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Abstract

In this paper, we present a new method to change the
illumination condition of a face image, with unknown face
geometry and albedo information. This problem is partic-
ularly difficult when there is only one single image of the
subject available and it was taken under a harsh lighting
condition. Recent research demonstrates that the set of im-
ages of a convex Lambertian object obtained under a wide
variety of lighting conditions can be approximated accu-
rately by a low-dimensional linear subspace using spheri-
cal harmonic representation. However, the approximation
error can be large under harsh lighting conditions [2] thus
making it difficult to recover albedo information. In order to
address this problem, we propose a subregion based frame-
work that uses a Markov Random Field to model the sta-
tistical distribution and spatial coherence of face texture,
which makes our approach not only robust to harsh light-
ing conditions, but insensitive to partial occlusions as well.
The performance of our framework is demonstrated through
various experimental results, including the improvement to
the face recognition rate under harsh lighting conditions.

1. Introduction
Recovering the geometry and texture of a human face

from images remains to be a very important but challenging
problem, with wide applications in both computer vision
and computer graphics. One typical application is to gen-
erate photo-realistic images of human faces under arbitrary
lighting conditions [28, 8, 31, 11, 24, 23]. This problem
is particularly difficult when there is only one single im-
age of the subject available and it was taken under a harsh
lighting condition. Using spherical harmonic representation
[2, 26], it has been shown that the set of images of a convex
Lambertian object obtained under a wide variety of light-
ing conditions can be approximated by a low-dimensional
linear subspace. However, under harsh lighting conditions,

the approximation error can be large [2], which remains an
unsolved problem for both graphics and vision applications,
such as face relighting and face recognition. Furthermore,
this problem becomes even more challenging in the pres-
ence of cast shadows, saturated areas, and partial occlu-
sions.

Since lighting in smaller image regions is more homo-
geneous, if we divide the face image into smaller regions
and use a different set of face model parameters for each
region, we can expect the overall estimation error to be
smaller than a single holistic approximation. But there
are two main problems with such a region based approach.
First, if the majority of the pixels in a region are problem-
atic (e.g. they are in cast shadows, saturated, or there are
large lighting estimation errors), the albedo information in
that region cannot be correctly recovered. Second, the es-
timated albedo may be inconsistent across regions. To ad-
dress both problems, we introduce neighboring coherence
constraints to the albedo estimation, which also leads to a
natural solution for partial occlusions. Basically, the es-
timation of the model parameters of each region depends
not only on the observation data but also on the estimated
model parameters of its neighbors. As it is well known
in other fields such as super-resolution and texture synthe-
sis [15, 43], Markov Random Field (MRF) is an effective
theoretical framework to model the spatial dependence be-
tween neighboring pixels. Therefore, we propose an MRF-
based energy minimization framework to jointly recover the
lighting, the shape, and the albedo of the target face.

All these distinguish our approach from previous tech-
niques such as the one proposed by Zhang et al. [40].
They used a 3D spherical harmonic basis morphable model
(SHBMM) by adding the spherical harmonic illumination
representation into the morphable model method. It pro-
duces photo-realistic rendering results under regular light-
ing conditions, but obtains poor results in the saturated face
image area. Furthermore, because the texture is not sepa-
rated from the spherical harmonic bases in SHBMM, their

1



method can not handle the harsh lighting conditions due
to the large approximation errors in the spherical harmonic
representation. To address these problems, we decouple the
texture, the geometry (including the surface normal), and
the illumination by modeling them separately. Compared
to the previous methods, the contributions of our work in-
clude: (1) we divide an image into smaller regions and use
an MRF-based framework to model the spatial dependence
between neighboring regions, and (2) we decouple the tex-
ture from the geometry and illumination models to enable
a spatially varying texture representation thus being able to
handle challenging areas such as cast shadows and saturated
regions, and being robust to harsh lighting conditions and
partial occlusions as well.

Empowered by our new approach, given a single photo-
graph of a human face, we can recover the lighting, shape,
and albedo even under harsh lighting conditions and/or par-
tial occlusions. We can then use our relighting technique
to generate face images under a novel lighting environment.
The proposed face relighting technique can also be used to
normalize the illumination effects in face recognition un-
der varying illumination conditions. The experimental re-
sults further demonstrate the superb performance of our ap-
proach.

2. Related work
Inverse rendering is an active research area in both com-

puter vision and computer graphics. Despite its difficulty,
great progress has been made in generating photo-realistic
images of objects including human faces [11, 37, 12, 40]
and face recognition under different lighting conditions
[1, 30, 42, 16, 20, 34]. Marschner et al. [24, 25] mea-
sured the geometry and reflectance field of faces from a
large number of image samples in a controlled environment.
Georghiades et al. [16] and Debevec et al. [11] used a linear
combination of basis images to represent face reflectance.
Ramamoorthi and Hanrahan [27] presented a signal pro-
cessing framework for inverse rendering which provides an-
alytical tools to handle general lighting conditions.

Furthermore, Sato et al. [32] and Loscos et al. [22] used
the ratio of illumination to modify the input image for re-
lighting. Interactive relighting was achieved in [22, 37] for
certain point light source distributions. Given a face un-
der two different lighting conditions, and another face under
the first lighting condition, Riklin-Raviv and Shashua [28]
used the color ratio (called the quotient image) to gener-
ate an image of the second face under the second lighting
condition. Stoschek [35] combined the quotient image with
image morphing to generate re-lit faces under continuous
changes of poses. Recently, Liu et al. [21] used the ratio
image technique to map one person’s facial expression de-
tails to other people’s faces. One essential property of the
ratio image is that it can capture and transfer the texture de-
tails to preserve photo-realistic quality.

Because illumination affects face appearance signifi-
cantly, illumination modeling is important for face recogni-
tion under varying lighting. In recent years, there has been
a lot of work in the face recognition community addressing
face image variation due to illumination changes [41, 9].
Georghiades et al. [16] presented a new method using the
illumination cone. Sim and Kanade [34] proposed a model
and exemplar based approach for recognition. Both [16]
and [34] need to reconstruct 3D face information for each
subject in the training set so that they can synthesize face
images in various lighting to train the face recognizer. Blanz
et al. [5] recovered the shape and texture parameters of
a 3D Morphable Model in an analysis-by-synthesis fash-
ion. These parameters were then used for face recognition
[5, 29] and face image synthesis [7, 6]. The illumination
effects are modeled by the Phong model [14]. In order to
handle more general lighting conditions, Zhang et al. [40]
integrated the spherical harmonic illumination representa-
tion into the Morphable Model approach, by modulating the
texture component with the spherical harmonic bases.

Generally, in order to handle the illumination variabil-
ity, appearance-based methods such as Eigenfaces [36] and
AAM [10] need a number of training images for each sub-
ject. Previous research suggests that the illumination varia-
tion in face images is low-dimensional e.g. [1, 2, 4, 26, 13,
17]. Using the spherical harmonic presentation of Lamber-
tian reflection, Basri et al. [2] and Ramamoorthi [26] have
obtained a theoretical derivation of the low dimensional
space. Furthermore, a simple scheme for face recognition
with excellent results is presented in [2], and an effective ap-
proximation of these bases by 9 single light source images
of a face is reported in [20]. However, to use these recog-
nition schemes, the basis images spanning the illumination
space for each face are required. Zhao and Chellappa [42]
used symmetric shape-from-shading. It suffers from the
general drawbacks of shape-from-shading approach such as
the assumption of point light sources. Zhang and Sama-
ras [39] proposed to recover the 9 spherical harmonic basis
images from the input image. It requires a bootstrap step to
estimate a statistical model of the spherical harmonic basis
images. Another recent method proposed by Lee et al. [19]
used a bilinear illumination model to reconstruct a shape-
specific illumination subspace. However, it requires a large
dataset collected in a well-controlled environment in order
to capture the wide variation of the illumination conditions.

3. Face Shape and Texture Recovery
In this section, we will briefly describe the 3D Mor-

phable Model [5] and the spherical harmonic illumination
representation [2, 26]. After that, a new subregion based
framework is proposed to recover both the shape, texture,
and illumination from an input face image, by incorporat-
ing the statistical distribution and spatial coherence of face
texture. The proposed method decouples the texture from



the geometry and illumination models and integrates them
into an energy minimization problem based on the theory of
Markov Random Fields.

3.1. Face Morphable Models
The 3D face Morphable Model was proposed by Blanz

et al. [7] to define a vector space of 3D shapes and col-
ors (reflectances). More specifically, both the shape Smodel

and the texture Tmodel of a new face can be generated by
a convex combination of the shapes and texture of the m
exemplar 3D faces, i.e.,

Smodel = S +
m−1∑
i=1

αisi; Tmodel = T +
m−1∑
i=1

βiti (1)

where si and ti are the eigenvectors of the shape and tex-
ture covariance matrix, and α and β are the weighting coef-
ficients to be estimated, respectively.

Based on [29], a realistic face shape can be generated by

S2D = fPR(S3D +
m−1∑
i=1

αis
3D
i + t3D) + t2D, (2)

where f is a scale parameter, P an orthographic projection
matrix, and R a rotation matrix with φ, γ and θ the three
rotation angles for the three axes. The t3D and t2D are
translation vectors in 3D and 2D respectively. Given an in-
put face image, the pose parameters f , φ, γ and θ and the
shape parameter α can be recovered by minimizing the er-
ror between the set of pre-selected feature points in the 3D
Morphable Model and their correspondences Simg

f detected
in the target image:

arg min
f,φ,γ,θ,α,t2D,t3D

‖S(F )img− (3)

(fPR(S(F )3D +
∑m−1

i=1 αisi(F )3D + t3D) + t2D)‖2

where S(F )3D and si(F )3D are the shape of the corre-
sponding feature points in the Morphable Model in Eqn.(1).

3.2. Spherical Harmonics Representation
In general, spherical harmonics are the sphere analog of

the Fourier basis on the line or circle, and they provide
an effective way to describe reflectance and illumination.
Furthermore, it has been shown that the set of images of
a convex Lambertian object obtained under a wide variety
of lighting conditions can be approximated accurately by a
low-dimensional linear subspace using the first 9 spherical
harmonic bases [2, 26]:

I(�n) = ρ(�n)E(�n) ≈ ρ(�n)
9∑

i=1

hi(�n) · li (4)

where I denotes the image intensity, �n the surface normal,
ρ the surface albedo, E the irradiance, li the weighting co-

efficient, and hi the spherical harmonic basis as follows:
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where nx, ny, nz denote the x, y, and z components of the
surface normal �n. Therefore, any image under general illu-
mination conditions (i.e., without any specific illumination
assumption such as a point light source) can be approxi-
mately represented by a linear combination of the above
spherical harmonic illumination bases, which forms a lin-
ear equation system, i.e.,

I ≈ [ρ1H1, ρ2H2, . . . , ρnHn]T · l (6)

where I = [I(�n1), I(�n2), . . . , I(�nn)]T , Hi =
[h1(�ni), h2(�ni), . . . , h9(�ni)]T , l = [l1, l2, . . . , l9]T ,
and n is the number of sample points on the face image.

3.3. Energy Minimization Framework
Since lighting in smaller image regions is more homo-

geneous, we subdivide a face into smaller regions to better
fit the image under a harsh lighting condition. The idea of
subdivision was also used by Blanz and Vetter in [7], where
a face is subdivided along feature boundaries (such as eyes,
nose, mouth, etc.) to increase the expressiveness of the mor-
phable models. They estimate morphable model parame-
ters independently over each region and perform smoothing
along region boundaries to avoid visual discontinuity. How-
ever, this approach can not be applied to images under harsh
lighting conditions because of the inconsistency of the es-
timated textures in different regions (e.g. Fig. 1(c)). Fur-
thermore, if most pixels in a region are in cast shadows or
saturated areas, there might not be enough information to
recover the texture within the region itself. To address these
problems, we introduce the spatial coherence constraints to
the texture model between neighboring regions.

We divide a face into regular regions with a typical size
of 50 × 50 pixels. For each region, we represent its face
texture by using a PCA texture model similar to Eqn. (1):

ρq = T
q
+

m−1∑
k=1

βq
ktqk, q = 1, ..., Q (7)

where Q is the total number of regions and tqk are com-
puted from the exemplar faces in the Morphable Model
database, by dividing them into the same regions as the tar-
get face. Then, we pose the coherence constraints on the
PCA coefficients βq

k between neighboring regions: Given
two neighboring regions qi and qj , for each PCA coefficient
k = 1, ..., m − 1 we model βqi

k − β
qj

k as a random variable



of Gaussian distribution with mean 0 and variance (σqiqj

k )2,
and obtain the spatial coherence between the two neighbor-
ing regions by maximizing Πm−1

k=1 Pr(βqi

k − β
qj

k ), which is
equivalent to minimizing

m−1∑
k=1

(
βqi

k − β
qj

k

σ
qiqj

k

)2. (8)

It is worth pointing out that the spatial coherence constraints
are posed over texture PCA coefficients, not on pixel values
directly. The main advantage is that even if the PCA coef-
ficients are the same between two regions, the pixel values
can be completely different.

We could potentially use a similar idea for the shape
model representation. But since we are not trying to re-
cover detailed geometry, a single shape model is sufficient.
This agrees with [27] and the perception literature (such
as Land’s retinex theory [18]), where on Lambertian sur-
faces high-frequency variation is due to texture, and low-
frequency variation is probably associated with illumina-
tion, which is determined by the surface geometry and the
environment lighting. Given that we are mainly interested
in surface normals, we directly model the surface normal as

�nM
u,v = (�nu,v +

m−1∑
i=1

λi�n
i
u,v)/‖�nu,v +

m−1∑
i=1

λi�n
i
u,v‖ (9)

where λ is the weighting coefficient to be estimated.
Following the discussion in Section 3.2, the illumination

model in Eqn.(4) can also be added as another constraint to
fit the image I . Note that for pixels which are saturated or in
cast shadows, Eqn.(4) in general does not hold. Therefore,
for each pixel (u, v) we assign a weight Wu,v to indicate
the contribution of the above illumination model. Wu,v is
set to a small value if the pixel is in the cast shadow or the
saturated area.

Finally all the constraints can be integrated into an en-
ergy minimization problem as follows:

arg min
ρ,λ,β,l

Q∑
q=1

∑
(u,v)∈Ωq

{Wu,v(Iu,v − ρu,v

9∑
i=1

hi(�nM
u,v)li)2

+WMM (ρu,v − ρq
u,v)

2}
+WSMNsr

∑
(i,j)∈N

∑m−1
k=1 (βi

k−βj
k

σij
k

)2 (10)

where ρ is the output albedo, (u, v) is the
pixel index, Ωq denotes the qth region, N =
{(i, j)|Ωi and Ωj are neighbors} is the set of all
pairs of neighboring regions, �nM is constrained by the
shape subspace defined in Eqn.(9), ρq is constrained by the
texture subspace defined in Eqn.(7), and WMM and WSM

are the weighting coefficients of the texture morphable
model term and the coherence constraint term respectively.

Nsr is the average number of pixels in a region and
(σij

k )2 is estimated from the exemplar texture data in the
morphable models[7].

The objective function in Eqn. (10) is an energy function
of a Markov Random Field. The first two terms in Eqn. (10)
are the first order potentials corresponding to the likelihood
of the observation data given the model parameters, and the
third term is the second order potential which models the
spatial dependence between neighboring regions. There-
fore, we have formulated the problem of jointly recovering
the shape, texture, and lighting of an input face image as an
MRF-based energy minimization (or maximum a posteri-
ori) problem. Furthermore, this framework can be extended
to handle different poses by replacing the normal constraint
in Eqn.(9) to the shape constraint in Eqn.(3).

In our implementation, we determine whether a pixel is
in a cast shadow or saturated region by simple thresholding.
Typically, in our experiments on a 0 − 255 gray-scale face
image, the threshold values are 15 for the cast shadows and
240 for the saturated pixels, Wu,v is set to 0 for the pixels
in the shadow and saturated areas and 1 for the pixels in
other regular areas, and WMM = 4 and WSM = 500 for
all regions. Because the typical size of a regular region is
50 × 50 pixels, the average pixel number Nsr is 2500. Due
to the nonlinearity of the objective function (10), the over-
all optimization problem is solved in an iterative fashion,
i.e., fixing the albedo ρ and the surface normal �n, we solve
for the global lighting l, and fixing the lighting l, we solve
for the albedo ρ and the surface normal �n. Because gradi-
ents of Eqn.(9,10) can be derived analytically, the standard
conjugate method is used for the optimization.

However, the linear equation system (6) is under-
constrained because the surface albedo ρ varies from point
to point. Therefore, it is impossible to obtain the initial
lighting linit without any knowledge of the surface albedo
ρ. Fortunately, based on the observation in [37], the albedo
of a human face, though not constant, does not have low-
frequency components other than the constant component.
If we expand ρ(�n) by using spherical harmonics as ρ(�n) =
ρ00 +Ψ(�n), where ρ00 is the constant component and Ψ(�n)
contains other higher order components, Eqn.(4) can be fur-
ther simplified as ρ(�n)E(�n) ≈ ρ00

∑9
i=1 hi(�n) · li. Conse-

quently, the original under-constrained problem (6) can be
approximated by the following linear equation system

I ≈ ρ00 [H1, H2, . . . , Hn]T · l (11)

Therefore, given an image of a face with known surface nor-
mal �n, we can solve for the initial values of the 9 spheri-
cal harmonic coefficients l = [l1, l2, . . . , l9]T using a least
squares procedure, up to a constant albedo ρ00.

For clarity purposes, the outline of the optimization al-
gorithm is presented in Table 1, and an example is shown
in Fig.1, where Fig.1(a) is the original image taken under



a harsh lighting condition, Fig.1(b) shows the recovered
surface normal from our method, and the recovered albedo
from our method is shown in Fig.1(c) without the spatial co-
herence term and Fig.1(d) with the spatial coherence term.
As we can see, the region inconsistency artifacts in Fig.1(c)
are significantly reduced in Fig.1(d).

1. Initial Shape Estimation: Detect the face feature points
Simg

f on the input image using an automatic face feature
detection method [38]. Then, based on the set of detected
feature points and the corresponding pre-selected feature
points in the 3D Morphable Model, the pose parameters f ,
φ, γ and θ and the shape parameter α can be recovered us-
ing Eqn.(3), as described in Section 3.1.

2. Image Segmentation: Segment the input face images into
the following parts: regular shaded regions, saturated re-
gions, and shadow regions, by thresholding the image inten-
sity values, and further divide the image into regular subre-
gions. Typically, in our experiments on a 0−255 gray scale
face image, the threshold values are 15 for the cast shadow
and 240 for the saturated pixels, and the size of a subregion
is 50 × 50 pixels.

3. Initial Illumination and Albedo Estimation: Compute the
constant albedo scale factor ρ00 by averaging the intensity
values of the input face image. Estimate the initial light-
ing coefficient linit using Eqn.(11), based on the constant
albedo scale factor ρ00 and the initial shape recovered in
the first step. After that, the initial albedo ρinit is computed
by Eqn. (4).

4. Iterative Minimization: Solve the objective function (10)
in an iterative fashion – typically, only 2 iterations were
used in our experiments to generate photo-realistic results:

• Fixing the lighting l, solve for the albedo ρ, the tex-
ture PCA coefficients β, and the shape PCA coeffi-
cients λ for the surface normal 	n.

• Fixing the albedo ρ and the surface normal 	n, solve
for the global lighting l.

Table 1. The outline of our estimation algorithm.

(a) (b) (c) (d)

Figure 1. Example result: (a) is the original image taken under a
harsh lighting condition, (b) shows the recovered surface normal
from our method (where R,G,B color values represent the x,y,z
components of the normal), and the recovered albedo from our
method is shown in (c) without the spatial coherence term and (d)
with the spatial coherence term. As is evident, the region incon-
sistency artifacts in (c) are significantly reduced in (d).

4. Experimental Results
Using the approach proposed in Section 3, we can re-

cover the albedo ρ, the surface normal �n, and the illumina-
tion parameter l from an input face image I . In this sec-
tion, we will show how to perform face re-lighting and face
recognition based on the recovered parameters. The advan-
tage of this approach is that it only requires one image as
the input. Furthermore, compared to the methods proposed
in [37, 39, 40], our proposed framework can also handle
images with saturated areas and partial occlusions and is
robust to harsh lighting conditions.

4.1. Image Re-Lighting and De-Lighting
Based on the recovered albedo ρ, surface normal �n, and

illumination parameter l, we can render a face I ′ using the
recovered parameters by setting different values to the illu-
mination parameter l′ [2, 37, 40]:

I ′(�n) = ρ(�n)
9∑

i=1

hi(�n) · l′i (12)

However, because certain texture details might be lost in
the estimated face albedo ρ, we also use the ratio image
technique to preserve photo-realistic quality. Although the
ratio image technique used in [37, 40], which is based on
the spherical harmonic illumination representation, has gen-
erated promising results under regular lighting conditions,
it can not be adopted in our framework because of the
large approximation error in the spherical harmonic approx-
imation for harsh lighting conditions. Instead, we smooth
the original image using a Gaussian filter and then com-
pute the pixel-wise ratio between the original image and its
smoothed version. After that, we apply this pixel-wise ratio
to the re-lit image computed by Eqn.(12) to capture the de-
tails of the original face texture. Typically, for a 640 × 480
image, the size of the Gaussian kernel is 11×11 with σ = 2.

Moreover, a de-lighting result of the input image can also
be generated by simply replacing the original pixel intensity
values with the recovered albedo ρ. In order to evaluate the
performance of our framework, we conducted the experi-
ments on two publicly available face data sets: Yale Face
Database B[16] and CMU-PIE Database[33]. The face im-
ages in both databases contain challenging examples for re-
lighting. For example, there are many images with strong
cast shadows, saturated or extremely low intensity pixel val-
ues. More specifically, in Yale Face Database B, the im-
ages are divided into 5 subsets according to the angles of
the light source direction from the camera optical axis, i.e.,
(1) less than 12◦, (2) between 12◦ and 25◦, (3) between
25◦ and 50◦, (4) between 50◦ and 77◦, and (5) larger than
77◦. Fig.2(a) shows one sample image per group of Yale
Face Database B. The corresponding re-lit results from our
method are shown in Fig.2(c). Compared to the results from
Wen et al.’s method [37], which are shown in Fig.2(b), the



(a)

(b)

(c)

Figure 2. Face re-lighting experiment on Yale Face Database
B [16]. (a) Example input images from group 1 to group 5. (b)
The corresponding results under frontal lighting using the method
proposed by Wen et al. [37]. (c) The re-lit results from our method.
As we can see, our method preserves photo-realistic quality, espe-
cially under harsh lighting conditions such as the images in right-
most 2 columns, i.e., in group (4-5).

(a)

(b)

Figure 3. Face re-lighting experiment on subjects in both Yale
Database B [16] and CMU-PIE Database[33]. (a) Example input
images taken under different harsh lighting conditions. (b) The
synthesized frontal lighting results generated by our method with
high quality.

results generated by our method have much higher qual-
ity especially under harsh lighting conditions such as the
images in group (4-5). Fig.3 shows more face re-lighting
results on both Yale Face Database B [16] and CMU-PIE
Database[33]. Despite the different harsh lighting condi-
tions in the input images (Fig.3(a)), our method can still
generate high quality re-lit results as shown in Fig.3(b).

Fig.4 shows an example of the face de-lighting experi-
ment on the CMU-PIE Database, where some image pixel
values are saturated (Fig.4(a)). Fig.4(b) shows the de-lit im-
age generated by Zhang et al.’s method [40], which has poor
quality in the saturated area. However, our subregion based

method decouples the estimation of the illumination and
albedo and can handle this situation successfully (Fig.4(c)).
In the close-up views Fig.4(d-f), we can see that an image
with remarkable quality is synthesized by our method even
in the presence of saturated areas.

(a) (b) (c)

(d) (e) (f)

Figure 4. Face de-lighting experiment on an image with saturated
regions, which is highlighted in the red boxes: (a) The original
image where the right side of the face is saturated. (b) The de-lit
result from the method proposed by Zhang et al. [40] (The image
is taken from [40] directly.) (c) The de-lit result from our MRF-
based method. The close-up views (d-f) show that a remarkable
quality image is synthesized by our method even in the presence
of saturated areas.

Furthermore, since our framework models spatial depen-
dence, it can handle image occlusions as well. This is in
spirit similar to super resolution and texture synthesis[15,
43]. But we are able to recover missing information and re-
move lighting effects simultaneously. Fig.5 shows two ex-
amples of the face de-lighting experiment on images under
occlusions, where Fig.5(a,c) are the original images under
different occlusions and Fig.5(b,d) are the recovered albedo
from our method. As we can see our method can generate
high quality results for the occluded areas as well.

(a) (b) (c) (d)

Figure 5. Face de-lighting experiment on images under occlusions:
(a,c) are the original images under different occlusions and (b,d)
are the recovered albedo from our method. Our method can gen-
erate high quality results for the occluded areas as well.

4.2. Face Recognition
In this section, we show that our framework on face re-

lighting from a single image can be used for face recog-



nition. In order to normalize the illumination effects for
face recognition, we relight all face images into a canon-
ical lighting condition, i.e., the frontal lighting condition,
using Eqn. (12). Once the illumination effects in images
are normalized, any existing face recognition algorithms,
such as Eigenfaces (PCA) [36] and Fisherfaces (LDA) [3],
can be used on the re-lit face images for face recognition.
In our experiments, we tested our approach using two pub-
licly available face database: Yale Face Database B [16] and
CMU-PIE Database[33].

In Yale Face Database B, there are 5760 single light
source images of 10 subjects each seen under 576 view-
ing conditions (9 poses × 64 illumination conditions). In
our current experiment, we only consider illumination vari-
ations so that we choose to perform face recognition for the
640 frontal pose images. We choose the simplest image cor-
relation as the similarity measure between two images, and
nearest neighbor as the classifier. For the 10 subjects in the
database, we take only one frontal image per person as the
training image. The remaining 630 images are used as test-
ing images. In order to evaluate the face recognition per-
formance of our proposed method under different lighting
conditions, we compare our recognition results with other
existing methods in the literature and show experimental re-
sults in Fig. 6.

Methods Error Rate (%) in Subsets
(1, 2) (3) (4)

Correlation 0.0 23.3 73.6
Eigenfaces 0.0 25.8 75.7

Linear Subspace 0.0 0.0 15.0
Illum. Cones - Attached 0.0 0.0 8.6
9 Points of Light (9PL) 0.0 0.0 2.8

Illum. Cones - Cast 0.0 0.0 0.0
Zhang & Samaras[39] 0.0 0.3 3.1
BIM (30 Bases)[19] 0.0 0.0 0.7

Wen et al. [37] 0.0 1.7 30.7
Our Method 0.0 0.0 0.1

Figure 6. Recognition results on the Yale Face Database using var-
ious previous methods in the literature and our method. Except for
Wen et al.’s method [37] and our method, the data were summa-
rized from [19].

We can see that our method has a very low recognition
error rate, compared to all the existing recognition meth-
ods in the literature, and maintains almost the same perfor-
mance even when the lighting angles become large. When
the lighting direction of the test image is further away from
the lighting direction of the training image, the respective
illumination effects exhibit larger differences, which will
cause a larger recognition error rate. As is evident, our re-
lighting technique significantly reduces error rates, even in
harsh lighting conditions (e.g. lighting angles > 50◦).

In the CMU-PIE Database, there are 68 subjects with 13
poses and 43 different illumination conditions each pose.
As explained above, in our current experiment we focus on
illumination variations and perform face recognition for the
frontal pose images only. In order to compare our method to
the method proposed by Zhang et al. [40] which is closely
related to our work, we also tested our method on all 68 sub-
jects on CMU-PIE Database in the same experiment setting
and report the recognition result in Fig. 7. We can see that

Methods Recognition Rate
Zhang et al. [40] 99.3%

Our Method 99.8%
Figure 7. Recognition results on frontal pose images from the
CMU-PIE Database. The data of Zhang et al.’s method was sum-
marized from [40].

the face recognition performance is also improved by our
new method.

5. Conclusion
In this paper, we proposed a novel MRF-based energy

minimization framework to jointly recover the lighting,
shape, and albedo from a single face image under arbitrary
unknown illumination. Our technique is robust to harsh
lighting conditions, partial occlusions, cast shadows, and
saturated image regions. We demonstrated the performance
of our proposed framework through both face relighting
and face recognition experiments on two publicly available
face data sets: Yale Face Database B [16] and CMU-PIE
Database[33]. In the future, we plan to further improve the
results by incorporating face skin reflectance models and to
expand the current model to recover face geometry and tex-
ture under different poses and facial expressions.
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