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Abstract

We present a novel hierarchical framework for high res-
olution, nonrigid facial expression tracking. The high qual-
ity dense point clouds of facial geometry moving at video
speeds are acquired using a phase-shifting based structured
light ranging technique [19]. To use such data for tempo-
ral study of the subtle dynamics in expressions and for face
recognition, an efficient nonrigid facial tracking algorithm
is needed to establish intra-frame correspondences. In this
paper, we propose such an algorithmic framework that uses
a multi-resolution 3D deformable face model, and a hierar-
chical tracking scheme. This framework can not only track
global facial motion that is caused by muscle action, but
fit to subtler expression details that are generated by highly
local skin deformations. Tracking of global deformations is
performed efficiently on the coarse level of our face model
with one thousand nodes, to recover the changes in a few
intuitive parameters that control the motion of several de-
formable regions. In order to capture the complementary
highly local deformations, we use a variational algorithm
for non-rigid shape registration based on the integration
of an implicit shape representation and the Free Form De-
formations (FFD). Due to the strong implicit and explicit
smoothness constraints imposed by the algorithm, the re-
sulting registration/deformation field is smooth, continuous
and gives dense one-to-one intra-frame correspondences.
User-input sparse facial feature correspondences can also
be incorporated as hard constraints in the optimization pro-
cess, in order to guarantee high accuracy of the established
correspondences. Extensive tracking experiments using the
dynamic facial scan of five different subjects demonstrate
the accuracy and efficiency of our proposed framework.

1. Introduction

Facial expression tracking is a fundamental problem in
computer vision due to its important role in a variety of ap-
plications including facial expression recognition, classifi-
cation, detection of emotional states, among others.

Most facial motion or expression tracking algorithms in
the literature utilize image data from 2D video sequences
[3, 4, 5, 10, 16], and focus on the accurate tracking of a
low number of facial features such as points located around
the brows, eyes, nose, mouth, etc. While the movements of
these feature points in an expression can often be used ef-
fectively in classification, they are hardly sufficient in most
recognition applications, since many distinct characteristics
of a person’s expression lie in the subtle details such as
wrinkles and furrows. In video sequences, it can be very
difficult to capture these details due to the lost of informa-
tion in projection, lighting, shadow, and other conditions.

Recent technological advances in digital imaging, dig-
ital projection display, and personal computers, are mak-
ing 3D shape acquisition in real time increasingly available.
Such ranging techniques include structured light [7, 14],
and spacetime stereo [18, 2]. These systems can capture
3D data quickly. Recently, Zhang and Huang developed
a high-resolution dynamic 3D expression data acquisition
system that can capture highly accurate geometry at speeds
that exceed video frame rate [19]. Such high-quality data
is very attractive in analysis of facial expressions. How-
ever, the dense data samples in these 3D face scans are not
registered in object space and hence there is no guarantee
of intra-frame correspondences, which would make track-
ing of facial features, temporal study of facial expression
dynamics and other analysis difficult.

In the literature, few tracking algorithms have been pro-
posed for 3D facial expression data. Existing methods pur-
suing 3D intra-frame correspondences largely fall into two
categories: One depends on markers that are attached on the



face performing an expression [6] or on facial feature corre-
spondences manually selected by users [17]; the other uses
3D shape registration algorithms such as [1, 20] to establish
correspondences based on facial geometry. However, when
used for tracking, previous methods in both categories lack
a proper modelling of the motion style in an expression,
which results from the combined effect of global facial mo-
tion that is caused by muscle action, and subtler expression
details such as wrinkles that are generated by highly local
skin deformations.

In this paper, we propose a novel hierarchical tracking
framework for 3D dynamic expression data, which can both
track global facial motion and fit to expression details, pro-
viding a tight coupling between the global and local defor-
mations. The high quality moving face range scans we use
are acquired using the system described by [19]. In order
to track facial features and establish dense intra-frame cor-
respondences, we use a multi-resolution deformable face
model. On the coarse level we use a mesh with one thou-
sand (1K) nodes that was first developed for robust face
tracking in low quality 2D images [5] and extend it to deal
with 3D range data. This method is fast, and the deforma-
tion parameters for each facial motion are few and intuitive.
However it cannot capture the large amount of local defor-
mations and so we use it for a coarse-level tracking. The
local deformations and details in expressions are captured
in a higher level fitting process. For each frame of the range
scan, the resulting mesh from the coarse-level tracking is
used to initialize a subdivided fine mesh with sixteen thou-
sand (16K) nodes. This fine mesh is registered to the frame
based on the 3D extension of a variational algorithm for
non-rigid shape registration [8]. This algorithm integrates
an implicit shape representation [12] and the cubic B-spline
based Free Form Deformations (FFD) model [15, 13], and
generates a registration/deformation field that is smooth,
continuous and gives dense one-to-one correspondences.

Using our hierarchical framework, we did tracking ex-
periments on dynamic facial scan of five different subjects,
and conducted both qualitative and quantitative validation
on the tracking accuracy. The results are very promising,
showing the potential of our algorithm to serve as an effi-
cient way to parameterize high resolution 3D dynamic ex-
pression data in order to make it easy to use while preserv-
ing the accuracy and visual quality that such data guaran-
tees.

The remainder of the paper is organized as follows: In
Section 2, we give an overview of the hierarchical track-
ing framework. Section 3 deals with tracking of the global
deformations, and Section 4 describes the local registration
algorithm between face scans. Experimental results are pre-
sented in Section 5, and we conclude in Section 6.

(a) (b) (c)

Figure 1. (a) The generic face model with manually se-
lected feature points. (b) The face model and the face scan
data are roughly aligned. (c) The result of the initial fitting
to a 3D face scan data.

2. Overview: A Hierarchical Tracking Frame-
work

To track the facial motion in an expression, we use a
multi-resolution deformable face model. The face model
has two resolutions: a coarse-level mesh with 1K nodes and
a fine-level mesh with 16K nodes.

We use the 16K node mesh for the initial fitting between
the face model and an actor’s face scan before performing
an expression (i.e., the first frame). Figure 1 demonstrates
this initial fitting process. First, the face model and the 3D
scan data are roughly aligned by hand (Figure 1(b)). Then
the 3D extension of a variational non-rigid shape registra-
tion algorithm [8] is used to register the face model with
this range scan, achieving a complete surface match (Fig-
ure 1(c)). The algorithm is based on the integration of an
implicit shape representation and cubic B-spline based Free
Form Deformations (FFD). It represents shapes (surfaces)
in an implicit form by embedding them in the space of dis-
tance functions of a Euclidean metric. A cubic B-spline
based Free Form Deformation (FFD) model [15, 13] is then
used to minimize a sum-of-squared-differences criterion be-
tween the embedding functions of a source and a target sur-
face, and recover the FFD parameters that would map the
source to the target. In this paper, in order to constrain
the initial dense correspondences established by the regis-
tration algorithm, we define a small set of feature points
on the face model (typically around 30, see Figure 1(a) as
an example), then manually select their correspondences on
the range data. These feature correspondences are incor-
porated as hard constraints during the optimization process
of the registration algorithm (see section 4 for details). As
a result, the initial correspondences established, especially
between facial features such as tip of the nose and corners
of the eyes, are very good.

After the initial fitting, a hierarchical scheme is adopted
to track the intra-frame deformations in an expression. In



the coarse level, we use the 1K node face model and ex-
tend the deformable tracking system in [5] to track 3D dy-
namic range scans. In order to fit to expression details, for
each frame of the range data, we use the coarse level track-
ing result to initialize the subdivided 16K node mesh in a
higher level. Then this 16K node refined mesh is registered
to the frame using the same variational non-rigid shape reg-
istration algorithm used for initial fitting. This hierarchical
tracking/fitting protocol provides a tight coupling between
global and local deformations, and results in efficient and
very detailed fitting to the 3D face scan data (see Figure 2
for examples).

In the next two sections, we give details on our hierar-
chical 3D tracking approach, including the global tracking
and local registration algorithms.

3. Global deformation

According to [11], we can express the positionp(t) of a
point on the 3D model as the sum of a reference models(t)
and a displacementd(t), i.e.

p = s + d (1)

The shape, position, and orientation of the reference
model s can also change. We define the reference shape
as

s = T(q; e) (2)

wheres is the result of a geometric primitivee undergoing
theglobal deformationT. T depends on a set ofn control
parametersq = (q1, q2, . . . , qn)T [5]. Some of these pa-
rameters affect the general position of the object (global ro-
tation and translation), some affect the shape (like a global
scaling), and some affect only parts of the object. Since
they have a common mathematical formulation as defined
in Eqn.(2), we do not need any distinction between these
parameters.

Assuming the global deformationsT is differentiable
[11], for every pointsi on the surface of the reference model
s, the derivative ofsi with respect toqi is the JacobianJi:

Ji =




...
...

∂si

q1
· · · ∂si

qn

...
...


 (3)

where each columnl of the JacobianJi is the gradient of
si with respect to the parameterql. To keep updating the
parametersq to track the global deformations in an expres-
sion, we use the following dynamic system updating for-
mula:

~̇q = ~fg + Finternal(~q) (4)

where ~fg is a n-dimensional displacement calledgeneral-
ized forceandFinternal(~q) is the result of the internal forces
of the model (e.g. elasticity). For each frame, the following
steps are done iteratively to derive the parameter values at
equilibrium:

1. Calculate the 3D external force~fi on each pointsi of
the deformable model’s surface. This force is derived
from the 3D displacements between the model point
and its closest data point on the face scan.

2. Calculate the generalized force

~fg =
∑

i

~fgi
=

∑

i

JT
i

~fi (5)

3. Compute the generalized internal forceFinternal(~q).

4. Calculate the derivativė~q as defined in Eqn.(4).

5. Do an Euler integration step:

~q = ~q + λ~̇q (6)

whereλ is the learning rate.

6. Repeat step 1 to 5, until~̇q is close to zero.

In our system implementation of the algorithm, we first
use an Iterative Closest Point (ICP) method [1] to rigidly
align the model and face scans, taking advantage of the
dense 3D scan data. Then the face model is divided into sev-
eral deformable regions whose shape and motion are repre-
sented by a few control parameters. Typically, for a smiling
expression the face model is divided into 10 small regions
with a total of 17 parameters. The changes in these param-
eters during global tracking are derived from the dynamic
system updating scheme described in this section. Because
of the small parameter set, the global tracking step is very
fast, though it can not capture detailed local deformations.

4. Local deformations

To further recover the local deformationsd(t), as in
Eqn. (1), we use a non-rigid 3D shape registration algo-
rithm based on the integration of implicit shape represen-
tation and the Free Form Deformations (FFD). In the fol-
lowing description, we refer to the deforming 3D face mesh
model as the source surface, and the face range scan as the
target surface. We use the16K fine level mesh model for
the local registration.



4.1. The Implicit Shape Representation

Both the 3D face model and the range images, which are
surfaces, are implicitly represented in a higher dimensional
volumetric space. Given a surfaceS, the Euclidean distance
transform is used to embed this surface as the zero level set
of a distance functionΦS defined in the embedding space
Ω:

ΦS(x, y, z) =
{

0 , (x, y, z) ∈ S
D((x, y, z), S) , (x, y, z) ∈ [Ω− S]

(7)
whereD((x, y, z), S) refers to the min Euclidean distance
between the grid location(x, y, z) and the shapeS. In shape
registration, such a representation facilitates the imposition
of constraints on smoothness and coherent correspondence,
since one would align the original surfaces as well as their
clones that are positioned coherently in the volume plane.

4.2. FFD local registration

To achieve local registration between a source surfaceS
and a target surfaceD, we aim to recover a deformation
field that creates correspondences between the implicit rep-
resentationsΦS andΦD. We model such a local deforma-
tion field L(x),x = (x, y, z), using a space warping tech-
nique, the Cubic B-spline based Free Form Deformations
(FFD) [15, 9].

The essence of FFD is to deform an object by manipulat-
ing a regular control latticeP overlaid on its volumetric em-
bedding space. When integrated with the implicit shape rep-
resentation, FFD provides a powerful registration paradigm.
We briefly describe the deformations modelled in FFD. Let
us consider a lattice of control points,

Pm,n,o = (P x
m,n,o, P

y
m,n,o, P

z
m,n,o) (8)

where(m,n, o) ∈ [1,M ] × [1, N ] × [1, O], overlaid to a
region Γ = {x} = {(x, y, z)|1 ≤ x ≤ X, 1 ≤ y ≤
Y, 1 ≤ z ≤ Z} in the embedding space that encloses the
source surface. Suppose the initial configuration of the con-
trol latticeP 0 is regular, and the deforming control lattice is
P = P 0 + δP , then in our approach, the local deformation
parameters are the incremental FFD parameters, which are
the deformations of the control points in all directions:

Θ = {(δP x
m,n,o, δP

y
m,n,o, δP

z
m,n,o)} (9)

where (m,n, o) ∈ [1,M ] × [1, N ] × [1, O]. Under
these specifications, the deformed position of a pointx =
(x, y, z) in the sample domain1 given the deformation of

1We use a narrow band around the zero level set surface as the sample
domain to ensure efficiency.

the control lattice fromP 0 to P , is defined in terms of a
tensor product of Cubic B-splines:

L(Θ;x) = x + δL(Θ;x)
=

∑3
q=0

∑3
l=0

∑3
r=0[Bq(u)Bl(v)Br(w)

(P 0
i+q,j+l,k+r + δPi+q,j+l,k+r)]

i = b x
X · (M − 1)c+ 1

j = b y
Y · (N − 1)c+ 1

k = b z
Z · (O − 1)c+ 1

(10)
The terms of the deformation component refer to:

• δPi+q,j+l,k+r, (q, l, r) ∈ [0, 3]× [0, 3]× [0, 3] are the
deformations of pointx’s 64 adjacent control points.

• Bq(u) is theqth, Bl(v) is thelth andBr(w) is therth

basis function of a Cubic B-spline.

• δL(x) =
∑3

q=0

∑3
l=0

∑3
r=0 Bq(u)Bl(v)Br(w)

δPi+q,j+l,k+r is the incremental deformation for point
x.

Having defined the form of the local deformation field
L(x) with respect to the FFD parametersΘ = δP , lo-
cal registration is now equivalent to finding the control lat-
tice deformationδP such that the deformed source surface
coincides with the target surface. The Sum-of-Squared-
Differences (SSD) criterion is used as a data-driven term
to recover the parameters:

Edata(Θ) =
∫∫∫

Ω

(
ΦD(x)− ΦS(L(Θ;x))

)2
dx (11)

In order to further preserve the regularity of the recov-
ered registration flow, one can consider a smoothness term
on the local deformation fieldδL. We consider a computa-
tionally efficient smoothness term:

Esmooth(Θ) =
∫∫∫

Ω

(∣∣∣∣ ∂
∂xδL(Θ;x)

∣∣∣∣2 +
∣∣∣
∣∣∣ ∂
∂y δL(Θ;x)

∣∣∣
∣∣∣
2

+
∣∣∣∣ ∂

∂z δL(Θ;x)
∣∣∣∣2

)
dx

(12)

An additional implicit smoothness constraint is also im-
posed by the B-Spline FFD, which guaranteesC1 continu-
ity at control points andC2 continuity everywhere else.

We can also enhance the accuracy of the tracking system
by imposing correspondence constraints on certain feature
points such as tip of the nose and corners of the eyes. As-
suming we havenc features, and for each of them, there is
a pair of corresponding points,xsi on the source surfaceS
andxdi on the target surfaceD, wherei = 1, . . . , nc. Then
the feature correspondence constraints can be expressed as

Efeature(Θ) =
∑

i

(L(Θ;xsi)− xdi)2; i ∈ [1, nc] (13)



(a) (b) (c) (d)

Figure 2.
[

Top Row
]
: Snapshots of thesmileexpression of subject 1.

[
Second Row

]
: Thesmileexpression of subject 2.

[
Third Row

]
: The smileexpression of subject 3.

[
Bottom Row

]
: The Raising eyebrowexpression of subject 3.

[
Column a

]
:

Front view of frame 1.
[

Column b
]
: Close-up view of Column a (without range scan - for showing details; with range scan - for

showing correspondences).
[

Column c
]
: Front view of frame 2.

[
Column d

]
: Close-up view of Column c.

The data-driven term, the smoothness constraint term,
and the feature correspondence constraint term can be in-
tegrated in a single objective function,

E(Θ) = Edata(Θ) + αEsmooth(Θ) + βEfeature(Θ)
=

∫∫∫
Ω

(
ΦD(x)− ΦS(L(Θ;x))

)2
dx

+ α
∫∫∫

Ω

(∣∣∣∣ ∂
∂xδL(Θ;x)

∣∣∣∣2 +
∣∣∣
∣∣∣ ∂
∂y δL(Θ;x)

∣∣∣
∣∣∣
2

+
∣∣∣∣ ∂

∂z δL(Θ;x)
∣∣∣∣2

)
dx

+ β
∑

i(L(Θ;xsi)− xdi)2
(14)

wherei ∈ [1, nc], nc is the number of feature points, and
α andβ are the constants balancing the contributions from
different terms. Using the calculus of variations and a gra-

dient descent method, such an objective function can be op-
timized to recover the deformation parametersΘ,

∂E(Θ)
∂θi

= −2
∫∫∫

Ω

[(
ΦD̂(x)− ΦS(L(Θ;x))

)

·∇ΦS(L(Θ;x)) · ∂δL(Θ;x)
∂θi

]
dx

+ 2α
∫∫∫

Ω

[
∂
∂xδL(Θ;x) ∂

∂θi

(
∂
∂xδL(Θ;x)

)

+ ∂
∂y δL(Θ;x) ∂

∂θi

(
∂
∂y δL(Θ;x)

)

+ ∂
∂z δL(Θ;x) ∂

∂θi

(
∂
∂z δL(Θ;x)

)]
dx

+ 2β
∑

i

[
(L(Θ;xsi)− xdi) ∂

∂θi

(
L(Θ;xsi)

)]
(15)

and consequently the local registration fieldL(Θ;x). Cor-
respondences thus can be established between pointsx =
(x, y, z) on the source surface and the pointsL(x) on the
target surface. And the displacements between the corre-



(a) (b) (c) (d)

Figure 3.
[

Top Row
]
: Comparison between original

texture of a subject’s colored range scans and synthesized
texture of the tracking face control mesh, for theraising
eyebrowexpression.

[
Second row

]
: Comparison for the

smileexpression. (a) Snapshot 1 from the original scan data.
(b) Snapshot 1 from the synthesized rendering of the track-
ing result. (c) Snapshot 2 from the original scan data. (d)
Snapshot 2 from the synthesized rendering of the tracking
result.

sponding points consist of the local deformationsd(t) in
Eqn. (1).

5. Experimental Results

We conducted tracking experiments using the dynamic
facial scans of five different subjects. These data are ac-
quired using the 3D high resolution shape acquisition sys-
tem described by [19]. For each subject, data for two differ-
ent expressions are collected: thesmileexpression and the
raising eyebrowexpression. On each data sequence, we first
register its first frame with the face model (at fine level16K
nodes), then we keep tracking the intra-frame deformations
using the tightly coupled global and local tracking algo-
rithm. This hierarchical tracking protocol results in efficient
and very detailed fitting to the 3D face scan data. Example
tracking results are shown in Figure 2. The fine details in
an expression captured using our method is demonstrated in
Figure 2(a-b), and the high accuracy of the intra-frame cor-
respondences established during tracking is demonstrated
in Figure 2(c-d).

Our system is implemented using C++ under the Linux
environment. All our experiments run at interactive rate on
a Pentium Xeon 3GHz dual processor platform.

For qualitative evaluation of the model point tracking re-
sults, we compare the texture of the original scan data with
the synthesized texture based on the tracking results. We
generate synthetic texture for the16K-node face control
mesh that tracks the range scans, by applying the texture
retrieved from the registered first frame to the remaining

(a) frame 1 (b) frame 5

(c) frame 10 (d) frame 37

Figure 4. Selected tracking results of a ’smile’ sequence,
with 50 frames in total. The resulting meshes are illustrated
in blue color and white dots are attached markers for verifi-
cation purposes only. (a) frame 1, (b) frame 5, (c) frame 10,
and (d) frame 37.

frames of each sequence, adding in shading and shadow ef-
fects considering the change in facial geometry during the
expression. The comparison results on frames from exam-
ple tracking sequences are shown in Figure 3. Ideally, we
should have compared the reflectance maps of the original
scans with the synthesized reflectance maps. But our com-
parison of direct luminance-based textures provides suffi-
cient evidence on the validity of the tracking result.

To further conduct quantitative validation on the accu-
racy of the tracking algorithm, we perform a number of ex-
periments on 3D facial expression sequences with attached
markers. The markers are for validation purpose only and
are not used for the tracking. In order to be detected suc-
cessfully, the size of markers is around 4mm by 4mm. An
example tracking result is demonstrated in Figure 4, where
the blue meshes are resulting coarse level control mesh, and
the white dots are the attached markers for verification pur-
poses only. Figures 5-8 show the algorithm’s tracking error
estimations on the mouth corner, upper mouth, cheek, and
nose tip respectively. As we can see, in most cases the track-
ing error in 3D is around 1mm. This error is very low given
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Figure 5. Tracking error of the marker on a mouth corner.
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Figure 6. Tracking error of the marker on the upper
mouth.

that the resolution of the 3D range scan data is0.5mm in X
and Y directions and0.2mm in Z direction.

6 Conclusions

In this paper, we have developed a hierarchical facial
expression tracking framework for establishing intra-frame
correspondences among high quality 3D dynamic facial
range scan data. The 3D face range scan data are acquired
at speeds that exceed regular video frame rate. Based on
our proposed hierarchical tracking framework, we are able
to efficiently parameterize such a large amount of data by
dealing with both large-scale deformations and free-form
style fine-details existing in the facial expressions. The ac-
curacy and resolution of our method allow us to capture and
track subtle expression details and hence to use the tracking
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Figure 7. Tracking error of the marker on a cheek.
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Figure 8. Tracking error of the marker on the nose tip.

parameters for motion analysis and expression recognition.
In our future work, we will address the problem of auto-

mated robust detection of facial features and feature corre-
spondences to constrain the global and local deformations
of the face model, thus to further decrease the tracking error.
We will also look into the incorporation of skin reflectance
modelling for robust tracking under different illumination
conditions, considering both geometry and texture informa-
tion.
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