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Abstract—In this paper, we propose two novel methods for face recognition under arbitrary unknown lighting by using spherical

harmonics illumination representation, which require only one training image per subject and no 3D shape information. Our methods

are based on the recent result which demonstrated that the set of images of a convex Lambertian object obtained under a wide variety

of lighting conditions can be approximated accurately by a low-dimensional linear subspace. We provide two methods to estimate the

spherical harmonic basis images spanning this space from just one image. Our first method builds the statistical model based on a

collection of 2D basis images. We demonstrate that, by using the learned statistics, we can estimate the spherical harmonic basis

images from just one image taken under arbitrary illumination conditions if there is no pose variation. Compared to the first method, the

second method builds the statistical models directly in 3D spaces by combining the spherical harmonic illumination representation and

a 3D morphable model of human faces to recover basis images from images across both poses and illuminations. After estimating the

basis images, we use the same recognition scheme for both methods: we recognize the face for which there exists a weighted

combination of basis images that is the closest to the test face image. We provide a series of experiments that achieve high recognition

rates, under a wide range of illumination conditions, including multiple sources of illumination. Our methods achieve comparable levels

of accuracy with methods that have much more onerous training data requirements. Comparison of the two methods is also provided.

Index Terms—Face recognition, spherical harmonics illumination representation, 3D face morphable models, illumination invariance.

�

1 INTRODUCTION

FACE recognition has recently received extensive attention
as one of the most significant applications of image

understanding [1], [2], [3]. Although rapid progress has been
made in this area during the last few years, the general task of
recognition remains unsolved. In general, face appearance
does not depend solely on identity. It is also influenced by
illumination and viewpoint. Changes in pose and illumina-
tion will cause large changes in the appearance of a face. In
this paper, we propose two novel methods for face recogni-
tion under arbitrary unknown illumination by using sphe-
rical harmonics illumination representation.

In the past few years, there have been attempts to address
image variation produced by changing in illumination and
pose [1], [3], [4], [5]. In general, appearance-based methods
like Eigenfaces [6] and SLAM [7] need a number of training
images for each subject, in order to cope with pose and
illumination variabilities. Georghiades et al. [8] presented a
method which exploited the fact that the set of images of an
object in fixed pose, is a convex cone in the space of images. By
usingasmallnumberof trainingimagespersubject takenwith
different lighting directions, the generative model of the face
can be reconstructed. For each pose, the corresponding
illumination cone was approximated by a low-dimensional
linear subspace and the basis vectors can be estimated using

the reconstructed model. This method required a set of
training images for each subject to construct the illumination
cone. Zhou et al. [9], [10] extended photometric stereo
algorithms to handle the appearances of the class of human
faces and proposed a method of recovering albedos and
surface normals from one images under unknown illumina-
tion conditions. Both their methods and ours use a bootstrap
step to encapsulate texture and shape information of the class
of human faces. The major difference is that, methods in [9],
[10] assume that the human face is lit by a distant illumination,
thus, are bound to images taken under single directional
illuminant while in our methods, the spherical harmonic
illumination representation removes this limitation.

Blanz and Vetter proposed a 3D face Morphable Model in
[11] where each face can be represented by linear combina-
tions of a set 3D of face exemplars. By fitting the Morphable
model to the input image, the shape and texture parameters of
a 3D Morphable Model can be recovered in an analysis-by-
synthesis fashion. With the recovered shape and texture
parameters, a face recognition scheme with high recognition
rates was proposed in [12] and impressive face synthesis
results were reported in [11], [13]. In our second method, we
integrate a more general illumination representation into the
Morphable Model approach. The method in [14], [12] applies
Phong illumination model, thus is bound to images taken
under directional illuminations and requires the knowledge
of number of lights for images taken under multiple
illuminants, which is difficult to know in most cases. In our
method, the illumination variations are captured by the
spherical harmonic basis, thus there is no illumination
limitation on the input images.

Previous research has suggested that illumination varia-
bility in face images is low-dimensional, e.g., [15], [16], [17],
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[18], [19], [20], [5], [21]. Using spherical harmonics and signal-
processing techniques, Basri and Jacobs [15] and Rama-
moorthi [16] have independently shown that the set of images
of a convex Lambertian object obtained under a wide variety
of lighting conditions can be approximated accurately by a
nine-dimensional linear subspace. Furthermore, a simple
scheme for face recognition with excellent results was
described in [15]. However, to use this recognition scheme,
the basis images spanning the illumination space for each face
are required. These images can be rendered from a 3D scan of
the face or can be estimated by applying PCA to a number of
images of the same subject under different illuminations [16].
Lee et al. proposed an effective approximation of this basis by
nine single light source images of a face and Wang et al. [22]
proposed a illumination modeling and normalization meth-
od for face recognition. All the above mentioned methods
need a number of training images and/or 3D scans of the
subjects in the database, requiring specialized equipment and
procedures for the capture of the training set, thus limiting
their applicability. A promising earlier attempt by Zhao and
Chellappa [23] used symmetric shape from shading but
suffered from the drawbacks of SFS.

In this paper, we introduce and compare two methods [24],
[25] which perform face recognition for images under
arbitrary illumination conditions. Our methods require only
one training image for each subject without any illumination
limitations. Our methods are based on the recent result [15],
[16] which demonstrated that the set of images of a convex
Lambertian object obtained under a wide variety of lighting
conditions can be approximated accurately by a low-dimen-
sional linear subspace. In our first method, we show that we
can recover the basis images spanning this space from just one
image taken under arbitrary illumination conditions when
the pose is fixed. This method consists of three steps:
statistical model computation (bootstrap), training, and
testing. Initially, we use a bootstrap set consisting of 3D face
models. We compute a statistical model for each of the
spherical harmonics. Our statistical models aim to learn the
probability density function (pdf) for the basis images. The
heaviest data capture requirements for our method are placed
in the construction of the bootstrap set. This set and the
resulting pdfs for the basis images need be constructed only
once. No further modifications are necessary when new
subjects are added to the database, allowing for increased
scalability of the recognition system. During the second step,
training, when presented with an image of a novel face, we use
the statistical model learned during the bootstrap phase to
recover the corresponding basis images. Given a face, we first
estimate the weight coefficients for the basis images. Then, we
recover the basis images by computing the maximum a
posteriori (MAP) estimate. We show that the set of images
we recover is the set of basis images with maximum a
posterior probability. For each subject in the training set, we
recover the basis images that span the illumination space for
this subject. The faces in the training set need not belong to the
bootstrap set. The only requirement is that the bootstrap data
capture the statistical characteristics of the training set.
Finally, during the testing step, we use the recognition scheme
proposed in [15]. We return the face from the training set for
which there exists a weighted combination of basis images
that is the closest to the test face image.

In the first method, the statistical model is based on a
collection of 2D basis images which implicitly include the

3D information. Thus, for images taken across both
illumination and pose variations, we need to build a
statistical model for each sample pose, which is inefficient.
Hence, we propose the second method which combines a
3D morphable model and spherical harmonic illumination
representation to perform face recognition for both pose and
illumination variations. This method also consists of three
steps: construction of the 3D morphable model (bootstrap),
face reconstruction and basis image rendering (training), and
recognition (testing). Initially, we use a bootstrap set consist-
ing of 3D face models. We construct a 3D face morphable
model similar to [12]. During the second step, training, when
presented with an image of a novel face, we compute the
shape parameters of a morphable model from a shape error
estimated by the displacements of a set of feature points and
estimate the illumination coefficients and texture informa-
tion using the spherical harmonics illumination representa-
tion. The reconstructed face models then serve as generative
models that can be used to synthesize sets of basis images
under novel poses and spanning the illumination field. The
recognition (testing) step is similar to that of the first method:
We return the face from the training set for which there exists
a weighted combination of basis images that is the closest to
the test face image.

For our methods, we use a collection of 3D face scans
supplied by USF [11] as the bootstrap set and we use the
Yale Face Database B [26] and the CMU-PIE database [28]
for training and testing. We provide a series of experiments
which demonstrate that our method has high recognition
accuracy even though none of the subjects in the training set
belongs to the bootstrap set. Our methods achieve compar-
able levels of accuracy with methods that have much more
onerous training data requirements. In our experiments, as
predicted by the theory, the basis images recovered during
training are noticeably insensitive to the particular illumi-
nation of the training image, which indicates that our
method should perform well on larger databases.

This paper is organized as follows: In Section 2, we
explain the Spherical Harmonics and how to acquire basis
images from 3D face models. In Section 3, the basis image
recovery of the first method is introduced and in Section 4,
the basis image recovery of the second method is
introduced. In Section 5, we explain the recognition process
based on the recovered basis images. In Section 6, we
describe our experiments and their results and the final
Section presents the conclusions and future work directions.

2 SPHERICAL HARMONICS ILLUMINATION

REPRESENTATION

In this section, we will briefly explain the spherical harmonic
illumination representation and how we render basis images
from 3D face models using the results of [15]. LetLdenote the
distant lighting distribution. By neglecting the cast shadows
and near-field illumination, the irradianceE is then a function
of thesurfacenormalnonlyandisgivenbyanintegraloverthe
upper hemisphere �n [16]: EðnÞ ¼

R
Lð!Þðn � !Þd!. We then

scale E by the surface albedo � to find the radiosity I, which
corresponds to the image intensity directly:

Iðp; nÞ ¼ �ðpÞEðnÞ: ð1Þ
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The spherical harmonics are a set of functions that form an
orthonormal basis for the set of all square-integrable
functions defined on the unit sphere. They are analogue
on the sphere to the Fourier basis on the line or circles. Basri
and Jacobs [15] and Ramamoorthi [16] have independently
shown that E can be approximated by the combination of
the first nine spherical harmonics Hðx; y; zÞ for Lambertian
surfaces:
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where the superscripts e and o denote the even and the odd
components of the harmonics, respectively, and x; y; zdenote
the Cartesian components. Then, the image intensity of a
point pwith surface normal n ¼ ðnx; ny; nzÞ, and albedo � can
be computed according to (1) by replacing x; y; z with
nx; ny; nz, as shown in (3), where we use nx2 to denote a
vector such that nx2;i ¼ nx;inx;i for the ith voxel and define
ny2 ; nz2 ; nxz; nyz; nxy similarly. We use �: � v to denote the
component-wise product of � with any vector v. Fig. 1 gives
an example of a face model under a spherical harmonics
representation.

b00 ¼
1ffiffiffiffiffiffi
4�
p �; b10 ¼

ffiffiffiffiffiffi
3

4�

r
� � �nz; be11 ¼

ffiffiffiffiffiffi
3

4�

r
� � �nx;

bo11 ¼
ffiffiffiffiffiffi
3

4�

r
� � �ny; b20 ¼

1

2

ffiffiffiffiffiffi
5

4�

r
� � � 2nz2 � nx2 � ny2

� �
;

be21 ¼ 3

ffiffiffiffiffiffiffiffi
5

12�

r
� � �nxz; bo21 ¼ 3

ffiffiffiffiffiffiffiffi
5

12�

r
� � �nyz;

be22 ¼
3

2

ffiffiffiffiffiffiffiffi
5

12�

r
� � � nx2 � ny2

� �
; bo22 ¼ 3

ffiffiffiffiffiffiffiffi
5

12�

r
� � �nxy:

ð3Þ

3 RECOVERY OF BASIS IMAGES FROM

2D STATISTICS FOR FIXED POSE

In this section, we will explain the basis image recovery of our
first method by using statistics inference in 2D image space.
We will show that we can recover basis images spanning the
illumination space from just one image taken under arbitrary
unknown illumination conditions. First, using a bootstrap set
consisting of 3D face models, we compute a statistical model
for each basis image. During training, given a novel face
image under arbitrary illumination, we recover a set of
images for this face. We prove that these images are the set of
basis images with maximum probability.

3.1 Statistical Models of Basis Images

The key equation of this method is:

iðxÞ ¼ bðxÞT�þ eðx; �Þ; ð4Þ

which states that at pixel position x, the pixel intensity iðxÞ, is
the weighted combination of the basis images bðxÞ plus an
error term eðxÞ. � is the set of illumination coefficients. More
precisely, let I be a d-dimensional image (in our experiments,
d ¼ 75; 972) and let B be the 9 � d matrix of basis images, the
columns of which are the vectors fbðxÞgdx¼1. Also, let � be a
nine-dimensional vector denoting the coefficients of bðxÞ and
letE be a d-dimensional vector denoting the error term. Thus,
we get: I ¼ BT�þ E. Similar to [27], our statistical models
aim to learn the probability density function (pdf) forBandE.
For B, we assume that the pdfs are Gaussian distributions of
unknown means and covariances which we can estimate from
the basis images rendered by 3D scans. In our experiments,
we had 50 3D face scans with texture information in our
bootstrap set. We render nine basis images per face model
using equation set (3). From these basis images, we compute
the sample mean vectors �bðxÞ and the sample covariance
matrixes CbðxÞ. For the ith (i ¼ 1::9) basis, the component of
the covariance matrixCi

m;n ¼ covðbim; binÞwith bij representing
the jth (j ¼ 1::d) pixel vector consisting of the jth pixels of the
50 bootstrap faces. Fig. 2 displays the mean of the statistical
models of the basis images computed from our bootstrap set.
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Fig. 1. The first image is the face model and the following nine images are the basis images under various view-points, represented by spherical

harmonics. Lighter gray represents positive values and darker gray represents negative values.



To estimate the statistics of the error term E, we need real
images with known harmonic coefficients. Unfortunately, in
our current implementation, we do not have both 3D scans
and real images for the subjects in our data set. Instead, we
synthesized images and estimated their coefficients. Since we
have 3D scans with texture information, we illuminated
synthetically each 3D model, obtaining face images under a
wide variety of illumination conditions. Then, we applied a
least-squares method to estimate the coefficients �. Hence,
we can compute the sample mean �eðx; �Þ and sample
variance �2

eðx; �Þ of the error term byE ¼ I �BT�. This error
term models the deviations from Lambertian reflectance and
the errors of the low-dimensional approximation which cause
the estimates of the coefficients to diverge from the true
values. Since the sample mean and variance are functions of
�, it is impossible to learn the statistics of error term for each
possible � from a finite number of samples. Given a new
image with illumination �tra, the mean and variance of the
error term at �tra need to be interpolated using kernel
regression as described in Section 3.2.1.

Our statistical models are learned for every pixel and we
assume the spherical harmonics at different pixels are
independent of one other, or more precisely, we recover the
spherical harmonics at each pixel as if it is independent of
those at other pixels. This is clearly not ideal, but it greatly
makes the problem tractable.

3.2 Recovering the Basis Images

Given a training image of a novel face (possibly a different
subject from those in the bootstrap) under arbitrary illumina-
tion, first we need to estimate the coefficients � in (4) and to
update the error term according to the coefficients. Then, we

recover bðxÞ, the corresponding basis images, at each x by
computing the maximum a posteriori (MAP) estimate,

bMAP ðxÞ ¼ argmaxbðxÞðP ðbðxÞjiðxÞÞÞ:

This is explained in detail in the following section.

3.2.1 Estimating � and the Error Term

To estimate the unknown spherical harmonic coefficients �

for the given novel face image, we use kernel regression.

Notice that since in the bootstrap set we have images with

known coefficients, we can regard coefficient estimation as a

continuous-valued classification problem. The approach is

similar to the recovery of unknown illumination which is a

well-studied problem [29], [27]. We first store all the

K bootstrap images, fJkgKk¼1 along with their spherical

harmonic coefficients f�kgKk¼1. Similar to [27], given a new

image, itra, we can estimate the coefficients �tra as follows:

�tra ¼
PK

k¼1 wk�kPK
k¼1 wk

� � ; ð5Þ

where wk ¼ exp ½� 1
2 ðDði; JkÞ=�kÞ

2� and Dði; JkÞ ¼ ki� Jkk2

theL2 norm, �k is the width of the kth Gaussian kernel which
controls the influence of Jk on the estimation of coefficient
�tra. We can precompute all f�kgKk¼1 in a way such that
10 percent of the bootstrap images are within 1� �k at each�k.

We described how we learn the statistics of the error termE
in Section 3.1. However, as we described in Section 3.1, both
the sample mean�eðx; �Þand the sample variance�2

eðx; �Þ are
functions of �. It is impossible to learn the statistics for every
possible�beforehand using a finite number of samples. Thus,
again, given a new image, itra, we estimate the statistics of the
error term Eð�Þ using kernel regression. The mean and the
variance of the error estimation etraðx; �traÞ at �tra will be
interpolated from the known mean and variance of the error
term at coefficients f�kgKk¼1 which have been calculated. The
equation used here is similar to that in (5).

To check the accuracy of our estimation of the coeffi-
cients, we synthesized 200 images using the basis images
with various sets of coefficients f�jg200

j¼1. From the synthe-
sized images, we estimated coefficients f�0jg

200
j¼1 using (5).

Ideally, the two sets of �j and �
0
j should be identical. We

measure each estimation error by: �j ¼ Dð�i
0
j � �ijÞ=j�ijj,

where Dðx; yÞ ¼ kx� yk2 the L2 norm. The mean of the
estimation error is 0:0734, which shows that the estimated
values are very close to the actual values.

3.2.2 Computing the Basis Images

After estimating the coefficients �, we can recover the basis
images for a novel face image. As we have shown already:
bMAP ðxÞ ¼ argmaxbðxÞðP ðbðxÞjiðxÞÞÞ. It is hard to calculate
argmaxbðxÞP ðbðxÞjiðxÞÞ directly. Using Bayes’ rule:

P ðbðxÞjiðxÞÞP ðiðxÞÞ ¼ P ðiðxÞjbðxÞÞP ðbðxÞÞ: ð6Þ

Since we have already estimated the spherical harmonic
coefficients �, according to (4), we know that given an
image iðxÞ and known coefficients �, P ðiðxÞÞ is a constant.
Thus,

bMAP ðxÞ ¼ argmaxPbðxÞððiðxÞjbðxÞÞP ðbðxÞÞÞ: ð7Þ
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In this term, P ðbðxÞÞ is the Gaussian probability density
function we have learned previously and P ðiðxÞjbðxÞÞ can be
computed from (4). Thus, iðxÞ is a random variable with
Gaussian pdf of mean bðxÞT�þ �eðx; �Þand variance�2

eðx; �Þ.
Thus,

bMAP ðxÞ ¼ argmaxbðxÞðGaussðbðxÞT�þ �e; �2
eÞ

�Gaussð�bðxÞ; CbðxÞÞ:
ð8Þ

Using log probability, and ignoring constant terms, (8)
becomes:

bMAP ðxÞ ¼

argmaxbðxÞ �
1

2

i� bT�� �2
e

�e

� �2

� 1

2
b� �bð ÞTC�1

b b� �bð Þ
 !

:

ð9Þ

Then, we set the derivatives of the right side of (9) (with
regards to bðxÞ) to 0 in order to get the maximum
probability, we get:

� 2

�2
e

ði� bT�� �eÞ�þ 2C�1
b ðb� �bÞ ¼ 0: ð10Þ

Rearranging, we can get the following linear equation:

A � bMAP ¼ T; ð11Þ

whereA ¼ 1
�2
e
��T þ C�1

b and T ¼ ði��eÞ
�2
e
�þ C�1

b �b.

Bysolving(11), thenewsetofbasis imagesof thesubjectcan
be recovered. Fig. 3 shows the comparison of the rendered
basis images and the recovered basis images. Again, green
represents positive value and red for negative values. In our
recovery process, we derive the nine basis images without
explicit constraints to enforceconsistency of asingle 3D object.
We will demonstrate in Section 4 that such constraints can be
enforced by using a 3D face morphable model.

The problem of estimating the basis images B and the
illumination coefficients � is a coupled estimation problem
because it is in a bilinear form. In this method, we simplify
the problem by estimating � in a prior step using kernel
regression and using it consistently across all pixels to
recover B. We will show in our second method (Section 4)
that by acquiring the 3D information explicitly, this
estimation problem can be solved iteratively.

3.2.3 Experiments on Basis Image Recovery

Since our recognition method is based on the basis images
recovered during training, it is very important that we have
an accurate method to recover the basis images.

We performed our experiments on Yale Database B.
Following [8], we group our data set into four subsets
(Table 1). Each subset contains images illuminated from a
specific range of directions. Subset 4 contains the extreme
illumination conditions. Please refer to [8] for more informa-
tion about this grouping. Fig. 4 shows the basis images
recovered from various face images under different illumina-
tions for one subject belonging to the training set (but not the
bootstrap). We found that, except for the basis images
recovered from images under extreme illumination (i.e.,
images in Subset 4), the resulting basis images recovered from
images under different illumination are very close. For each
subject in thetrainingset,we calculatedthe basis imagesusing
20 images under different illumination (five of them belong-
ing to Subset 4). The comparison of the intensity variances is
reported in Table 2 where the per person mean variance of the
20 resulting sets of basis images, was 14.66 intensity levels per
pixel for the full set of images and 5.34 for the images
belonging to Subsets 1-3. The per person variance of the
original training set images was 31.13 (24.77 for Subsets 1-3)
while the cross-person mean variance of the 200 total image
basis sets for all subjects was 31.47 for the full set (16.33 for
Subsets 1-3). We see that the basis images, we recover exhibit
much greater invariance to illumination effects.

It is interesting to study the performance of our method on
images taken under multiple directional illumination
sources. For comparison between the performance on images
taken under a single directional illumination source and that
on images taken under multiple directional illumination
sources, we synthesized images by combining face images of
the same subject in our data set. We randomly selected
2-4 images of the same subject from the training data set and
combined them together with random weights to simulate
face images under multiple directional illumination sources
(12 synthetic images per person). Fig. 5 shows the recovered
results of basis images from the synthesized images com-
pared to the recovered results from a real image under a
single illuminant.

3.2.4 Pose Variance

So far, we have provided experiments on the images with
frontal view images. We applied our method to two sets of
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Fig. 3. The recovered basis images (bottom) compared to the rendered ones (top) for an individual subject in the bootstrap set.

TABLE 1
The Separation of the Yale Database



images with poses -12 degrees and 24 degrees azimuth from
the frontal view. We rotated the 3D scans in the bootstrap set
by -12 degrees and 24 degrees, respectively, and rendered
basis images in the same way described previously. For
training and testing, from the Yale Face Database B we
selected two sets of face images which are taken approxi-
mately -12 degrees and 24 degrees (8 images per person per
angle) from the frontal view, respectively, and repeated the
same steps described previously. Experimental results are
similar to the experimental results of our method for frontal
views. Our experiments imply a solution for face recognition
in the presence of both illumination and pose variance. The
basic idea would be to combine face pose estimation with our
method; however, we need to calculate the statistics of the
basis images for each pose in order to recover the new set of
basis images, which is not efficient. Moreover, for each subject
in the training, we need one training image per pose to
recover the basis images for each pose, which is difficult. In
the following section, we will show that, the combination of a
morphable model and spherical harmonic illumination
representation facilitates recognition for images with varia-
tions of both pose and illumination.

4 RECOVERY OF BASIS IMAGES BY USING A

MORPHABLE MODEL AND SPHERICAL

HARMONICS

In this section, we will explain how we recover the shape
and texture information of a training subject by combining a
morphable model and spherical harmonics illumination
representation.

4.1 Morphable Model

The 3D Morphable Face Model [11], [12] is a 3D model of faces
with separate shape and texture models that are learned from
a set of exemplar faces. Morphing between faces requires
complete sets of correspondences between all of the faces.
When building a 3D morphable model, we transform the
shapeandtexturespaces intovectorspaces, sothatanyconvex
combination of exemplar shapes and textures represents a
realistic human face. We present the geometry of a face with a
shape-vector S ¼ ðX1; Y1; Z1; X2; :::::; Yn; ZnÞT 2 <3n, which
contains the X;Y ; Z-coordinates of its n vertices. Similarly,
the texture of a face can be represented by a texture-
vector T ¼ ðR1; G1; B1; R2; :::::; Gn;BnÞT 2 <3n, where the
R;G;B texture values are sampled at the same n points. A
morphable model can be constructed using a data set of
m exemplar faces: exemplar i is represented by the shape-
vector Si and texture-vector Ti. New shapes s and
textures t can be generated by convex combinations of the
shapes and textures of the m exemplar faces: s ¼

Pm
i¼1

aiSi; t ¼
Pm

i¼1 biTi;
Pm

i¼1 ai ¼
Pm

i¼1 bi ¼ 1. To reduce the di-
mensionality of the shape and texture spaces, Principal
Component Analysis (PCA) is applied separately on the
shape and texture spaces:

s ¼ sþ
Xm�1

i¼1

ai�s;isi; t ¼ tþ
Xm�1

i¼1

bi�t;iti: ð12Þ

By setting the smallest eigenvalues to zero, (12) is
reformulated as:

s ¼ sþ Sa; t ¼ tþ Tb: ð13Þ

In (13), the columns of S and T are the most significant
eigenvectors si and ti rescaled by their standard deviation
and the coefficients a and b constitute a pose and
illumination invariant low-dimensional coding of a face
[14]. PCA also provides an estimate of the probability
densities of the shapes and textures, under a Gaussian
assumption: pðsÞ � e�1

2kak
2

; pðtÞ�e�1
2kbk

2

:

4.2 Forward and Inverse Face Rendering

We can generate photo-realistic face images by using the
morphable model, we described in Section 4.1. Here, we
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Fig. 4. The basis images recovered from images of the same subject under various single directional illuminants. The first column is the images we

used for the recovery followed by the set of basis images. The resulting basis images recovered from images under different illumination are very close.

TABLE 2
The Comparison of the Intensity Variances of the Original

Images and Basis Images on the Yale Database

The first row shows the per person mean variance of the original images
and the second row shows the per person mean variance of the resulting
sets of basis images. We see that the basis images we recover exhibit
much greater invariance to illumination effects.



describe how we synthesize a new face image from the face
shape and texture vectors s and t, thus the inversion process
of the synthesis is how we recover shape and texture
information from the image.

Shape: Similar to [14], a realistic face shape can be
generated by:

s2d ¼ fPRð�ssþ Saþ t3dÞ þ t2d; ð14Þ

where f is a scale parameter, P an orthographic projection
matrix and R a rotation matrix with �, 	, and 
 the three
rotation angles for the three axes. t3d and t2d are translation
vectors in 3D and 2D, respectively. Equation (14) relates the
vector of 2D image coordinates s2d and the shape parameters
a. For rendering, a visibility test must still be performed by
using a z-buffer method [30].

For a training image, inverting the rendering process, the
shape parameters can be recovered from the shape error: If
f , �, 	, and 
 are kept constant, the relation between the
shape s2d and a is linear according to Equation (14):

@s2d

@a
¼ fPRS: ð15Þ

Thus, updating a from a shape error �s2d requires only the
solution of a linear system of equations. In our method, the
shape error is estimated by the displacements of a set of
manually picked feature points sf [31] corresponding to
image coordinates simgf . The shape reconstruction goes
through the following steps.

Model Initialization: All the parameters are initialized in
this step. Shape parameter a is set to 0 and pose parameters
f , �, 	, 
, and t2d are initialized manually. We do not need to
know the illumination conditions of the training image,
unlike [14].

Feature Correspondence: For the set of prepicked
feature points in the morphable model, we find the
correspondence simgf in the training image semiautoma-
tically. The set of feature points contains major and
secondary features, see Fig. 6. After the correspondences of
major features are manually set, the secondary features are
updated automatically.

Rotation, Translation, and Scale Parameters Update: The
parameters f , �, 	, and 
 can be recovered by using a
Levenberg-Marquardt optimization [32] to minimize the
error between simgf and the model feature points [33]:

argminf;�;	;
;t2dks
img
f

� ðfPRð�ssf þ Sfaþ t3dÞ þ t2dÞk2 ¼ ð~ff; ~��; ~		; ~

; ~t2dt2dÞ;
ð16Þ

where �ssf and Sf are the corresponding shape information of
the feature points in the morphable model in (13).

Shape Parameter Update: The shape error of the feature
points, �s2d

f , is defined as the difference between simgf and the
new shape information of feature points in the model that was
rendered by recovered parameters ~ff , ~��, ~		, ~

, and ~tt2d. Thus, the
vector of shape parameters a can be updated by solving a
linear system of equations with constraint

Pm
i¼1 ai ¼ 1:

�s2d
f ¼ fPRSf�a: ð17Þ

Texture: For texture information recovery, most of the
previous methods [27], [8], [14] are applicable to images taken
under single light source, which limits their applicability.
Here, we propose a method which performs texture fitting to
a training image and has no limitation in the image
illumination conditions.

According to (1) and (2), the texture of a face can be
generated by:

t ¼ B � �; B ¼ Hðnx; ny; nzÞ � �; ð18Þ

where H is the spherical harmonics representation of the
reflectance function (2) and � is the vector of illumination
coefficients. Hence, if we know the illumination coefficients,
the texture information is only dependent on image intensity t
and surface normal n, which can be computed from the
3D shape we recovered during the shape fitting step. Thus, the
estimation of illumination coefficients is crucial. Given input
image ttra, we compute the texture and illumination coeffi-
cients iteratively as following:

1. Step 0: Initialize the texture parameter b0 as 0 and
define the initial albedo �0 ¼ �ttþ Tb0 ¼ �tt. With the
recovered shape information, we first compute the
surface normal n for each vertex. Then, the first nine
basis images B and spherical harmonics HðnÞ for
reflectance function can be computed according to (18)
and (2), respectively. Set step index i=1 and set � ¼ 0:5.

2. For each Step i, estimate the set of illumination
coefficients by solving a linear equation:

ttra ¼ Bcur�i: ð19Þ

3. As described above, the new albedo �i can be directly
computed by solving: ttra ¼ Hðnx; ny; nzÞ�i � �i. How-
ever, the illumination coefficients are computed
using the mean texture, thus not accurate. Since the
texture is dependent on both current texture and
illumination coefficients, we compute the new texture
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Fig. 5. The basis images recovered from an image taken under multiple illuminants (bottom) compared to those recovered from an image under
single illumination (top). The first column shows the input images. We see that our method performs well on images under multiple illuminants.



parameters bi by solving �0i ¼ tþ Tbi with constraintPm
i¼1 bi ¼ 1, where �0i ¼ ð1� �Þ�i�1 þ �ðttra=ðHðnx;

ny; nzÞ�iÞÞ. Then, we update the albedo �i ¼ �ttþ Tbi.
4. Perform Steps 2 and 3 iteratively until convergency

for the current �.
5. Increase � by 0:1, set b0 ¼ bi, i ¼ 0, and �0 ¼ �ttþ Tb0

and perform steps 2) to 4) iteratively until � reaches
1. The final albedo is then directly computed using
the estimated �: � ¼ ðttra=ðHðnx; ny; nzÞ�ÞÞ.

In the above algorithm, the weight � is used to trade off
the prior probability and the fitting quality. Instead of using
texture parameters [14], we estimate the albedo value for
each vertex, which will be used for basis image rendering
and recognition. For occluded vertices, texture information
is estimated through facial symmetry. Fig. 6 shows the
results of our method.

4.3 Basis Images Rendering

For each training subject, we recover a 3D face model
using the algorithm described in the previous section. The
recovered face models serve as generative models to

render basis images. In this section, for each subject, a set
of basis images across poses are generated, to be used
during recognition. We sample the pose variance for each
5 degrees in both azimuth and altitude axes. In our
experiments, the range of azimuth is [-70, 70] and the
range of altitude is [-10, 10]. Fig. 7 shows a subset of the
basis images for one subject.

4.4 Experiments on Basis Image Recovery

Similar to our first method, we perform experiments to
evaluate the illumination invariance of the basis image
recovery. Fig. 8 shows four sets of rendered basis images
recovered from various face images under different
illuminations and poses for one subject. The resulting basis
images rendered from images under different illumination
are very close. For each subject, we calculated 10 sets of
basis using 10 training images under different illumination.
The per person mean variance of the 10 resulting sets of
basis images was 3.32. For comparison, per person variance
of the original training images was 20.25. That means the
rendered basis images have much greater invariance to
illumination effects than original images.
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Fig. 6. Recovery Results: Images in the first row are the input training images, those in the second row are the initial ttings, the third row shows
images of the recovered 3D face model and the last row gives the illuminated rotated face models. In the first column, the black points are prepicked
major features, the white points are the corresponding features and the points lying in the white line are secondary features.



5 RECOGNITION EXPERIMENTS AND RESULTS

We perform recognition based on [15]. During testing, we
recognize the face for which there exists a weighted
combination of basis images that is the closest to the test face
image. Here,B is the set of basis images with size r � d, d is the
number of points in the image, and r the number of basis
images used (nine is a natural choice as discussed in [15]).
Every row of B contains one spherical harmonic image and
the rows of B form a basis for the linear subspace. We can
simply apply QR decomposition to B to obtain an orthonor-
mal basis. Thus, we compute the distance from the test
image I and the space spanned by B as kQQTI � Ik.

We performed our experiments on Yale Face Database B
[26] and CMU-PIE database [28]. The Yale Database contains
images of 10 people at nine poses and 64 illuminations per
pose. We used 45*10 face images for 10 subjects in a single
pose with each subject having 45 face images taken under
different directional light sources. The CMU-PIE database

contains 68 individuals. We performed experiments on a set
of 4,488 images which contains 68 subjects, three poses for
each subject, and 22 different illuminations for each pose.
None of Yale Database B and CMU-PIE databse is also in the
USF set used to compute the statistical model and the
morphable model.

5.1 Experiments on Frontal Images

For training and testing, we first used the Yale Face
Database B which contains faces that do not belong to our
bootstrap set. Despite its relatively small size, this database
provides images that sample sufficiently the whole illumi-
nation space and has therefore become a testing standard
for variable illumination recognition methods.

For the first method, we report two sets of experimental
results in Table 3. For the first set, we use the basis images
recovered from randomly selected training images, exclud-
ing extreme illumination conditions. For the second set, we
perform recognition using the basis images recovered from

ZHANG AND SAMARAS: FACE RECOGNITION FROM A SINGLE TRAINING IMAGE UNDER ARBITRARY UNKNOWN LIGHTING USING... 359

Fig. 7. A subset of the rendered basis images across poses.



the training images captured only under extreme illumina-
tion. We tested 400 face images and the error rates are
shown in Table 3.

For the first method, we also performed recognition
experiments based on the basis images we recovered from
training images under multiple illuminants. Error rates were
very close to the single illuminant training set, e.g., 0.3 for test
images under multiple illumination, 3.3 for test images from
Subset 4.

The comparison between our methods and other
methods [34] on Yale Database B is shown in Table 4. In
order to compare with other methods, we randomly select
face images to recover the corresponding spherical harmo-
nic images and perform recognition on 400 images. We
repeated the process 10 times and calculated the average
recognition rates. All the methods in Table 4 which have an
offline training process require all the images of Subset 1
and 2 for training, while we require only one image per
subject for training. The method of Nine Points of Light
(9PL) [34] does not have offline training, but still needs nine
images per subject for training. With our methods, training
on one image randomly selected from Subsets 1 and 2 and
testing on images from Subsets 1-3, we obtain perfect results
and even when we test on images from Subset 4, we still
achieve high accuracy. As can be seen from Table 4, the
results from our methods are comparable with methods
that require extensive training data per subject even though
our method requires only one training image.

5.2 Experiments on Images of Arbitrary Pose and
Illumination

In our experiments, we used the CMU-PIE database which
provides images of both pose and illumination variation. We
used only one image per subject to recover the 3D face model.
We used the front and side galleries for training and all three
pose galleries for testing. Notice that training images can have
very different illumination conditions (unlike [14]). We
performed recognition by using both all the nine basis images
and the first four basis images. We report our experimental
results and comparison to LiST [14] in Table 5. From the
experimental results, we find that our method gives good
recognition rates. When the poses of training and testing
images are very different, our method is not as good as [14]
because we only used a set of feature points to recover the
shape information, which is rather rough and can be
improved using flow computations.

We also performed our first method on a subset of CMU-
PIE database. We used a subset of 1,496 images which
contains 68 subjects and 22 different illuminations for each
pose. The results and the comparison of two methods are also
reported in Table 5. We can see that for images taken under
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Fig. 8. Rendered basis images (wrapped to frontal view) from training images taken under different illumination conditions and poses. The first
column shows the training images. We see that the basis images we recover exhibit much greater invariance to illumination effects.

TABLE 3
The First Row of “Non-Ext” Is the Error Rates Achieved by Using
the Set of Basis Images Recovered from Randomly Selected
Training Images (Eight per Person) from Subsets 1, 2, and 3,
and the Second Row (“Extreme”) Is the Error Rates by Using
Basis Images Recovered from Randomly Selected Training

Images (Six per Person) from Subset 4

The columns denote the testing sets.

TABLE 4
Error Rates of Recognition Using

Various Previous Methods and Our Method

Except for our method and the method of Gradient Angle, the data were
taken from [34]. The result of Gradient Angle method was taken from [35]
where only images under frontal illumination was used as a training image.



fixed pose, our two methods both perform well and the first
method is simpler and more automatic. However, the first
method cannot perform recognition for images of arbitrary
pose and illumination given one single training image per
subject. For Yale database, the performances of both our
methods are similar and for PIE database, the second method
performs slightly better than the first method because that the
frontal images in the PIE database are not well-aligned and
our first method requires accurate alignments while the
second method estimates the parameters related to pose.

Again, we study the performance of our method on images
taken under multiple directional illumination sources to test
our method under arbitrary illuminations. We synthesized
images by combining face images in our data set and
performed experiments on front and side galleries. For each
subject, we randomly selected 2-6 images from the training
data set and combined them together with random weights to
simulate face images under multiple directional illumination
sources (16 images per subject). We did experiments on the

synthesized images both during training step and testing
step. Table 6 shows the experimental results and we can see
that our method also performed equally well under multiple
sources of arbitrary direction.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we propose two novel methods for face
recognition under arbitrary illumination conditions. We have
demonstrated that by using statistical models, we can recover
spherical harmonic basis images spanning the illumination
space from a single image taken under arbitrary unknown
illumination conditions. Experimental results indicated that
our methods’ recognition rates were comparable to other
methods for images under single illumination; moreover, our
methods performed as well with multiple illuminants, which
was not handled by most previous methods. During the
training phase, we need only one image per subject taken
under general illumination to recover the basis images. Thus,
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TABLE 5
Recognition Results and Comparison: The First Column Lists the Light Numbers and the

Following Two Columns List the Recognition Rate for Each Pose

The recognition rates of the LiST algorithm are taken from [14].

TABLE 6
Experimental Results of Images under Multiple Directional Illumination and We Can See

Our Method Also Perform Well under Multiple Sources of Arbitrary Direction

“s” denotes images under single directional lighting and “m” denotes synthesized images under multiple illumination. “F” denotes the front gallery and
“D” denotes the side gallery.



the training set can be expanded easily with new subjects.

Such scalability is desirable in Face Recognition Systems. In

our experiments, as predicted by the theory, the basis images

recovered during training are noticeably insensitive to the

particular illumination of the training image, which indicates

that our methods should perform well on much larger

databases, than the ones available to us now.
In our first method, we compute the statistics of spherical

images in 2D space and in the second method, the statistics of

the spherical images is computed from the statistics of the face

structures in 3D. From the results we have, for face

recognition of images under certain fixed pose, both methods

have similar performance while the second method requires

more human interactivity and computation time. For the

recognition task of images across both pose and illumination

variations, the first method requires a large set of training

images across different poses for each subject, while our

second method performs well requiring only one single

training images per subject.
In our experiments, we tested both images under single

and multiple-directional illuminations. At this time, there

exist relatively few publicly available sets of images of faces

under arbitrary illumination conditions, so we plan to

continue validation of our method with a database with more

types of lightsources, e.g.,areasources. In oursecondmethod,

there is human interactivity in the initialization of the model

and the feature correspondences. We plan to integrate head

pose estimation methods [36], [37], [38] for model initializa-

tion and optical flow algorithms for shape error estimation

[39]. In the facerecognition phasewhereour methodcurrently

needs to search the whole pose space, we expect great speed-

up with a prefiltering process (again, using face pose

estimation algorithms) to narrow the search space.
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