and a soft
boundary constraint—the Neumann boundary condition—
is employed to minimize the overall harmonic energy.

Intuitively, consider the manifold M to be made of a
sheet of rubber (Eck et al. 1995). The harmonic map with
just the boundary constraint can be thought of as stretch-
ing the boundary of M over the boundary of the target 2D

disk D. In this case, each point on the boundary of M is as-
signed a fixed location on the boundary of D, where it will
be nailed down. The interior of the sheet then rearranges
to minimize the stretching (or folding), thus minimizing the
energy. Now, adding extra feature constraints is analogous
to clamping down the rubber sheet at certain interior points.
The harmonic map with added feature constraints acts like
a clamped rubber sheet, rearranging around the nailed down
interior points to achieve the most stable configuration. The
points on the boundary of the rubber sheet M still remain
on the boundary of D, though they are free to slide along
it (Neumann boundary condition, a soft constraint) to help
achieve the most stable configuration.

In our work, we compute harmonic maps between a sur-
face undergoing non-rigid deformations (e.g. a human face)
and a canonical unit disk on the plane. According to Rado’s
Theorem (Schoen and Yau 1997), an arbitrary convex do-
main could be adopted to compute the harmonic mapping
and the resulting map depends on the boundary in a continu-
ous manner. However, this property does not hold for a con-
cave domain in general. Therefore, in order to simplify the
implementation, we use a unit disk as the target domain in
our tracking method. Furthermore, based on Riemann Map-
ping Theorem on Conformal Geometry (Schoen and Yau
1997), we can compute the mapping from any simply con-
nected surface to a disk domain. This provides the theoret-
ical foundation for our tracking method to be applied to ar-
bitrary simply connected surfaces and not limited to convex
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surfaces only. The Harmonic maps between the source sur-
face and the target domain have many merits which are valu-
able for tracking purposes:

• First, the harmonic map is computed through global opti-
mization, and takes into account the overall surface topol-
ogy. Thus it does not suffer from local minima, folding,
clustering, which are common problems due to local op-
timization.

• Second, the harmonic map is not sensitive to the resolu-
tion of the face surface, and to the noise on the surface.
Even if the data for the input surface is noisy, the result
won’t be affected significantly.

• Third, the harmonic map doesn’t require the surface to
be smooth. It can be accurately computed even when the
surface includes sharp features.

• Forth, in our case, since the range of the map is a unit
disk which is convex, the harmonic map exists, and is a
diffeomorphism, namely, the map is one to one and on-to.
So it can allow us to establish correspondences on 2D and
recover 3D registration from the same mapping.

• Fifth, the harmonic map is determined by the metric, not
the embedding. This implies that the harmonic map is
invariant for the same face surface with different poses.
Furthermore, if there is not too much stretching be-
tween two faces with different expressions, they will in-
duce similar harmonic maps. Similar observations have
also been used in other 3D face matching methods, such
as GMDS-based methods proposed by Bronstein et al.
(2005, 2006b). Because our dynamic range sequences are
acquired at a high frame rate (40 Hz), we can assume
that the local deformation between two adjacent frames
is small.

Furthermore, harmonic maps are easy to compute and ro-
bust to numerical errors. By using a traditional finite element
method (Hughes 1987), they are easy to implement.

3 The Non-Rigid Tracking Algorithm

In this section, we present our novel method for high res-
olution, non-rigid dense 3D point tracking using harmonic
maps. This proposed method is fully automatic, except for
the initial fitting step on the first frame. (Automatic initial
fitting can be achieved using the automated correspondence
selection technique (Noh and Neumann 2001) but it is out-
side the scope of this paper.) We first describe the global
alignment of 3D scans, followed by a description of the reg-
istration algorithm based on harmonic mapping and an iter-
ative refinement scheme using local features.

The outline of the algorithm is given in Table 1.

3.1 Data Preparation and Initialization

The dynamic range sequences used in this paper are col-
lected by a phase-shifting structured light ranging system
(Huang and Zhang 2004). When scanning faces, the real-
time 3D shape acquisition system returns high quality dense
point clouds of facial geometry with an average of 75 thou-
sand 3D measurements per frame, at a 40 Hz frame rate.
The RMS (Root-Means-Squared) error of the 3D range data
is about 0.05 mm.1 Small holes around brows, eyes, nose,
etc. are filled by a simple interpolation technique.

1The RMS error is calculated using a planar board with a measurement
area of 260 × 244 mm (Huang and Zhang 2004).

Table 1 The outline of our tracking algorithm

• Data Preparation and Initialization: Identify the boundary and fit a coarse generic face mesh model to the first frame using Free-Form
Deformation (FFD).

• Coarse Registration:

1. Rough alignment: Globally align the 3D face scans of the adjacent frames using the standard Iterative Closest Points (ICP) techniques.
2. Since we have the boundary of the first frame, identify the boundary for all the subsequent frames automatically given the global

alignment achieved with the previous frame. Calculate the initial harmonic maps onto 2D disks using the boundary condition.
3. For coarse level registration between successive frames, introduce more constraints on the harmonic map using feature point correspon-

dence constraints, where features are detected using standard methods like corner detection.

• Iterative Refinement:

1. Iteratively augment the list of constraints for the harmonic map with the local feature correspondences obtained using optical flow
methods.

2. Repeat the previous step to progressively refine the harmonic map until the difference between the new source harmonic maps and the
target harmonic maps recedes below a pre-defined threshold.

3. Overlay the new source and the target harmonic map disks to establish dense registration, and hence recover the deformation parameters
for the generic face mesh model between two consecutive frames.

4. Continue this process over the whole sequence to achieve high resolution tracking.
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Fig. 2 Initial fitting for tracking. a The acquired 3D face scan data. b The 3D face data with identified boundary (marked in green). c The
generic face model with manually selected feature points (marked as red dots). (Automatic initial fitting can be achieved using the automated
correspondence selection technique (Noh and Neumann 2001) but it is outside the scope of this paper.) d The result of the initial fitting to a 3D
face scan data

However, since the dense data samples in these 3D face
scans are not registered in object space, inter-frame corre-
spondences can not be established. Furthermore, the dense
point clouds differ across the scans both in terms of the num-
ber of data samples as well as the relative positions of the
samples on the surfaces. To solve these problems, a generic
face model (a coarser face mesh) is fitted to the first 3D scan
frame in the initialization step, by a variational Free-Form
Deformation (FFD) shape registration method (Wang et al.
2004; Huang et al. 2003). The FFD technique is employed
only for fitting of the first frame, and not for subsequent
tracking. Initial fitting is illustrated in Fig. 2.

3.2 Global Alignment and Boundary Identification

In the captured sequences, in addition to the non-rigid facial
expression motion, there is also a certain amount of rigid
head motion involved. To account for the latter, we align the
3D face scans globally. To start with, we manually mark and
identify the boundary of the first frame. (See Fig. 2) We can
then apply the Iterative Closest Point (ICP) algorithm: for
each sample on the identified boundary of the first frame,
we find the closest sample on subsequent frames and apply
a rigid body transformation that minimizes the distance be-
tween corresponding points (Besl and McKay 1992). Once
we have the boundary of the initial frame and the rigid trans-
formation, we can align the face scans globally and identify
the boundaries of the subsequent frames.

3.3 Initial Coarse Registration

Once we have the global alignment, we want to capture
the non-rigid deformation between two adjacent frames Mi

and Mi+1. This inter-frame registration problem, resulting
in a dense map R : Mi → Mi+1, is solved by finding a
coarse set of interior feature correspondences between Mi

and Mi+1. These correspondence constraints, along with the
boundary condition define the map R for the purpose of reg-
istration.

The relative ease of finding both texture and geometric
feature correspondences on 2D images as compared to 3D
scans is the motivation for the next step of mapping Mi

and Mi+1, to 2D disks Di and Di+1 respectively, using the
boundary constraint as described in Sect. 2. According to
(Zhang and Hebert 1999), the harmonic mapping is robust
to boundary variation and occlusion. We define these map-
pings as Hi : Mi → Di and Hi+1: Mi+1 → Di+1. Following
the disk mapping, we select a sparse set of easily detectable
motion representative feature corners on the disks (for ex-
ample, for facial expression tracking, we select corners of
eyes, corners of lips, tip of the nose etc.) using texture and
shape information. For the latter, we also adopted the idea of
harmonic shape images as in (Zhang and Hebert 1999), as-
sociating the curvature information of vertices in Mi to the
corresponding ones in Di . In practice, these feature corners
usually have peak curvature value and can be easily detected
by a pre-defined threshold. Figure 3 shows an example of
harmonic maps generated from one frame.

Once we have the set of correspondences on the 2D disks
Di and Di+1, we can establish the correspondences on the
3D face scan Mi and the disk Di+1, since the harmonic map
Hi is one-to-one. Following this, as explained in Sect. 2,
we augment the boundary constraint used to calculate Hi

with these additional feature-correspondence constraints to
define a new harmonic map H ′

i : Mi → D′
i .
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Fig. 3 Harmonic maps: texture and shape images. a The acquired 3D face scan data. b The resulting harmonic map onto a 2D disk with associated
texture information. c The resulting harmonic map with associated curvature information, where brighter intensity signifies higher curvature

Fig. 4 Illustration of harmonic map: a synthetic example. a So: Initial configuration of surface. b St : Surface after non-rigid deformation. c Do:
Harmonic Map of So with the hard boundary constraints only. d Dt : Harmonic map of St with the hard boundary constraints only. e D′

o: Harmonic
map of So with the ‘tip of the nose’ as an additional feature-correspondence constraint. We can see that imposing correspondence constraints aligns
D′

o and Dt better (as explained in Sect. 2), resulting in accurate registration

As H ′
i is driven by motion representative feature corre-

spondences between the two frames, it captures the inter-
frame non-rigid deformation at a coarse level. We can then

overlay D′
i onto Di+1 to recover the inter-frame registra-

tion on 2D. Once again, we use the fact that the harmonic
maps are one-to-one to calculate the dense map R required
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for registration of 3D frames. Harmonic maps, thus, help
us simplify a 3D non-rigid tracking problem to a 2D image
registration problem.

The algorithm is illustrated in Fig. 4 by considering
the example of a synthetic surface S undergoing non-rigid
deformation. So and St are the initial and final configura-

tions respectively, and Do and Dt are the corresponding har-
monic maps with only the boundary constraint. We can no-
tice that although Do and Dt conform to each other around
the boundary, the interior non-rigid deformation is still un-
accounted for. Now, D′

o, a new harmonic map for So is cal-
culated by mapping certain motion representative features

Fig. 5 Tracking algorithm: iterative refinement step. a and b The initial disk, Di , with associated texture and curvature information respectively.
Di is the harmonic map of Mi (the source frame), with the boundary as the only constraint (as described in Sect. 3). Similarly, Di+1 would be the
harmonic map of Mi+1, the target frame. In order to register Mi and Mi+1, we iteratively augment the list of feature point constraints to obtain a
progressively refined harmonic map of Mi , i.e. D′

i . We repeat the process until the difference-error between D′
i and Di+1 is less than εL. c and d

are obtained by adding the feature corner constraints (the corners of the eyes, the tip of the nose, and the corners of the mouth) for the calculation
of the harmonic map. e and f are a further refinement, with additional local features (marked with magenta), which are detected using optical
flow, being added to the constraints list. In our experiments, we observe that typically 10–15 feature correspondences place enough constraints
on the harmonic map to reduce the error below the threshold εL. g plots the difference-error between D′

i and Di+1 against the number of feature
constraints used to define the harmonic map (in addition to the boundary constraint). As is evident, the error recedes with the addition of new
features, until it becomes less than the threshold εL
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on So to their corresponding positions on Dt , as described
earlier. This is done in order to align the two maps D′

o and
Dt as closely as possible, so that using the one-to-one prop-
erty of harmonic maps, a dense registration between So and
St can be recovered. As we can observe, D′

o and Dt are sim-
ilar to each other even in the interior, thus providing accurate
registration.

3.4 Iterative Refinement

The registration achieved from the previous step, although
capable of capturing the coarse level facial deformation, is
still insufficient to track subtle expressions. We adopt an it-
erative refinement scheme to improve the accuracy of the
registration by progressively incorporating correspondence
constraints of more local features. As part of this scheme,
we keep on augmenting the set of sparse correspondences
established in the previous step till the new set of correspon-
dences is dense enough to capture the facial deformation.

In particular, we define the difference image Dfi for D′
i

and Di+1 as Dfi(u, v) = |D′
i (u, v) − Di+1(u, v)|2. Using

D′
i and Di+1 as calculated in the previous step, we find their

difference image Dfi and identify the regions corresponding
to significant differences. These regions indicate the areas
on the face undergoing deformation, the motion of which
has not been captured by the existing correspondence con-
straints. Because our dynamic range sequence is acquired at
a high frame rate (40 Hz), we can assume that the local de-
formation is relatively small, which allows us to apply stan-
dard 2D image registration methods within the difference re-
gions. For high accuracy, we only consider areas with local
features, which can be detected easily by applying a Lapla-
cian filter to the image Di and Di+1.

A new D′
i is calculated by augmenting the set of corre-

spondences with the new ones, which are kept if the new dif-
ference error between D′

i and Di+1 decreases, and discarded
otherwise. We keep on iterating until the difference-error

drops below the prescribed threshold εL. When we stop, as
described in the previous subsection, we overlay D′

i on Di+1

to establish a dense set of correspondences, and hence re-
cover inter-frame registration. This process is illustrated in
Fig. 5.

We tackle the problem of drifting, a common issue in
most tracking methods, in the following manner. During the
initial fitting step, we identify some of the feature nodes on
the mesh, like corners of the mouth etc. We then find the data
points in Mi closest to these feature nodes, and constrain
them to correspond to the respective features in the next data
frame, i.e. Mi+1. Consequently, the distinct features on the
face are always tracked correctly, thereby reducing the drift
for other parts of the face.

Once we have the dense registration, we calculate the
motion vectors for the vertices of the generic face mesh.
For instance, to deform the generic face mesh from Mi

to Mi+1, we localize each mesh vertex mj inside a data
triangle of Mi , followed by finding the corresponding data
triangle of Mi+1 and localizing mj in Mi+1 using bilin-
ear interpolation. We continue this process for every frame,
thereby calculating the motion vectors for the vertices of the
generic face mesh across the whole sequence.

4 Experimental Results and Error Analysis

In this section we provide experiments on real data and error
analysis to measure the accuracy of our tracking algorithm.
We performed tracking on four subjects performing vari-
ous expressions for a total of twelve sequences of 250–300
frames each (at 30 Hz). Each frame contains approximately
80K 3D points, whereas the generic face mesh contains 8K
nodes. The accompanying video clips show tracking results
on one male and one female face undergoing expressions
of different intensity, including opening and closing of the
mouth (female subject) or strongly asymmetric smile (male

Fig. 6 Snapshots from a tracking sequence of subject A: a Initial data frame. b Initial tracked frame. c Data at the expression peak. d Tracked
data at the peak. e Close-up at the peak
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Fig. 7 a–f Tracking results for subject C performing a soft affectionate smile. g–i Close-ups

subject). Our technique tracks very accurately even in the
case of topology change and severe ‘folding’ of the data.
(See Fig. 6)

4.1 Results

Figures 7–10 show tracking results on two male and two fe-
male faces who were instructed to perform expressions of

different intensity, which we described as: Soft Affectionate

Smile, Coy Flirtatious Smile, and Devious Smirk. The se-

quences include opening and closing of the mouth (female

subject), strongly asymmetric expressions and rigid head

motion as well. As the results show, our method tracks very

accurately even in the case of topology change and severe

‘folding’ of the data.
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Fig. 8 a–f Tracking results for subject B performing a devious smirk. g–j Close-ups. We can observe that our method does well even in the
presence of asymmetry (i) and topology change (j) (opening of mouth)

Figure 10 provides the tracking results for Subject A

performing a transition expression, starting from a Soft Af-

fectionate Smile, moving to a Coy Flirtatious Smile. The

sequence is about 300 frames long. The transition oc-

curs around Frame 150 (e). Frames 135–165 (d–f) show a

blended expression. We can observe that our method does

well, even for unusual facial motion, arising, in this case,

from a transition between two expressions.

4.2 Error Analysis

A first error analysis is based on the difference in the inten-
sity values of the nodes of the generic face mesh, between
the initial and the subsequent frames. Initial intensity val-
ues at the mesh nodes are assigned after the initial fitting
step, and are taken as the ground truth. The intensity value
of each mesh node is calculated using bilinear interpolation
of the intensities of the nearest 3D data points. The inten-
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Fig. 9 a–f Tracking results for subject D performing a soft affectionate smile. g–i Close-ups

sity values for the mesh nodes are calculated again for each
subsequent frame of the sequence, as explained above. If
tracking was perfect, then the intensities of the nodes would
change only due to shadowing and shading effects, which
appear due to changing geometry. For comparison purposes,
we use a traditional method based on optical flow estimation
(Beauchemin and Barron 1995) and local optimization tech-

niques (FFD, Huang et al. 2003) to track the same sequence.
We present the comparison between the two techniques in
Fig. 11 by plotting the averaged difference in intensities for
the mesh vertices, where the difference for each frame is
calculated with respect to the first frame. To ensure fairness
for comparison, we have used the same set of feature con-
straints for our harmonic map based tracking method as well
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Fig. 10 Tracking results for subject A performing a transition expression, starting from a soft affectionate smile, moving to a coy flirtatious
smile. The sequence is about 300 frames long. The transition occurs around Frame 150 (e). d–f (Frames 135, 150, 165 respectively) show a
blended expression. We can observe that our method does well, even for unusual facial motion, arising, in this case, from a transition between two
expressions

as for the FFD based method. We can see that our method

does considerably better than the FFD based method, which

fails to track large non-rigid motion and breaks down. The

error, increases significantly as the sequence progresses for
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Fig. 11 Error comparison
between our method and an
FFD based method. a The plot
of error between Our method
and the FFD Based method.
b FFD breaks down while
tracking large deformations. To
ensure fairness for comparison,
we have used the same set of
feature constraints for our
harmonic map based tracking
method as well as for the FFD
based method. For the FFD
based method, we can see
clusters and folds developing
near the selected features
(corners of the eyes, mole on the
cheek, corners of the lips etc.).
Due to the local nature of the
method, the rest of the points do
not catch up (around lips, eyes),
even though the feature
correspondences match. We do
not encounter such local minima
problems with our harmonic
map based method, since it uses
global optimization

FFD whereas it remains relatively stable for our method, in-
dicating minimal tracking drift issues.

Figure 12 depicts the error plots for different subjects per-
forming various expressions, using the same error measure
as in Fig. 11. The average intensity error is observed to be
less than 0.03 (on a scale of 0–1), even at the peak of the
expression, thus establishing the accuracy of our tracking
method. There is some drift however, as the intensity error
doesn’t come back to zero towards the end of the expression.

Another measure that can be used to establish the accu-
racy of a tracking method is the displacement error of the
mesh nodes from the ground truth. As part of our second ex-
periment to calculate the error measure in terms of absolute
displacements, we chose a set De of points spread uniformly
over the data surface as test points, such that their motions
form a representative subset of the motion vectors for all the
vertices, i.e. the set of all the motion vectors is sampled suf-
ficiently. To establish the ground truth, we attach markers
on the face of the subject at locations given by the set De .
The markers are for verification purpose only and are not
used for tracking. In order to be detected, the diameter of
each marker is about 3 mm. For error analysis, we need to
compare the ground truth against our tracking results, which
requires identification of the corresponding set Me of mesh
nodes on the face model M . To this end, we register the first
data frame with the face model M (about 16K nodes) during
the initial fitting phase.

For each frame, we can calculate the tracking error by
comparing the positions of the nodes in Me to the ground
truth, i.e. the positions of points in De. Figure 13(a–f)

show the snap-shots of the tracking sequence at different in-
stances; the green dots are the markers representing points
in De and the red dots are the corresponding nodes in Me ,
i.e. the tracking results. Figure 13(g–h) exhibit a compar-
ative analysis of the tracking errors for different represen-
tative points. As we can see, the tracking error for most
cases is around 1.5 mm, which is low, given that the res-
olution of the 3D range scan data is about 0.5 mm. The
achieved accuracy of tracking is comparable to that reported
in (Wang et al. 2004; Huang et al. 2004), using the same
dense 3D data. However overall processing time includ-
ing initialization and parameter selection is approximately
6 hours per sequence on 2.2 GHZ, 1 GB PC (approxi-
mately 1 min per frame) spent mostly on harmonic map
calculation and the method can be easily parallelized on a
cluster. In comparison, the methods in (Wang et al. 2004;
Huang et al. 2004) required up to 2 days per sequence with
most of the time spent on tuning and parameter selection by
the operator.

One potential issue with the method is its inability to
track large deformations, as illustrated in Fig. 14, with the
help of a synthetic example. We observe that in the pres-
ence of large deformations, ambiguities might arise while
making feature correspondences, resulting in incorrect cor-
respondence constraints. This, however, does not pose any
problems in our case as we do not encounter such large de-
formations in real, high resolution (40 fps) facial expression
data. Since the motion is relatively small, correspondences
can be established within a small neighborhood, thus pre-
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Fig. 12 Error plots for various expressions performed by different subjects. Error Plots for: a Subject A Performing Coy Flirtatious Smile,
b Subject A Performing the transition expression (from Soft Affectionate to Coy Flirtatious Smile), c Subject D Performing Coy Flirtatious Smile,
d Subject D Performing Soft Affectionate Smile, e Subject C Performing Coy Flirtatious Smile, f Subject C Performing Devious Smirk, g Subject C
Performing Soft Affectionate Smile, h Subject B Performing Devious Smirk, i Subject B Performing Soft Affectionate Smile. The average intensity
error is observed to be less than 0.03 (on a scale of 0–1), even at the peak of the expression, thus establishing the accuracy of our tracking method

venting any ambiguous and hence incorrect correspondence
constraints.

5 Conclusions and Future Work

In this paper, we have presented a novel automatic method
for high resolution, non-rigid dense 3D point tracking using
harmonic maps. An important contribution of our tracking
method is to reduce the non-rigid 3D tracking problem to
a 2D image registration problem, where the feature corre-
spondences are made on both texture and curvature images

using standard techniques, such as corner detection and op-
tical flow. A deforming generic face model is employed to
track the dense 3D data sequence moving at video speeds,
with the harmonic maps guiding the deformation field. The
harmonic maps are constrained, and hence driven by the cor-
respondences established between adjacent frames using an
iterative scheme; the features are detected using corner de-
tection and other standard techniques on texture and cur-
vature images. The resulting harmonic map provides dense
registration between the face model and the target frame,
thereby making available the motion vectors for the ver-
tices of the generic face model. The use of harmonic maps,
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Fig. 13 Error measurement using markers. Error analysis on the tracking results of a smile expression sequence. An additional sequence with
green markers attached to the face was acquired for error analysis; the green markers are attached for verification purposes only and are not
used for tracking. a–f Are the snap-shots of the tracking sequence at different instances, from neutral to the peak. The red dots illustrate the
corresponding tracking results. g, h Exhibit a comparative analysis of the tracking errors for different representative points, around the cheeks and
the lips respectively. Since this is a smile sequence, error for points on the cheeks is expected to be relatively smaller than that for points on or near
the lips, as is evident from (g) and (h)
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Fig. 14 Potential issue with the
method: a synthetic example. In
the presence of large
deformations, ambiguities might
arise while making feature
correspondences, resulting in
incorrect correspondence
constraints. a Initial surface.
b surface after undergoing large
deformation. c–d Harmonic
maps of initial and final surfaces
respectively, with just the
boundary constraint. We
observe that feature 1 in (c)
(circled in yellow) gets aligned
with feature 2 in (d) (circled in
blue), thus giving result to a
correspondence mismatch. This,
however, does not pose any
problems in our case as we do
not encounter such large
deformations in real, high
resolution (40 fps) facial
expression data

in this manner, reduces the problem of establishing corre-
spondences in 3D, to that of 2D image registration, which
is more tractable. We have achieved high accuracy track-
ing results on facial expression sequences, without manual
intervention, demonstrating the merits of our algorithm for
the purpose. In future work, we will exploit the knowledge
of underlying facial muscle structure to impose more con-
straints on the tracking process, in order to further increase
accuracy. We also plan to use the proposed framework for
more applications like face recognition and dynamic expres-
sion recognition for dense 3D data.
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