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ABSTRACT

Synthesis and re-targeting of facial expressions is central to facial
animation and often involves significant manual work in order to
achieve realistic expressions, due to the difficulty of capturing high
quality expression data. Recent progress in dynamic 3-D scanning
allows very accurate acquisition of dense point clouds of facial ge-
ometry and texture moving at video speeds. Often the new facial
expressions need to be rendered in different environments where
the illumination is different from the original capture conditions. In
this paper we examine the problem of re-targeting captured facial
motion under different illumination conditions when the informa-
tion we have about the face we want to animate is minimal, a single
input image. Given an input image of a face, a set of illumination
example images (of other faces captured under different illumina-
tion) and a facial expression motion sequence, we aim to gener-
ate novel expression sequences of the input face under the lighting
conditions in the illumination example images. The input image
and illumination example images can be taken under arbitrary un-
known lighting. In this paper, we propose two methods in which a
3D spherical harmonic morphable model (SHBMM) can generate
images under new lighting conditions with remarkable quality even
if only one single image under unknown lighting is available, not
only for static poses but for dynamic sequences as well where the
face is undergoing subtle high-detail motion.

Keywords: Spherical Harmonics, Morphable Models, Facial ex-
pressions

1 INTRODUCTION

Synthesis and re-targeting of facial expressions is central to facial
animation and often involves significant manual work in order to
achieve realistic expressions, due to the difficulty of capturing high
quality expression data. Recent progress in dynamic 3-D scanning
allows very accurate acquisition of dense point clouds of facial ge-
ometry and texture moving at video speeds. Often the new facial
expressions need to be rendered in different environments where the
illumination is different from the original capture conditions. Great
progress has been made in generating photo-realistic images of ob-
jects including human faces [8][9][13][39][11]. However, when
only one single image under unknown lighting is available, facial
expression re-targeting becomes particularly challenging. In this
paper we examine the problem of re-targeting captured facial mo-
tion under different illumination conditions, when the information
about the face we want to animate is minimal, a single input im-
age under arbitrary unknown illumination. Given an input image
of a face, a set of illumination example images (of other faces cap-
tured under different illumination) and a facial expression motion
sequence, we aim to generate novel expression sequences of the in-
put face under the lighting conditions in the illumination example
images. The input image and illumination example images can be
taken under arbitrary unknown lighting. In this paper, we demon-
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Figure 1: Facial expression re-targeting under novel illumination con-
ditions from a single input image: the top left image is the input im-
age. The images in the first row are synthesized images of different
expressions and illumination conditions. The second row shows the
synthesized images of the same expression under different illumina-
tion conditions.

strate how a 3D spherical harmonic morphable model (SHBMM)
generate images under new lighting conditions with remarkable
quality even if only one single image under unknown lighting is
available, not only for static poses but for dynamic sequences as
well where the face is undergoing subtle high-detail motion (see
Fig. 1).1

Facial animation is an active area of research in computer graph-
ics (see [28] for an overview of older work). In 2D facial anima-
tion, many advanced examples of talking faces have been produced
with image-based methods [6, 12], mainly focused on the mouth
region. In 2D methods imaging conditions can only be those of the
original video. To allow 3-D animations, several techniques have
been developed to create photo-realistic face models from 2D im-
ages [30, 5]. Physics-based models are used to simulate the surface
deformations caused by muscle forces [24]. Mathematical approx-
imation models include free form deformations [21], B-Spline sur-
faces [25] and variational approaches [10]. Recently, both static
3-D scans of expressions [5, 3] and time-sequences of 3-D mo-
tion [20] have been used to collect 3-D facial expressions. Expres-
sion cloning [26] can produce facial animations by reusing existing
motion data. Morph-based approaches [30], geometry-based ap-
proaches [43, 19] and high level control mechanisms [7] generate
photo-realistic facial expressions.

Previous research suggested that illumination variability in face
images is low-dimensional e.g. [16][2][35]. Recently, using spher-
ical harmonics, it has been shown [1][32] that the set of images of a
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convex Lambertian object obtained under a wide variety of lighting
conditions can be approximated accurately by a 9 dimensional lin-
ear subspace spanned by basis images for each face. These images
can be rendered from a 3D scan of the face or can be approximated
by acquiring a number of images of the same subject under different
illuminations [31][23]. This requirement for a number of training
images and/or 3D scans of the subjects in the database necessitates
specialized equipment and procedures for the capture of the train-
ing set. In a single image based approach [40] for face recogni-
tion under arbitrary illumination conditions, a statistical model of
spherical harmonics is based on a collection of 2D basis images.
To recover a new set of basis images, the input image should be ac-
curately aligned with the bootstrap images, hence images obtained
under different viewpoints cannot be manipulated efficiently. In
this work, we base both statistical models (for shape information
and for spherical harmonic bases) and perform statistical analysis
directly on 3D to estimate the most appropriate spherical harmonic
basis even though we maintain the single training image require-
ment. The ability to manipulate the spherical harmonic basis in 3D
space allows the use of input poses that do not exist in the training
data.

Inverse rendering methods [8][9] suggest that one can gener-
ate photo-realistic renderings of objects under new lighting con-
ditions by capturing the lighting environment and recovering sur-
face reflectance properties, by using a number of images to model
the environment map and face reflectance. In the Quotient image
method[37], the set of images generated by varying lighting con-
ditions on a collection of Lambertian objects (same shape different
texture) can be characterized using images of a prototype object and
a illumination invariant “signature” image per object of the class. In
this work, instead of assuming that all faces have the same shape,
we use a set of shape parameters to represent shape information
for each face and we use the spherical harmonic basis which has
been proven to be illumination invariant as our “signature” basis.
Related to our work in [39], spherical harmonics approximate the
radiance environment map for any given image. The lighting con-
ditions of one person’s face can be modified so that it matches the
lighting conditions of a different person’s face image by assuming
two faces have similar skin albedos and using a generic face model.
In this work, given an image of a face, we explicitly recover the
shape information and estimate the spherical harmonic basis of the
face (containing albedo information). Thus the input image and
illumination example images can have different skin albedos and
poses. In 3D face Morphable Models [5], each face can be repre-
sented by linear combinations of a set of 3D face exemplars. The
method in [3] is bound to images taken under single directional il-
lumination and requires the knowledge of light direction which is
often impractical. In the proposed method, the illumination vari-
ations are captured by the spherical harmonic basis, thus, there is
no illumination limitation on the input images. Another important
difference lies in the process of face synthesis. In the face syn-
thesis applications [5][4] of the Morphable Model, new faces were
synthesized by setting different shape and texture parameters, i.e.
a new face was represented by a linear combination of a set of 3D
face exemplars resulting to the possible loss of detail for the specific
face.

By using a 3D Spherical Harmonic Basis Morphable Model
(SHBMM), any face under arbitrary illumination conditions can be
represented simply by a set of SHBMM parameters: shape parame-
ters, spherical harmonic basis parameters, illumination coefficients
and pose parameters. The problem we will discuss in this paper
can be stated as following: given an input image of a face, a set
of illumination example images (of other faces captured under dif-
ferent illumination) and a facial expression motion sequence, how
can we generate novel expression sequence of the input face under
the lighting conditions in the illumination example images? The

input image and illumination example images can be taken under
arbitrary unknown lighting. Our method can be described by the
following steps:
1) extracting the motion field from the input expression sequence
by using a multi-resolution deformable face model;
2) estimating the SHBMM parameters for both the input image and
illumination example images by fitting the Spherical Harmonic Ba-
sis Morphable Model to those images and thus removing the illu-
mination from the input image (face “de-lighting”) and generate
images under new illumination conditions (face “re-lighting”);
3) generating a face model as the initial frame with the de-lit or
re-lit texture and the recovered shape and aligning the model to the
deformable model used in step 1);
4) synthesizing novel facial expression sequences by applying the
extracted motion field to the initial frame.

This paper is organized as follows. In the next section, we will
briefly describe the Spherical Harmonic Basis Morphable Model
and explain how to recover the SHBMM parameters from a single
input image. We will also introduce how to perform image de-
lighting and re-lighting by using the recovered SHBMM parame-
ters. In Section 3, we will explain the process of facial expression
re-targeting and propose two methods for expression re-targeting
under novel illumination conditions. In Section 4, we describe our
experiments and their results. The final Section presents conclu-
sions and future work directions.

2 SPHERICAL HARMONIC BASIS MORPHABLE MODEL
AND IMAGE DE/RE-LIGHTING

In this section, we will briefly describe the method proposed in [42]
of constructing the 3D Spherical Harmonic Basis Morphable Model
(SHBMM) and explain how to recover the SHBMM parameters
from one single input image under arbitrary lighting. We will also
introduce image de-lighting and re-lighting using the constructed
SHBMM.

2.1 Spherical Harmonic Basis Morphable Model

A Spherical Harmonic Basis Morphable Model is a 3D model of
faces with separate shape and spherical harmonic basis models that
are learnt from a set of exemplar spherical harmonic basis. Mor-
phing between faces requires complete sets of correspondences be-
tween all of the faces. When building such a model, the shape and
spherical harmonic basis spaces are transformed into vector spaces.
In our method, we used a collection of 3D faces supplied by USF
[5] as the bootstrap data set. For each 3D face, we computed a set
of 9 spherical harmonic basis as follows [1]:
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where the superscripts e and o denote the even and the odd
components of the harmonics respectively, λ denote the vec-
tor of the object’s albedos, nx,ny,nz denote three vectors of the
same length that contain the x,y and z components of the sur-
face normals. Further, nxy denote a vector such that nxy,i =
nx,iny,i. Thus, we present the a face with a shape-vector S =
(X1,Y1,Z1,X2, .....,Yn,Zn)T ∈ ℜ3n and a Spherical Harmonic basis
vector B = (B1
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B ∈ ℜ9n. Thus, the Spherical



Figure 2: Fitting SHBMM to images: In each row, the first image is the input image followed by initial fitting and recovered spherical harmonic
basis (here we show 4 basis instead of 9 due to space limits). The last image is the rendered image using the recovered parameters. In the
first row, the red points are pre-picked major features, the green points are the corresponding features and the points lying in the white line are
secondary features.

Harmonic basis morphable model can be constructed using a data
set of m exemplar faces; exemplar i is represented by the shape-
vector Si and SHB-vector Bi. New shapes s and spherical harmonic
basis b can be generated by convex combinations of the shapes and
textures of the m exemplar faces as Eq. 2 shows:

s = s+Sα ;b = b+Bβ (2)

With the set of basis images, any image under arbitrary illumi-
nation conditions can be approximately represented by the linear
combination of the basis as:

I ≈ b� (3)

Eq. 3 states that any image I under arbitrary illumination conditions
can be represented by the weighted combination of the basis images
and we call � in Eq. 3 illumination coefficients.

Thus, combining Eq. 3 and 2, we see that, any face under arbi-
trary illumination conditions and pose can be represented by four
low dimensional vectors (SHBMM parameters): {α ,β , �,M} with
α representing the geometry parameters, β the spherical harmonic
basis parameters � representing the illumination coefficients and M
representing the pose parameters including projection and transfor-
mation information.

2.2 Fitting SHBMM to Images under Unknown Lighting

2.2.1 Shape Parameters Recovery

Similar to [3]. A realistic face shape can be generated by: s2d =
f PR(s̄ + Sα + t3d)+ t2d where f is a scale parameter, P an ortho-
graphic projection matrix and R a rotation matrix with φ , γ and θ
the three rotation angles for the three axes. t3d and t2d are transla-
tion vectors in 3D and 2D respectively. Given an input image of a
face, the pose parameters f , φ , γ and θ and the shape parameter α
can be recovered by minimizing the error between the set of pre-
picked feature points in SHBMM and their correspondence simg

f in
the training image:

argmin f ,φ ,γ,θ ,t2d‖simg
f − ( f PR(s̄ f +S f α + t3d)+ t2d)‖2 (4)

where s̄ f and S f is the corresponding shape information of the fea-
ture points in the SHBMM in Equation 2.

2.2.2 Estimating Spherical Harmonic Basis Parameters and Illu-
mination Coefficients

According to Eq. 3 and 2, a realistic face image can be generated
by: I = (b̄ + Bβ )� where b̄ + Bβ is the spherical harmonic basis
component of the SHBMM and � is the vector of illumination co-
efficients. Given an input image Iinput of a face, the spherical har-
monic basis parameters β and the illumination coefficients � can
be estimated by minimizing the difference between the input image
and the rendered image from SHBMM:

minβ ,�‖(b̄+Bβ )�− Iinput‖2 (5)

Figure 2 shows the fitting process and results. Please refer to
[3][40][42][22] for the details of forward and inverse face rendering
and the SHBMM parameters recovery.

2.3 Image De-Lighting and Re-Lighting

In the previous section, we demonstrated the recovery the set of
SHBMM parameters {αs,βs, �s} from an input face Is. Inversely,
we can render a face I

′
s using the recovered parameters to approxi-

mate:
I
′
s = (b̄+Bβs)�s (6)

Thus, the face texture (de-lit face) can be directly computed from
the estimated spherical harmonic basis according to Eq. 1. Hence,
face re-lighting can be performed by setting different values to the
illumination parameters � similar to [1]. However, in that method,
a face was represented by a linear combination of a set of 3D face
exemplars which results to possible loss of detail for the specific
face. Alternatively, ignoring cast shadows and specularities, we
notice that:

Is

Id
=

H(nt)λt�

λt
≈ H(ne)λe�

λe
=

I
′
s

λe
(7)

where H(n)� is the spherical harmonic basis, nt and ne are the ac-
tual and estimated surface normals and λt and λe are the real and
estimated face textures.

Eq. 7 states that the intensity ratio of the input image to the
de-lit image should be equal to that of the rendered face and the
corresponding face texture(albedo). The face texture(albedo) of the



Figure 3: Face de-lighting and re-lighting results: the images in the first row are the illumination example images and those in the first column
are input images. Images in the second column are the de-lit images. Images with remarkable quality are synthesized even if only one input
image is available.

rendered face can be simply computed: λ =
√

4πb00 according to
Eq. 1.

Rewriting Eq. 7, an input image can be de-lit:

Id =
Is ×

√
4πb00

(b̄+Bβs)�s
(8)

Given two images Is, It with the recovered parameters αs,βs, �s
and αt ,βt , �t , we have:
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4πbs

00
(9)

and
Ir

Id
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(b̄+Bβs)�t√
4πbs

00
(10)

thus, the re-lit image can be computed:

Ir =
(b̄+Bβs)�t × Is

(b̄+Bβs)�s
(11)

A simple solution to the cast shadow problem is also provided in
[42] by using the image difference (image error E) between input
image Iinput and the re-rendered image from SHBMM. Figure 3
shows examples of face de-lighting and re-lighting.

3 FACIAL EXPRESSION RE-TARGETING

We will discuss the following problem: given an input image of a
face Is, an expression sequence of another face Sexp and a set of
illumination example images of other faces It , how can we generate
new facial expression sequences of the input face simulating the
expression Sexp under the novel illumination conditions according
to the illumination example images Itarget? In our work, there is
no limitation on the illumination conditions of the input image and
illumination example images. In this section, we will introduce two
methods for facial expression re-targeting under novel illumination
conditions.

3.1 Motion Field from Input Expression Sequences

The first step of our method is to extract the motion field from the
input expression sequence Sexp. Recent technological advances in
digital projection display, digital imaging, and personal computers,
are making 3-D shape acquisition in real time increasingly avail-
able [17, 41]. In this work, the expression sequences are collected
using a structured light technique [38]. The samples returned by
our system are not registered in object space and hence there is
no guarantee of intra-frame correspondences, which would make
tracking of facial features problematic. For this reason, we use a
multi-resolution deformable face model. At the coarse level, we
use a mesh with 1K nodes that is suitable for facial animation. The
coarse mesh was first developed for robust face tracking in low
quality 2-D images [15] and extended to 3-D data. This method
is fast, and the deformation parameters for each facial motion are
few and intuitive. However it cannot capture accurately the large
number of local deformations and expression details in our data, so
we use it for a coarse-level initial tracking.

The highly local deformations and details in expressions are cap-
tured in a second level fitting process. For each frame of the range
scan, the resulting mesh from the coarse-level tracking is used to
initialize a subdivided refined mesh with 8K nodes. This finer mesh
is registered to the frame based on the 3-D extension of a variational
algorithm for non-rigid shape registration [18]. This algorithm inte-
grates an implicit shape representation [27] and the cubic B-spline
based Free Form Deformations (FFD) model [34, 33], and gener-
ates a motion/deformation field that is smooth, continuous and gives
dense one-to-one correspondences. In the following sections, the
extracted motion field will be employed in expression re-targeting.

3.2 Facial Expression Re-targeting

In this section, we will introduce two methods for facial expres-
sion re-targeting under novel illumination conditions by using the
extracted motion field.



Figure 4: Expression re-targeting from a 3D face model: the first column shows the input face model and the second column shows the
illumination example images Itarget . The images in the first row (expression I) and third row (expression II) are the input expression images and
the images in the second and fourth rows are the synthesized expression images of the input face model under the lighting conditions estimated
from the illumination example images.

3.2.1 Method I: Morphing the Re-Lit Texture

As described in Sec. 2.2, given an input image of a face Is and a
illumination example image of a second face It , the SHBMM pa-
rameters {αs,βs, �s,Ms} and {αt ,βt , �t ,Mt} of the two images can
be estimated respectively by solving the minimization problems in
Eq. 4 and 5. Thus, according to Sec. 2.3, the re-lit texture Ir of the
input image Is can be computed by using Eq. 11. A fitting process
is then performed to align the recovered face model to the multi-
resolution deformable face model described in 3.1. Hence, a novel
facial expression sequence of the input image Is under illumination
condition �t can be generated by morphing the re-lit texture with
the extracted motion field.

3.2.2 Method II: Morphing and Relighting the De-Lit Images

Similar to Method I, we first estimate the SHBMM parameters of
the input image Is and illumination example images It . Then we
compute the de-lit texture Id of the input face according to Eq. 8.
Since the structure of the input face is estimated and the motion
field has been extraced in 3D, a new 3D shape and hence a set of
spherical harmonic bases bi of each image frame i can be computed
according to Eq. 1. Using the computed spherical harmonic basis, a
novel expression sequence of Is under illumination condition �t can
be generated by relighting the de-lit texture, where the appearance
Ii
r of the frame i can be computed as Ii

r = bi�t .
The difference of the above two methods is that, in Method I, we

apply the projected motion field directly to the re-lit image while
in Method II, we first apply the motion field to the de-lit image
and perform relighting to generate novel appearance. Method I is
faster but may be inaccurate since the texture is fixed along all the

frames thus cannot represents the illumination effects due to the 3D
structure deformation. The results of both methods are reported and
compared in Section 4.

4 EXPERIMENTS AND RESULTS

We used the CMU-PIE data set [36] which provides images of il-
lumination variations for facial expression re-targeting. The CMU-
PIE database contains 68 individuals, none of which is also in the
USF set used to compute the Spherical Harmonic Basis Morphable
Model.

The first set of experiments is to perform expression re-targeting
under novel illumination conditions given 3D face models. The re-
sults of the first expression re-targeting experiment are shown in
Figure 4, where the first column shows the input face model, the
second column shows the illumination example images Itarget . The
images in the first row (expression I) and third row (expression II)
are the input expression images and the images in the second and
fourth rows are the synthesized expression images of the input face
model under the lighting conditions estimated from the illumination
example images. Figure 5 and 6 show the results of expression re-
targeting by using the re-lit and de-lit images respectively. These
are harder experiments in the sense that the 3D face shape is not
as accurate as in the experiments of Figure 4 since it’s recovered
through the morphable model and not directly captured. In both
images, the first column shows the input image Iinput and the sec-
ond column shows the illumination example images Itarget . The
images in the first two rows are the synthesized expression images
simulating expression II and the images in the last rows are the
synthesized images simulating expression I. As described in Sec.
3.2.2, in the method of using re-lit images, the illumination effects



Figure 5: Facial expression re-targeting using Re-lit images: the first column shows the input image and the second column shows the illumination
example images from which we want to transfer illumination parameters. The images in the first two rows are synthesized expressions simulating
input expression II while those in the last row are synthesized according to input expression I.

in the re-lit texture are fixed for all the frames thus might not be
able to represent the illumination effects due to the face structure
variations. Fig. 7 compares the synthesized images using re-lit and
de-lit techniques where the images in the top row are synthesized
using re-lit images and those in the second row are synthesized us-
ing de-lit images. To clearly visualize the illumination effect we
assumed the surface has constant albedo, hence all changes in the
texture image are due to illumination. We can see from Fig. 7
that, the technique of relighting de-lit images generates images that
are modulated correctly by illumination and are hence more photo-
realistic. In www.cs.sunysb.edu/ lzhang/cgivideo.avi, the result I
sequence shows the expression re-targeting of an input face model
(Fig. 3), result II and III show the expression re-targeting of an
input image (Fig. 4) under different illumination conditions, and
result IV shows the re-targeted facial expression of a second input
expression.

5 CONCLUSIONS AND FUTURE WORK

We have shown that, given an input image of a face, a set of illu-
mination example images (of other faces captured under different
illumination) and a facial expression motion sequence, we can gen-
erate new expression sequences of the input face under the lighting
conditions in the illumination example images. We demonstrated
that with the two proposed methods, a 3D spherical harmonic mor-
phable model (SHBMM) can generate images under new lighting
conditions with remarkable quality even if only one single image
under unknown lighting is available, not only for static poses but
for dynamic sequences as well where the face is undergoing subtle
high-detail motion.

In our expression re-targeting methods, the extracted motion
field was applied directed to the input face. Thus, if the face of
the input expression and the input face are very different in shape,
the synthesized expression will not be realistic. In future work, we
plan to incorporate the high level control [26][7] and editing [41]

Figure 7: Comparison of Method I and II: the images in the top row
are synthesized using Method I and those in the second row are syn-
thesized using Method II. The first three columns are rendered using
constant albedo, showing only the illumination effects, the fourth
column has the same geometry and illumination effects as the third
but true (variable) albedo). Method II generates images that are
modulated correctly by illumination, as can be seen in the right col-
umn where correct illumination reveals the deformation of the cheeks
.



Figure 6: Facial expression re-targeting using De-lit images: the first column shows the input image and the second column shows the
illumination example images. The images in the first two rows are synthesized expression simulating input expression II while those in the last
row are synthesized according to input expression I.

mechanisms into our method to generate photo-realistic facial ex-
pressions.
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