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Abstract. In this paper we propose model maps to derive and repre-
sent the intrinsic functional geometry of a brain from functional magnetic
resonance imaging (fMRI) data for a specific task. Model maps repre-
sent the coherence of behavior of individual fMRI-measurements for a
set of observations, or a time sequence. The maps establish a relation
between individual positions in the brain by encoding the blood oxygen
level dependent (BOLD) signal over a time period in a Markov chain.
They represent this relation by mapping spatial positions to a new metric
space, the model map. In this map the Euclidean distance between two
points relates to the joint modeling behavior of their signals and thus
the co-dependencies of the corresponding signals. The map reflects the
functional as opposed to the anatomical geometry of the brain. It pro-
vides a quantitative tool to explore and study global and local patterns
of resource allocation in the brain. To demonstrate the merit of this rep-
resentation, we report quantitative experimental results on 29 fMRI time
sequences, each with sub-sequences corresponding to 4 different condi-
tions for two groups of individuals. We demonstrate that drug abusers
exhibit lower differentiation in brain interactivity between baseline and
reward related tasks, which could not be quantified until now.

1 Introduction

Despite the tremendous progress in studying the brain, little is known about
its function and flexibility for specific activities. One way to understand these
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processes is through a statistical analysis of functional brain imaging datasets.
Neural activity can be captured by functional magnetic resonance imaging
(fMRI). It takes advantage of the hemodynamics response caused by active nerve
cells that consume oxygen. The resulting fMRI signal is different depending on
the level of oxygenation, and can be detected by using blood-oxygen-level de-
pendent (BOLD) contrast.

Recently the extraction of information from fMRI was approached by various
methodologies: In [1] the correlation of the BOLD signal between individuals
while watching a movie was utilized to search for regions relevant for memory.
Inter-subject synchronization was also studied in [2]. In [3] the strength of fMRI
signals and its change for certain activities, and preconditions was assessed, in
order to differentiate between drug addicts and control subjects. In [4], and [5]
fluctuations within the brain were connected with the variability in subsequent
fMRI observations. Even-though these works refer to the interdependency of
brain regions, a comprehensive method to capture and represent this functional
brain structure, and its dynamics, is still missing.

In this paper we address the question of synchronization within the brain.
That is, we search for brain regions that exhibit highly coherent behavior as a
strong indication of cooperation during an activity. We expect the BOLD signals
corresponding to these regions to be observations stemming from a single source
- the cooperative work caused by a certain condition. We propose a method to
capture and represent these relationships in a transparent manner. It allows for
data exploration, and for quantitative measurements of relationships between
different regions of the brain, which are dynamic and task-specific. We call the
set of these relationships the functional geometry. In addition to knowledge about
functional regions [6] it offers information about their subtle mutual interaction
patterns. The distance between the signals is derived from the joint model de-
scription length [7] of groups of signals, describing their joint modeling behavior
[8]. In contrast to standard correlation, it can capture more complex or hidden
relations, that go beyond mere synchronization. The method can be applied to
other modalities like EEG/ERP or PET.

We use diffusion maps [9] to retrieve and encode the functional geometry. A
diffusion map is a space constructed by the eigenfunctions of a Markov matrix.
The Euclidean distance within this space offers a geometry that can capture
complex relations between nodes in a Markov chain, and is related to spectral
segmentation approaches [10]. In [11] diffusion maps were used to perform dimen-
sionality reduction by parameterizing entire brain states, to represent relations
between brains. In [12] they were used to segment activated regions. A related
line of work addresses correlation analysis with regard to seed points, [13], while
in [14] the brain is partitioned, and representative BOLD signals are searched for
by a correlation and expectation maximization approach. The method presented
in this paper tackles a different question: instead of differentiating between acti-
vated and non-activated voxels in the fMRI volume, or between subjects, we ask
for a continuous functional relation between brain regions. We do not classify
brain regions, but quantify their - often subtle - relations continuously.
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1. Observe BOLD signals for individual 

positions in the brain. In this case, 5 

positions: A,B,C,D,E.

2. Measure joint modeling behavior of 

groups of BOLD signals. The coherence is 

quantified by a kernel based on the 

description length of models capturing the 

joint signal distribution.

3. Build a Markov chain for all positions in 

the brain. The transition probabilities are 

based on these kernels.

4. Perform eigenvalue decomposition to 

obtain model map (diffusion map) 

represents the functional geometry of the 

brain in a metric space. The distance 

corresponds to the coherence of the behavior 

of two positions. The higher the coherence, 

the close two points are in the model map.
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Fig. 1. Generating a model map generation from fMRI data

We propose to use model maps to explore the functional geometry of a brain
for a certain task or time period. Each spatial position in the brain is mapped
to a position in the map that is governed by the functional coherence of the
corresponding observed BOLD signals in the brain (Fig. 1). The model map is
built by calculating a Markov chain with nodes representing the positions in
the brain, and transition probabilities defined by the description lengths [7] of
models, that encode the joint density of the signals. The resulting model map
captures joint modeling behavior of signals acquired at different positions, and
reflects this functional geometry. It has several interesting properties: functional
relations are translated to Euclidean distance, therefore groups of voxels, that
have a high probability to stem from the same model, form clusters in the map.
The density for positions in the map provides information about how connected
a point is to any other region in the brain. High density indicates high coher-
ence with many other signals, while low density indicates relatively independent
behavior. These properties are essential for data exploration of complex fMRI
sequences. Instead of a parcellation of the brain, they present the entire func-
tional geometry including subtle dependencies. The unique position of points in
the map makes a comparison between subjects, and between time-points for the
same subject possible. These properties have considerable diagnostic value (as
reported in the experiments), and we believe that they are an important tool, to
explore and assess the changing distribution patterns of individual brain activi-
ties, that are not captured by the BOLD signal strength at individual positions.
We evaluate the method on a challenging data set, that exhibits subtle cognitive
changes regarding reward processing. Experiments show that the method is able
to capture subtle differences, and interactions for different tasks.

2 Model Maps to Find Geometry in Functional Brain
Data

We aim at a representation that maps measurements to positions in a space, so
that low distance between two points indicates high compactness for a model
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that encodes both of them, or high temporal coherence of their signals. We derive
model maps from a set of signals {x1, . . . ,xm}, where xi ∈ R

n. The signals are
mapped to a new manifold {Ψi, . . . ,Ψm} in the model map, where the Euclidean
distance relates to a similarity between signals. In our case, each xi is the BOLD
signal observed at one position in the brain for n time points. In this section
we will first discuss how to define a similarity function, that captures relations
between BOLD signals based on a multivariate Gaussian model. Then we will
describe how to construct a Markov chain, and the corresponding model map
with new positions Ψi for each signal xi. Finally we will explain how to perform
measurements in the model map. The approach is closely related to shape maps,
introduced in [8].

2.1 Comparing Signals: Compactness of a Gaussian Model

To establish a relation between a group of signals {x1, . . . ,xl} we find the princi-
pal axes of the joint distribution, and approximate it by a multivariate Gaussian
distribution with Gaussians along the principal axes. For each dimension of the
eigenspace used to encode the data we can apply Shannons theorem [15] to the
according one-dimensional distribution. That is we can estimate the description
length or complexity of a model, that encodes the data. The description length
comprises the cost L of communicating a model M itself (the parameters of
the Gaussians) and the data D (i.e. BOLD signals) encoded with the model:
L(D, M) = L(M) + L(D|M). An extensive derivation of the description length
calculation for Gaussian models is given in [16]. The description length reflects
the complexity of the representation, and thus the plausibility of data stemming
from a certain model. The method can be applied to models other than Gaussian
straight-forwardly, and an optimal choice is subject of current research.

2.2 A Markov Chain That Describes Dependencies

Given a set of n examples, each consisting of BOLD signal observations for m
points, we derive a metric on the set of points, that reflects their joint modeling
behavior. The construction of such a diffusion map is explained in detail in [9].
The Markov chain consists of m nodes X which correspond to the individual
signals xi, and pair-wise relations d(i, j). We define dk(i, j) for two signals and
kernel size k based on the minimum description length of models encompassing
the two signals i and j and k − 2 others: dk : {1, 2, . . . , n}2 → R: dk(i, j) =
minM(L(M)|i, j ⊆ M and #M = k), where the model M with cardinality
#M := #{h1, . . . , hk} = k represents k signals. L(M) denotes the description
length L(x{h1,...,hk}) as defined in Sec. 2.1, and i, j ⊆ M :⇔ i, j ∈ {h1, . . . , hk}
for M. That is, d(i, j) is the minimum of the description lengths of all models
representing i and j, and arbitrary k − 2 other entries of the observations. Note
that for k > 2, dk(i, j) not only depends on the behavior of the two signals i
and j but on the behavior of a larger sub set that is most affine to the two,
i.e., that can be described by the least complex model. With increasing k only
larger coherent sub-sets will benefit in terms of the distance in the model map,
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allowing for a multi-resolution approach. dk is non-negative, and symmetric,
and the nodes X and edges weighted according to dk between the nodes build a
symmetric graph (X, dk). In practice we can estimate dk by randomly choosing
sub-sets of the data, calculating the according value dk(i, j) for all pairs in the
sub-set and keeping the minimum of all samples for (i, j). Using this set of
pairwise relations, one can proceed to form a Markov chain that encompasses
the notion of compactness in the entire set of fMRI signals.

From this, the normalized graph Laplacian construction [17] generates a re-
versible Markov chain, resulting in a diffusion operator P and its powers P t. P is
the Markov matrix with the entries p(i, j), which are the transition probabilities
in the Markov chain. P t allows to propagate information through the Markov
chain. The probability of the transition from any point i to another point j in
t timesteps is given by the according kernel pt(i, j). By increasing t we can an-
alyze the data at multiple scales i.e., propagate the relations between pairs of
nodes. This operator P defines the geometry on the set of signals we are looking
for, which can be mapped to an Euclidean geometry by an eigenvalue decompo-
sition of P . Corresponding to P t we can define a family of diffusion distances
parameterized by t on the set of fMRI signals:

Dt(i, j) =
∑

l=1,...,m

(pt(i, l) − pt(j, l))2

π(l)
where π(i) =

d(i)∑
j d(j)

(1)

is the probability of i in the unique stationary distribution (the uniqueness
is fulfilled if the graph is connected). Dt is an L2 distance and captures the
connectivity in the Markov chain, summing over all possible paths from i to j.
The distance Dt is low if there is a large number of paths of length t with high
transition probabilities between the nodes i and j.

2.3 Constructing Model Maps of Functional Data

We now construct the space the encodes the functional relations of all fMRI
signals from this chain. An eigenvalue decomposition of the operator P results in
a sequence of eigen values λ1, λ2 . . . and corresponding eigen functions Ψ1, Ψ2, . . .
that fullfill PΨi = λiΨi. In [9] the authors explain how a diffusion map, the
space spanned by the eigenfunctions of a Markov chain relates to the geometry
determined by a diffusion distance Dt. We use this to create a metric space, a
model map Ψt : X → R

w, that embeds the nodes (fMRI signals) i = 1, . . . , m
which are represented in the Markov chain into a Euclidean space where the
diffusion distance in Eq. 1 corresponds to the euclidean distance in the eigen
space:

Ψt(i) �

⎛

⎜⎝
λt

1Ψ1(i)
...

λt
wΨw(i)

⎞

⎟⎠ , and ‖Ψt(i) − Ψt(j)‖ = Dt(i, j). (2)

Thereby the functional relations between fMRI signals are translated into spa-
tial distances in the model map. The local density in the map corresponds to
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Table 1. Relative increase of model map density from baseline. Left: entire brain,
right: right orbitofrontal cortex. Right: corresponding plots for the absolute values.
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BL 0 0 0 0
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the amount of other signals, that are closely related. We can perform standard
density estimation, clustering, or the definition of neighborhoods in this space.
Closest neighbors indicate high coherence, and the scatter of specific brain re-
gions in the map indicates the level of co-dependency of their sets of signals. Such
a process captures the relations between the fMRI signals during the observation
time.

3 Experiments

Data and set-up: We conducted experiments with previously acquired fMRI
data from 29 individuals, 16 of which were cocaine abusers (group A), and 13
were control subjects (group B) provided by the authors of [3]. The MRI scans
were acquired by a 4-T whole body MRI scanner (Varian), and BOLD responses
were measured for 91 time points. The dataset focused on the way different
subjects process monetary rewards. The overall neuropsychological experiment
design included six blocks each consisting of three monetary reward conditions:
0 cent, 1 cent and 45 cents. This results in 3 baseline conditions (BL) without
stimulus and the stimulus conditions (Co0/1/45 ). To assess if the model maps
provide quantitative diagnostically relevant information, we assess their ability
to differentiate between the subject groups, and between tasks. We measure
the model map density for each point. We evaluate the mean density for the
entire map, and the densities for the map positions corresponding to anatomical
regions, e.g. the orbitofrontal cortex. We performed three comparisons: 1. We
expect functionally connected regions within the brain to be in close proximity in
the model map. Thus the density should increase if a specific task is performed,
and we compared the model map density for Co0, Co1, and Co45 with BL1.
2. For the drug abusers the relative increase of interaction between BL1 and
Co0, Co1, and Co45 is expected to be lower, thus we compared the relative
increase of density for the two subject groups. 3. We observed the model map
scatter for the cortical region of orbitofrontal cortex, lateral prefrontal cortex,
and anterior cingulate cortex, regions previously found to be important in the
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Fig. 2. Functional integration within the brain: the model map density values were
projected back to the spatial coordinate system. Top row: two series for drug abusers,
and median values, bottom row: two series for controls, and median values. For each
subject baseline, and the three conditions are depicted. The differences between baseline
(top left in each panel) and reward conditions are less pronounced for the drug abusers.

Baseline Co45

Fig. 3. Two model maps for one subject: one corresponding to baseline, one to Co45

context of reward processing [3]. Scatter indicates the level of integration of the
activity in this region. We also report qualitative results for the model maps,
to demonstrate the visual information they provide for data exploration, and
visualize the model map density - the connectivity - in the spatial brain space.

Results: In Tab. 1 the increase in model map density relative to BL is reported,
and plots for the absolute values for both drug abusers, and control subjects
are depicted. For all subjects, the density values for Co0/1/45 are significantly
higher than for BL (p=0.05). The relative increase is more pronounced for control
subjects. An interesting observation is that the scatter of the points in the model
map that correspond to the cortical regions is significantly lower for group A,
compared to group B during BL (p=0.034). This indicates that these regions
behave in a more coherent manner during baseline for drug abusers. In Fig. 2 the
model map density is visualized on corresponding structural (T1) data. The top
row shows two examples, and the median values for group A, while the bottom
row shows the same for group B. The more pronounced increase of connectivity
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for group B is visible in this example. The median images show a similar trend
for the entire population. However, since these results exhibited a certain level
of heterogeneousity more research is needed to understand their implications.
In Fig. 3 the model maps are shown for conditions BL, and Co45. The color
encodes the local density in the map. The rather sparse structure with scattered
local density maxima of the BL map changes to a dense map for Co45. This
corresponds to increased interactions between brain regions.

4 Conclusion

We propose a method to capture, and to represent the functional geometry
of brains in model maps. The representation is built by quantifying the joint
modeling behavior of individual BOLD signals over time for all positions in the
brain. The model map represents the functional relations between brain posi-
tions. In addition to mere signal strength, the distance in the map can indicate
subtle co-dependencies between regions, while the density represents the func-
tional connectivity to the rest of the brain. Experimental results demonstrate
that the method extracts clinically relevant information, and can be used for
data exploration, since in contrast to seed-point based approaches, it is built
in an unsupervised manner, and encodes the structure of the entire brain in a
single map. We expect this method to be relevant when searching for differen-
tiating regions in the brain for the detection of certain changes over time. The
functional connectivity can be used to establish functional trajectories. Promis-
ing directions both from the practical as well as theoretical point of view are to
introduce dependencies that go beyond pair-wise interactions between the nodes
and to relax the multi-variate Gaussian assumption. The proposed method could
have an impact on understanding the relationships of measurements from het-
erogeneous domains (functional, anatomical), which is one of the challenges in
the field of biological and biomedical analysis.
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