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Abstract

In this paper we present a method for the integration of nonlinear holonomic con-

straints in deformable models and its application to the problems of shape and illuminant

direction estimation from shading. Experimental results demonstrate that our method

performs better than previous Shape from Shading algorithms applied to images of Lam-

bertian objects under known illumination. It is also more general as it can be applied to

non-Lambertian surfaces and it does not require knowledge of the illuminant direction.

In this paper: (i) We �rst develop a theory for the numerically robust integration of

nonlinear holonomic constraints within a deformable model framework. In this formu-

lation we use Lagrange multipliers and a Baumgarte stabilization approach [2]. (ii) We

also describe a fast new method for the computation of constraint based forces, in the

case of high numbers of local parameters. (iii) We demonstrate how any type of illumi-

nation constraint, from the simple Lambertian model to more complex highly nonlinear

models [27, 29] can be incorporated in a deformable model framework. (iv) We extend

our method to work when the direction of the light source is not known. We couple

our shape estimation method with a method for light estimation, in an iterative process,

where improved shape estimation results in improved light estimation and vice versa.

(v) We perform a series of experiments on both synthetic and real data. The synthetic

data come from a standardized set of images [43]. Our results compare favorably with

results of previous SfS algorithms on the same data and our light direction estimation to

a previous method by Zheng and Chellapa[44].

Keywords: Physics-based modeling, shape from shading, deformable models, illuminant

estimation, di�use reectance.
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1. Introduction

The integration of visual cues within a physics-based deformable model framework has been

attempted recently by several researchers [6, 26, 9] due to its potential for improved shape

estimation. In all previous attempts, illumination constraints such as those appearing in

the shape from shading problem, have never been considered. This is due to the nonlinear

nature of the constraints and the fact that numerically robust methods for their use are

required. In this paper, we provide a general methodology for the incorporation of illumination

constraints within a deformable model framework and apply it to the coupled problems of

object shape from shading (SFS) and light source estimation from images. We address the

following �ve main issues: (i) Integration of nonlinear holonomic constraints in deformable

models. (ii) Large systems of constraints on deformable models. (iii) Application to Shape

from Shading under any reectance model. (iv) Coupling of SFS and light source estimation.

(v) Experimental veri�cation.

We �rst develop a theory for the numerically robust integration of nonlinear holonomic con-

straints within a deformable model framework, regardless of their type. This theory amounts

to the use of Lagrange multipliers and a Baumgarte stabilization approach [2] to allow for

the robust integration of those constraints. This approach, which is a generalization of the

previously developed methodology for linear holonomic constraints [26], allows the incorpora-

tion of illumination constraints into deformable models. Furthermore, we show how to handle

large systems of constraints on physics-based models, by proposing a fast technique for the

computation of constraint forces.

In particular, we demonstrate how any type of illumination constraint, from the simple

Lambertian model to more complex highly nonlinear models [27, 29], can be incorporated in

our physics-based modeling framework. Instead of extracting the shape parameters directly

from these illumination constraints (which is not always possible), we use them to provide the

necessary generalized forces that will deform our model and estimate the object's 3D shape.

Our methodology obviates the need for commonly used approximations (e.g., linearization) to

these equations, or the solution of partial di�erential equations requiring boundary conditions
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[17]. In addition, the use of a deformable model-based approach allows the numerically robust

computation of the required derivatives and produces improved experimental results. We show

how the method can be used with either orthographic or perspective projection assumptions.

We also demonstrate how singular point information and images obtained under perspective

projection can be handled in this framework.

We use deformable models or grids with both global and local deformations [26, 25].

During shape estimation, we �rst �t the model's global parameters given the illumination

constraints and then we re�ne its shape, based on the model's local deformations, using a

coarse to �ne grid. Use of a deformable model-based approach o�ers shape exibility and

the additional advantage of the numerically robust computation of the necessary derivatives,

producing improved shape estimation results. For the SFS problem, the deformable model

formulation enforces the smoothness of the solution, without the need of regularization.

Furthermore, we extend our method to work when the direction of the light source is not

known. The quality of a model's �t to shading data strongly depends on knowledge of the

lighting conditions. Fitting to an incorrect light will either cause the �tting process to not

converge or will introduce additional error in the form of excessive wrinkling. We couple our

shape estimation method with a method for light estimation, in an iterative process, where

improved light estimation results in improved shape estimation and vice versa. Figure 1

shows two �tted models. In (b), the model is �tted with �xed light position, as estimated

by the method of Zheng and Chellapa [44] which is clearly not su�cient for accurate model

�tting. In (c), the model is �tted using the method described in this paper; re-estimation of

the light position gives a clear improvement, and the error of �t reduces by 11.2 percent.

We have performed a series of experiments with real and synthetic data where we demon-

strate the robustness of our method and the improved shape estimation results. The experi-

ments consist of the standard test images used in the thorough comparative survey [43]. Our

method outperforms all the SFS methods reviewed in [43], with a median improvement on the

average reconstruction error of 45%. We also performed experiments where we estimate both

the shape and the light direction. For the light direction part, we compare with the results of
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the algorithm of [44].

The paper is organized as follows. Section 2 examines a representative sample of the huge

amount of previous work on the topic. Section 3 presents the illumination models used in this

work and Section 4 their integration to a deformable model framework. Section 5 discusses

the coupled estimation of light direction and shape. Results of the methods described in this

paper are presented in Section 6. Future work and conclusions are in Section 7. Appendix A

describes generalizations for perspective projection and singular point information.
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ẑ

x̂

dωr

rθ

v̂
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Figure 1: The e�ects of inaccurate light source position on shape estimation are evident in (b). (a)
is the original image; (b) is the �tted model without light position re-estimation; (c) is the �tted
model with the light position re-estimation method described in this paper. (d) Geometry used to
de�ne radiometric terms

2. Previous work

2.1. Shape from Shading

Most of the earlier work on Shape from Shading (SFS) is included in the book by Horn and

Brooks[16]. The �rst comprehensive comparative study of a number of SFS algorithms was

done by [43]. They classify SFS algorithms as either global or local depending on whether

they use intensity information across the entire image or only in local neighborhoods.

Most SFS algorithms for Lambertian surfaces follow a regularization approach [17, 18, 38,

23, 21]. Other methods are based on the use of the integrability constraint [8, 15], the intensity

gradient constraint [44] and the unit normal constraint. In the above class of approaches, the

method of [21] requires good initial depth values, obtained from stereo information, and results

in better estimation results compared to shape from shading alone. Later, in [10] an approach

was proposed that combined stereo and shading, and could handle smoothly varying albedos.

Another class of algorithms [14, 28, 4] propagate height information from known points in

the image. These methods require a priori information and their performance depends on the
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accuracy of that information. Finally there are a number of methods that use local information

to reconstruct depth. [30] and [22] use a rather restrictive local spherical approximation, while

[31] and [39] use linear approximations of the reectance function.

In this paper we will focus on single image methods. Although photometric stereo ap-

proaches [41, 1, 12] give in general better reconstructions than single view methods, there

can be no motion in the scene and in the camera position while the images are taken. Other

multi-view approaches allow for the integration of stereo and SFS [10], [36].

Most of the work on Shape from Shading has utilized the Lambertian reectance model.

[27] provides a hybrid model combining di�use and specular reectance. Later, [29] studied

rough di�use surfaces that do not follow Lambert's law, and, based on statistical modeling of

surface geometry, they proposed a much more complex model of di�use reection.

As opposed to the previous methods on SFS, we present (initially in [34]) a model-based

approach, where shape from shading is incorporated as a nonlinear hard constraint within a

deformable model framework. More recently, [42] also used SFS as a hard constraint on the

normals to recover normal direction (needle maps) of Lambertian surfaces. Our deformable

model framework allows us to use the constraint on the normals to reconstruct plausible 3D

shape. In the last few years there have been a number of promising approaches using level sets

(a class of non-parametric deformable models) based on a viscosity framework [20, 33]. The

general di�erences between parametric and non-parametric deformable models are discussed

in [7]. The most recent and computationally e�cient such method [20] which proposes an

SFS solution for oblique light sources (although it is not clear how this generalizes to non-

Lambertian reectance), requires knowledge of all local minima, which can be hard to obtain

for topologically complex surfaces, such as the ones used in the experiments presented here.

This problem could be alleviated by a topology solver [19], but at the time of this research,

there were no published examples of a complete implementation which could be compared

with the results of our approach. An advantage of deformable model approaches, is that

smoothness enforcement is conveniently embedded in the model. The shape exibility o�ered

by a deformable model improves the quality of shape estimation as is demonstrated by our
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experimental results. The existence of a model underlying the reconstruction process allows

us to estimate the light source direction without making binding general assumptions of the

surface shape [35].

2.2. Illumination estimation

A useful discussion of the ambiguities involved in light source estimation can be found in

[3]. A number of researchers have proposed methods for the estimation of the light source

direction. [17] proposes an iterative method that updates both the shape and the illuminant

direction at every iteration. To avoid local minima, a good initial state is often necessary, and

furthermore, the requirement for a light source vector of unit length is not enforced. [22] used

a Gaussian sphere model for the surface normal distribution and local spherical patches, but

did not take shadowing e�ects into account. [44] presents the most sophisticated of the image

based methods, considering shadowing e�ects and using a uniform distribution of the tilt and

slant angles of surface normals. They still assume local spherical patches and their algorithm

su�ers on surfaces that deviate signi�cantly from this assumption. [21] derives accurate light

source information from surfaces reconstructed using stereo data.

2.3. Deformable Models: Geometry, Kinematics, Dynamics

In this section we review briey the general formulation of deformable models [26, 25].

Geometrically, the models used in this paper are parameterized surfaces in space whose

intrinsic parameters are u = (u; v), de�ned on a domain 
. The positions x(u; t) of points

on the model relative to an inertial frame of reference � in space are given by x = c +Rp,

where c(t) is the origin of the model frame, �, and R(t) is the rotation matrix expressing the

orientation of �. p(u; t) denotes the positions of points on the model relative to the model

frame. We introduce global and local deformations, by further expressing p as the sum of a

reference shape s(u; t) and a displacement function d(u; t), i.e., p = s+ d:

For the applications in this paper, we de�ne s as a geometric primitive parameterized in

uv space (see [26, 25] for details and formulas). Local displacements d are computed based

on the use of triangular �nite elements [26, 25], which provide a tessellation of the deformable
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model's surface. Associated with every �nite element node i is a nodal vector variable qd;i.

We collect all the nodal variables into a vector of local degrees of freedom qd = (: : : ;q>d;i; : : :)
>,

and we compute the local displacement d based on �nite element theory as d = Sqd. S is the

shape matrix whose entries are the �nite element shape functions.

Our goal when �tting the model to visual data is to recover the vector q which expresses

the model's degrees of freedom. The velocity of points on the model is given by [25],

_x = L _q: (1)

q = (q>c ;q
>

R;q
>

s ;q
>

d )
> (2)

are the model parameters with qc = c and q� the model's rotational degrees of freedom

expressed as a quaternion, and L is a Jacobian matrix. Based on Lagrangian dynamics we

make our model dynamic in q; and we arrive at the motion equations:

_q+Kq = fq; (3)

where K is the sti�ness matrix, (see [25] for de�nitions). fq are the generalized external forces

computed from the 3D forces which in our application will be computed from edges and the

brightness constraint.

3. Illumination Models

We will now present the lighting models we will use in SFS and we will reformulate them so

that they can be introduced as a constraint in a deformable model framework.

3.1. Lambertian Model

This is the simplest lighting model; it models an ideal di�user. The amount of light reected

from the surface that reaches the viewer depends only on the orientation of the surface relative

to the light source. If we assume a point light source at in�nity, and orthographic projection

along an axis parallel to the optical axis of the observer, the scene radiance is expressed as

IL = B
�

�
cos � = B�0 ŝ � n̂; (4)
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where � is the angle between the surface unit normal vector, n̂ = n=knk, and the unit light

source direction vector ŝ. B is the strength of the light source and � is the constant albedo of

the surface, which represents the fraction of the incident light to the surface that is reected.

�0 = �=� is the bidirectional reection distribution function, which is a constant in this model.

The above image irradiance equation (4) can be rewritten as a brightness constraint:

C = ŝ � n� I 0Lknk = 0; (5)

where I 0L = IL=(B�
0), and the values of I 0L range between 0 and 1. In our application, we

want to recover the shape parameters based on the intensity information at m points in the

image (corresponding to m points on the model) and therefore we will have an m-component

constraint vector C = [C1; C2; : : : ; Cm]
>.

C is a nonlinear constraint with respect to the model parameters, which in the traditional

SFS formulations resulted either in nonlinear �rst-order di�erential equations (PDE's) or

in attempts to linearize the constraint [31, 23, 39]. PDE's require appropriate boundary

conditions [17] that are often not available, whereas linearization introduces additional error.

Instead, we incorporate the above brightness constraint as a nonlinear holonomic constraint in

the deformable model framework, presented in a following section. This incorporation depends

on the computation of the Jacobian Cq of the constraint vector C, with respect to the model

parameters q.

Cq = ŜNq � LNqI
0

L � JI0

L
LkNk: (6)

(6) is derived by di�erentiating, with respect to q, each constraint given by (5). Matrices

N, Ŝ, I0L and kNk are formed by collecting the values of n, Ŝ, I 0L, knk, respectively, for each
component of C. Nq = @N=@q, LNq = @kNk=@q.

Assuming orthographic projection, the sampled image values I 0L(x; y) are parameterized

by x and y, the coordinates of the sampled model points with positions x = (x; y; z)>. We

utilize the chain rule to calculate the derivatives of I 0L(x; y), with respect to q.

@I0L(x; y)

@q
=

@I0L(x; y)

@x

@x(x; y; z)

@q
; (7)
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so, in (6) JI0

L
= @I0L(x; y)=@x and L = @x(x; y; z)=@q is the Jacobian of the model points,

described in (1). Further in this paper we will extend our approach to perspective projection.

Equation (6) requires the computation of the surface normal n and its Jacobian nq =

@N=@q. Since we have a parametric representation for our deformable model (with intrinsic

parameters (u; v)), s(u; v) = [x(u; v); y(u; v); z(u; v)]>, the surface tangents and the surface

normal are

@s

@u
=

"
@x

@u
;
@y

@u
;
@z

@u

#>
;

@s

@v
=

"
@x

@v
;

@y

@v
;
@z

@v

#>
;n =

@s

@v
� @s

@u
:

The fact that our approach is model-based o�ers greater numerical stability with respect

to previous non-model-based methods in the computation of the above derivatives, which are

very sensitive to noise in the data. This will lead to improved experimental results as will be

demonstrated in the experiment section.

3.2. More Complex Illumination Models

The Lambertian model is simple, but not very accurate for most di�use surfaces. However it

is widely used since it is easy to invert because of its simplicity. Models that try to describe

more complex reection phenomena quickly become mathematically hard to work with. Our

approach allows us to use alternative formulations for the brightness constraint, even if they

are not invertible with respect to the normal, as long as the normal, or tangents to the surface,

appear in the expression that describes the radiance of the surface.

As an example, a highly complex lighting model that can be accommodated in our formu-

lation is the one proposed by Oren and Nayar [29], to model more accurately the reectance

of rough di�use surfaces, such as sand and plaster. In that model, the di�use radiance of the

surface is dependent on both the viewing and illumination directions. Viewing direction at

each point is de�ned with polar and azimuthal angles �r and �r with respect to the normal

and illumination direction with �i and �i, as shown in Figure 1(d). The radiance of the surface

is expressed as Ld = L1 + L2, where the approximations for these components are

L1 =
�

�
E0 cos �i[C1(�) (8)
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+cos(�r � �i)C2(�; �;�r � �i; �) tan�

+(1� j cos�r � �ij)C3(�; �; �) tan(
�+ �

2
)]

L2 =
0:17�2�2

�(�2 + 0:13)
E0 cos �i[1� cos(�r � �i)(

2�

�
)2]; (9)

where � is the albedo, E0 cos �i is the irradiance, � = max[�r; �i] and � = min[�r; �i]. The

coe�cients of the model are C1 = 1 � 0:5 �2

�2+0:33
, C2 = 0:45 �2

�2+0:09
sin�, if cos(�r � �i) � 0,

and C2 = 0:45 �2

�2+0:09
(sin� � (2�

�
)3) otherwise, and C3 = 0:125 �2

�2+0:09
(4��
�2

)2; where � is the

surface roughness parameter.

Despite the complexity of the model, it can still be di�erentiated with respect to the surface

normal, since the angles that parameterize it can be converted to equivalent dot product

expressions of the normal. If ŝ is the light source direction, v̂ the viewing direction and n̂ the

surface normal, cos �i = ŝ � n̂, cos �r = v̂ � n̂ and cos(�r � �i) = (̂s � n̂ cos �i) � (v̂ � n̂ cos �r).

Thus, if Iim is the measured image value, we can form the constraint CD = Ld�Iim and use it

in the same way as in the case of a Lambertian model. Two of the examples in the experiment

section were �tted using this model.

4. Model-Based Shape Estimation from Shading

In this section we present the mathematical framework and the implementation details for

model deformation driven by illumination constraints. Furthermore we introduce a method

for fast computation of constraint forces for a large number of local deformations.

4.1. Integration of Lighting Constraints in Deformable Models

Here, we present our method for incorporating the above nonlinear illumination constraints,

C, in a deformable model framework. This constraint vector, of the form C(q; t) = 0, is

nonlinearly related to the model parameters q; constraints of this type are termed nonlinear

holonomic constraints. Once a constraint is satis�ed, its derivative must remain zero, for

the constraint to remain satis�ed. We incorporate these constraints in a deformable model

formulation, using the method of Lagrange multipliers. The case of linear non-holonomic
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constraints was treated in [6], and the case of linear holonomic constraints was treated in [25].

Lagrange Multipliers. In order to recover the shape parameters based on the constraint

information at m points of our model, we will have an m � 1 constraint vector C, which is

incorporated in (3) based on the theory of Lagrange multipliers as follows:

_q = fq �Kdq�C>

q���; (10)

where fq are point and edge based generalized forces, ��� = [�1; �2; : : : ; �m]
> are the Lagrange

multipliers and Cq is the Jacobian matrix of the constraints C with respect to the shape

parameters. We can consider �C>

q��� to be the vector of generalized forces on the model

parameters due to the illumination constraint.

Since (10) has fewer equations than unknowns, to obtain the additional necessary equations

we di�erentiate the constraint equation with respect to time _C(q; t) = 0 yieldingCq _q+Ct = 0.

In our application C is not directly dependent on time, therefore Ct = 0, which results in

_C(q; t) = Cq _q = 0: (11)

Baumgarte Stabilization The above Lagrange multiplier approach works well in practice

when the constraints are almost satis�ed initially. However, since we will be �tting a de-

formable model to the data, these constraints will be far from being satis�ed initially, and

therefore we will use Baumgarte's [2] stabilization method, taking into account that our con-

straint is nonlinear. This approach is a generalization of the previously developed methodology

for linear holonomic constraints [26]. Based on this method we replace _C(q; t) = 0 with the

following constraint equation
_C + �C = 0; (12)

where � is a stabilization factor. Any numerical error that causes the constraint to be violated

will be damped out automatically. Although larger values of � can cause greater stabilization,

the stabilizing term must not become the dominant term in the di�erential equation, as that
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would introduce numerical sti�ness in the equation [40]. In our implementation, we have

found � = 0:5 worked well in all cases. Based on (11), (12) becomes

Cq _q + �C = 0: (13)

Putting it all together: Using (10), (13) becomes

Cq(f �Kdq�C>

q���) + �C = 0; (14)

which we can solve for ��� and obtain

��� = (CqC
>

q)
�1(�C+Cq(f �Kdq)): (15)

However, we do not explicitly compute the Lagrange multipliers. Instead, we substitute (15)

into (10). If we de�ne the vector of all non-constraint (generalized) forces, as b = f �Kdq

then (10) becomes
_q = b�C>

q(CqC
>

q)
�1(�C+Cqb): (16)

The matrix C+
q = C>

q(CqC
>

q)
�1 is the pseudo-inverse of the matrix Cq, and using this

notation in the previous equation we get

_q = b�C+
q(�C+Cqb) = �C+

q�C+ (I�C+
qCq)b: (17)

The �rst term �C+
q�C in (17) is a model-based least-squares solution to the Baumgarte

lighting constraint equations of (12). Remembering that the SVD solution of a linear system

spans the \range" subspace of that system [37], we notice that in (I � C+
qCq)b, the second

term of (17), the expression C+
qCq)b projects the non-constraint forces b to the space of the

constraint forces, thus canceling the part that violates the lighting constraint.

4.2. Implementation Details

In our implementation, we �t dynamically a deformable surface model of the type described

in the previous section. In the model �tting procedure we �rst estimate the model's global

degrees of freedom to obtain a �rst approximation of the underlying surface. In order to
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1. Initialize data structures
2. Repeat for global model parameters

2.1. Calculate non-constraint (sti�ness, external) forces b
2.2. Calculate constraint matrix C and its Jacobian Cq
2.3. Calculate pseudoinverse C+

q by SVD

2.4. Evaluate change in parameters _q by Eq. 17
2.5. Update model parameters

until global model parameters jj _qjj < �
3. Repeat for local model parameters

3.1. Calculate non-constraint (sti�ness, external) forces b
3.2. Calculate constraint matrix C and its Jacobian Cq
3.3. Calculate pseudoinverse C+

q by method of Sec. 4.3

3.4. Evaluate change in parameters _q by Eq. 17
3.5. Update model parameters

until local model parameters jj _qjj < �

Figure 2: Steps of the model parameter estimation algorithm

estimate the details of the model's surface we use local deformations. We discretize our model

using triangular �nite elements with C0 continuity, as described in [25]. For e�ciency, we

use data points that coincide with the barycenter of each element. The generation of the

�nite element grid is done in a coarse to �ne fashion. We start with a few elements and we

progressively subdivide them in a regular fashion to get �ner meshes until the error of �t does

not change. This results in signi�cantly faster convergence. In addition, as our model moves

closer to the solution, we lower the model's elasticity by decreasing the relative coe�cients,

in order to re�ne surface details.

Fitting with global deformations converges faster than �tting with local ones. While

achieving interactive rate performance, global deformations provide only gross shape estima-

tion. To avoid loss of detail, when the error rate stops decreasing �tting continues with local

deformations, whose rate of convergence is slower (several minutes) and depends on the de-

sired accuracy of approximation and the complexity of the surface. Furthermore the use of

global model parameters can help abstract geometric primitives, which could prove useful for

the classi�cation of shading patterns. These applications are beyond the scope of this paper.

The pseudo-inverse of Cq in (17) is computed through singular value decomposition [32].

Since the number of sampled points is generally greater than the number of global parameters,

the system is over-constrained and our solution is equivalent to a least squares error solution.
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4.3. Fast Computation of Constraint Forces

In the above method we calculate the pseudoinverse C+
q = C>

q(CqC
>

q)
�1 in Equation (17)

using Singular Value Decomposition (SVD). In a high resolution mesh with local deformations

only, which has a few thousand nodal parameters, the computational cost of SVD becomes

prohibitive, as SVD cannot take advantage of the sparsity of the constraint Jacobian matrix.

Approximate SVD techniques which calculate only the most signi�cant singular values, are

not useful when there are no global parameters to dominate the shape description. Initially

we tried applying the SVD only on a very coarse resolution level, since it was very slow on

meshes with more than 200 or so parameters. Then, when subdividing the mesh into �ner

grids, we would compute the solution to the constraint locally only per element and then add

up the contributions. This had the e�ect of applying a soft constraint instead. Still it worked

acceptably well for orthographic images, even though convergence was slow, and test results

outperformed other methods as we reported in [34].

Here we propose a new technique for the case of large deformable meshes with only local

degrees of freedom. Motivated by the desire to use sparse matrix inversion methods, we notice

an alternative formulation of (17) as _q = b� (C>

qCq)
�1C>

q(�C+Cqb). (C
>

qCq) is an n�n

matrix where n is the number of nodes in the mesh. Here, without loss of generality, we

assume that we can only update the z coordinate of each node in order to keep the matrices

smaller. We also assume that every active element has at least one constraint associated with

it. Since the system is over-constrained [34], the rank of this matrix is the rank of Cq, which

is the number of degrees of freedom in the orientation of the facets of the object. In the case

where all the parameters are local nodal variables, possible degeneracies in this matrix can be

caused only by nodes in the boundaries of the mesh which belong to only one triangle. Such

nodes will correspond to columns of Cq that have only one non-zero entry. The reason is

that the orientation of a triangle with such a node can already be determined by its other two

nodes which belong to other triangles also. By excluding these nodes from Cq we guarantee

that the dimensionality of (C>

qCq) does not exceed the dimensionality of the mesh and thus

(C>

qCq)
�1 exists, and can be calculated with LU decomposition, faster than SVD.
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Furthermore, the matrix is highly sparse and thus sparse matrix routines can speed up

computation signi�cantly [13]. If we have a regularly sampled mesh the maximum distance

of non-zero entries in the matrix will be on the order of
p
n around the diagonal of the

matrix, making banded matrix routines attractive. We compared the use of banded matrix

inversion routines to the iterative biconjugate gradient sparse matrix methods and found

them equivalent in terms of speed (that could be possibly improved with further study of

appropriate preconditioners) [32]. However, conjugate gradient methods do not compute the

exact solution, leaving a small residual. As a result, updates to _q contain a small error,

which in general increases the number of iterations that are required before the constraints

are satis�ed. Since our implementation is based on regularly sampled meshes, we opted for

the use of banded matrix routines. This is a design choice that could be di�erent in situations

where the ordering of the nodes of the mesh is not as regular.

5. Coupling Light and SFS Estimation

One of the requirements of the method presented above is that the light direction is exactly

known. This knowledge is rarely supplied in real world situations. Instead we might have

a rough estimate (which can often be obtained by image statistics). In this section we will

describe how to extend the method described above in order to achieve the simultaneous

estimation of the light source direction and the object shape from shading information. This

is done by iteratively improving the estimates of the shape and of the light vector.

5.1. Overview

In monocular orthographic images of Lambertian surfaces, there is inherent ambiguity in the

con�guration of light and surface shape for the generation of images; in the most general case

there is an in�nite number of combinations of surface shape and albedo on one hand and

light position and intensity on the other [3]. However, considering only surfaces of constant

and known albedo, it has been shown that for every image point there are two possible

con�gurations for the normal and the light source [17, 3]. More speci�cally, if the constraint

equations C are satis�ed by shape A with normals n̂A under light source ŝA, then they are also
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satis�ed by a dual shape B with normals n̂B under light source ŝB with n̂B = 2v̂(n̂Av̂)� n̂A

and ŝB = 2v̂(̂sAv̂) � ŝA, where v̂ is the viewer direction. When the viewing direction is

perpendicular to the image plane, this relation preserves unit lengths. This is the standard

in-out ambiguity which can often be resolved by taking shadow information into account. Our

goal is to estimate either the pair (n̂A; ŝA) or the pair (n̂B; ŝB).

Our method is based on the following observation: The constant albedo assumption and

the integrability constraint on the shape of the model surface, (i.e., the requirement for a

physically plausible shape), which is implicitly imposed by our deformable model, make the

image plausible under only one light vector (and its dual)[3]. Therefore, any �tting process,

unless we use the correct light vector (or its dual), will not satisfy the integrability constraint

by modifying only the surface normals. This is due to the two sources of error: the incorrect

normals and the incorrect light position.

In the beginning of the �tting, while the model surface is still smooth and the model is

sti�, mostly gross-scale shape features will emerge. These features (or their duals) will be

roughly correct under most light source con�gurations (or their duals), so they will result into

an improved estimate for the correct source. That increases our hope that if we re-estimate the

light at this point, we will move closer to the true light vector. We can then �t the model to

the new light source, re-estimate the light position and iterate this process until convergence.

An initial formulation of the light and shape estimation problem would be to include the

light parameters in the deformable model framework. Although the light source is physically

independent from changes in the deformable model's shape parameters, (they do not appear

in equations (2) and (3)) they can still be estimated using the parameter update rule of

(10) through the constraint Jacobian matrix Cq. We can include the illuminant direction

parameters in the parameter vector q to obtain q0 = (q>; �; �)> = (q>c ;q
>

R;q
>

s ;q
>

d ; �; �)
>

and proceed in the same manner as in section (4.1). This approach would have the problem

of coupling the estimation of global parameters (such as the light parameters) and local

parameters. This coupling is usually not very e�cient; for example the light parameters need

not be updated at every step, together with the shape parameters. It also makes the methods
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used for light estimation and for shape estimation dependent on the choices of each other.

Instead we opt for a method where light estimation and shape estimation are independent

steps, and each one can be implemented in the most appropriate way. Hence, we introduce a

process consisting of an initial step and an iterative two step procedure:

1. Obtain initial light estimate

2. Repeat

2.1. Fix light and estimate shape by method of Sec. 4

2.2. Fix shape and estimate light by Levenberg-Marquart method

until no more change in light estimate

5.2. Initial light estimate

In the initial step we �t the model under a crude estimate of the light source which we obtain

using the image based method described in Zheng and Chellapa [44]. This method estimates

the light source based on image statistics, under certain assumptions on the probability dis-

tribution of the surface normals. These assumptions are general and do not take into account

any already existing knowledge about the model shape. Therefore we cannot use it to take

advantage of any improvement in the model shape estimates. However it is useful in the initial

step given the absence of any shape information; in most of the images we tested it on, it

estimated a light direction vector forming an angle of less than �=4 from the correct solution.

As will be seen in the experiments section this is good enough for our algorithm. Since we

want the light source vector to be of unit length, we only need to estimate the slant � (the

angle between the illuminant and the positive z axis) and the tilt � (the angle between the

illuminant and the x � z plane). Therefore ŝ = (cos� sin �; sin� sin �; cos �). In Figure 1(d),

the slant is angle �i and the tilt is angle �i. For the estimation of �, and ~xL; ~yL (the x and y

components of the local estimate of �) [44] uses the formulas

� = arctan

0
BB@
Ex;y

�
~yLp
~x2
L
+~y2

L

�

Ex;y

�
~xLp
~x2
L
+~y2

L

�
1
CCA ;

2
664 ~xL

~yL

3
775 = B+

2
666664

�I1
...

�IN

3
777775 ; with B =

2
666664

�x1 �y1
...

...

�xN �yN

3
777775 ; (18)
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where Efg are ensemble averages over the local estimates. B+ is the pseudoinverse of B. N

is the number of local image derivatives �I. In our implementation N = 8.The slant � can be

determined numerically from the monotonically decreasing function

f(�) =
Ex;y fIg
Ex;y fI2g (19)

5.3. Two Step Iteration

Our method for illumination and shape estimation proceeds in the following way: In the �rst

iteration of the iterative process we �t the model to the image data using the light source

direction estimated by the above initial step. Using the method described in the previous

section, with high sti�ness coe�cients (w0 = w1 = 0:05 in our experiments) we compute an

initial �t of the shape. The model parameters are updated using (17). It should be noted that

the iterative method does not depend on a particular method for the initial estimate as long

as that is not too far from the truth (in our experiments initial estimates less than 45 degrees

o� the true vector worked well).

Based on the �tted shape, we can now re-estimate the light direction. This time we want

to estimate the source direction, taking into account the surface shape. We want the closest

estimate to the source direction which, given the current shape would produce an image as

close as possible to the original. We de�ne \closeness" in a least squares sense, in the absence

of any general knowledge of which parts of the image are more conforming to the illumination

model than others. There could be more powerful error metrics for applications where more

information is available. We cannot use linear least squares to estimate the three components

of the light source independently, because the resulting vector would not be of unit length. For

this reason we need the non-linear (�; �) parameterization. We use the Levenberg-Marquart

method [24, 32], a standard non-linear least-squares estimation technique, to update the values

of � and �. Levenberg-Marquart smoothly combines an inverse-Hessian method and a steepest

descent method, with the objective of minimizing all the Jacobian of the error with respect to

the model's parameters. The method approximates its solution rapidly, but then can wander

18



around the true minimum. So we stop iterating when the error changes less than a chosen

threshold (less than 10�3). In our experiments this typically happens within a few iterations

(usually 20 or less). Once we have re-estimated the model's parameters, we repeat the model

�tting stage under the new light source. We continue iterating between these two steps until

the light stabilizes. This in our examples happens within �fteen to thirty iterations. At that

point we decrease (in decrements of 10 percent) the model's sti�ness parameters, allowing it

to minimize the lighting constraint error.

6. Results

6.1. Known Light source Direction

(a) Vase (b) Mozart (c) Penny (d) Sombrero

Figure 3: Original depth maps used to produce synthetic images

In this section we present results of our shape-estimation method, when the light source

direction is known. We present experiments both on synthetic and real images. The test set

consists of �ve synthetic data sets and �ve real images.

In all the experiments, a time step of 0.01 is the Euler integration step used in the iterative

�tting of the model, and the magnitude of the constraint forces acting on the model is weighted

by a factor of 15. We discretize the model to 32� 32 nodes for the global parameter �tting

and the �rst iterations of the local parameter �tting. As the �tting proceeds, the mesh size

is re�ned to 64 � 64 and �nally to 128 � 128 (and in the case of the Mozart images up to

192� 192). Global parameters and their deformations capture the shape well enough in low

resolution grid levels, so we only start using local deformations at higher grid resolutions.

Final depth per pixel is generated by interpolation inside the mesh triangle that the pixel

projects to.
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(a) light source
(0,0,1)

(b) light source
(1,0,1)

(c) light source
(5,5,7)

(d) light source
(0,0,1)

(e) light source
(1,0,1)

(f) light source
(5,5,7) (1) Input image (2) Recovered Shape (3) Average Depth Errors (4) Best-�t Depth Errors

Figure 4: Experiments on 3 synthesized images of Vase and 3 of Penny datasets. The 3-D data
were rendered under 3 di�erent light directions: (0,0,1), (1,0,1), (5,5,7). Column(1): input images,
Col.(2): recovered surfaces, Col.(3): absolute depth error images, with recovered and true surfaces
aligned in the same range of depth, Col.(4): absolute depth error images, with recovered and true
surfaces aligned in a \closest �t" manner. Higher intensity means higher error. Error images have
all been normalized in the 0-255 range, so only comparisons within the same image are meaningful.
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(a) light source
(0,0,1)

(b) light source
(1,0,1)

(c) light source
(5,5,7)

(d) light source
(0,0,1)

(e) light source
(1,0,1)

(f) light source
(5,5,7) (1) Input image (2) Recovered Shape (3) Average Depth Errors (4) Best-�t Depth Errors

Figure 5: Experiments on 3 synthesized images of Mozart and 3 of Sombrero datasets. The 3-D data
were rendered under 3 di�erent light directions: (0,0,1), (1,0,1), (5,5,7). Column(1): input images,
Col.(2): recovered surfaces, Col.(3): absolute depth error images, with recovered and true surfaces
aligned in the same range of depth, Col.(4): absolute depth error images, with recovered and true
surfaces aligned in a \closest �t" manner. Higher intensity means higher error. Error images have
all been normalized in the 0-255 range, so only comparisons within the same image are meaningful.
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6.1.1. Synthetic images

For the synthetic examples, we have three images for each data set, generated with the fol-

lowing light source vectors: In the �rst image of each set the direction of the light source is

(0,0,1), in the second it is (1,0,1), and in the third it is (5,5,7). We performed experiments on

each of the synthetic images. The �ve data sets that the images were rendered from where

used to test the algorithms that are included in the review of SFS algorithms in [43], so that

we could compare the performance of our algorithm with some of the standard algorithms in

the �eld. We present detailed results on twelve images generated on four of those datasets. We

have not included detailed results on the Sphere dataset, as the sphere is �tted very well with

global deformations only. The recovered global shape parameters are within 98 percent of the

true parameters. In Figure 3 we have the true height maps used to generate the synthetic test

images. To the right of each image in the left columns of Figures 4 and 5 (illuminated under

the light vectors described above) are the reconstructed height maps. For uniformity purposes

for the results reported in these �gures, the initial surface was the same in all the test cases,

a at deformable mesh with 128� 128 resolution in most cases and in the case of the Mozart

images (which are larger) 192� 192. These resolutions describe the whole mesh. In most of

the test images, because of the various irregular shapes of the objects, substantial parts of

the mesh covered non-illuminated areas were �tting was impossible. Typically about half of

the nodes in the mesh were active in SFS �tting. The meshes that we �tted were covering an

area somewhat larger than the illuminated area. This was done for uniformity purposes, so

that all the experiments were inuenced in the same way by boundary conditions.

We performed experiments on di�erent surface initializations as well. The results were

comparable in terms of absolute depth error. More speci�cally, the Penny images were also

�tted with a hemispherical grid, with global scaling along the z-axis. The Mozart images

were also �tted with a deformable superquadric that was initially �tted around the contours

of the object, using edge forces. The latter images were suitable for this approach, as the

edges between the object and the background were very clear. We analyzed quantitatively

our results using a number of di�erent error measures as follows:

22



Methods Vase Penny Mozart Sombrero

S1 S2 S3 S1 S2 S3 S1 S2 S3 S1 S2 S3

Best [43] 8.1 7.9 7.5 7.2 4.4 4.7 15.1 7.7 8.8 6.9 5.6 5.4
AVerr-DM 3.0 4.4 3.7 6.4 2.9 2.2 8.4 4.2 4.5 4.6 2.7 4.5
BFerr-DM 2.8 4.1 3.7 4.1 2.9 2.2 8.1 4.2 4.5 4.2 2.7 2.7

% Improved 63 45 50 12 35 54 45 46 49 34 52 17
Table 1: Average absolute Z error for synthetic images. For comparison, \Best [43]" provides for
each image, the best mean absolute error of the results obtained by the algorithms surveyed in [43].
Thus, it includes results from several algorithms | no single algorithm performed best on all the
images. Results of previous methods should be compared to average error measurements. AVerr-DM
gives the mean absolute errors of our method when the recovered and true surfaces are aligned in the
same range of depth, BFerr-DM gives the mean absolute errors of our method when the recovered
and true surfaces aligned in a \closest �t" manner. The bottom line reports the percentage reduction
of the error between the AVerr line and the best from previous methods

Methods Vase Penny Mozart Sombrero

S1 S2 S3 S1 S2 S3 S1 S2 S3 S1 S2 S3

Best [43] 11.1 13.9 12.9 7.2 5.5 7.3 18.2 14.6 15.9 11.9 10.4 9.2
AVerr-DM 2.0 3.3 3.3 3.8 2.1 1.9 6.7 3.5 5.8 3.8 2.0 2.7
BFerr-DM 2.0 2.6 2.7 2.6 2.0 1.8 6.3 3.4 4.5 2.6 1.7 2.0

Table 2: Standard Deviation of the error for synthetic images. \Best [43]" provides for each image,
the best standard deviation of the results obtained by the algorithms surveyed in [43]. Thus, it
includes results from several algorithms | no single algorithm performed best on all the images.
Results of previous methods should be compared to average error measurements. AVerr-DM gives
the standard deviation of our method when the recovered and true surfaces are aligned in the same
range of depth, BFerr-DM gives the standard deviation of our method when the recovered and true
surfaces aligned in a \closest �t" manner.

Mean and standard deviation of depth error Apart from the height maps, following

[43], for each image we also report the average absolute error for each image. Since the

images are considered under orthographic projection, the units for the heights are the same

as the units for the images, i.e. pixels. For each image, we compare our result to the best

result on the same test image as reported in [43]. (The algorithms were those described in

[17, 44, 21, 23, 4, 22, 31, 39]). Our results are, in almost all cases clearly better, than the

results computed using the SFS-based only algorithms reviewed in [43], and in no case worse.

In fact they can be compared in terms of accuracy with the algorithm in [21] which is not

considered together with the other algorithms, because it is not solely a SFS algorithm, as

it relies on good initial values which are provided by stereo. None of the SFS-based only

algorithms reviewed in [43] performed best for all images so the best previous results for each

image are due to di�erent algorithms. If we compared against each algorithm individually

improvements in error reduction would be even more pronounced.
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Methods Vase Penny Mozart Sombrero

S1 S2 S3 S1 S2 S3 S1 S2 S3 S1 S2 S3

Best [43] 1.2 0.9 0.9 1.3 1.0 1.1 1.3 0.6 0.7 0.8 0.5 0.7
AVerr-p-DM 0.2 0.5 0.3 0.5 0.4 0.4 0.5 0.3 0.3 0.4 0.2 0.2
AVerr-q-DM 0.3 0.4 0.4 0.5 0.3 0.3 0.5 0.2 0.3 0.4 0.2 0.2

AVerr-p� q-DM 0.2 0.5 0.3 0.5 0.4 0.4 0.5 0.3 0.3 0.4 0.2 0.2
Table 3: p� q error measurements. Best [43]" provides for each image, the best p� q error of the
results obtained by the algorithms surveyed in [43]. Thus, it includes results from several algorithms
| no single algorithm performed best on all the images. Results of previous methods should be
compared to average error measurements. AVerr-DM gives the p, q, p� q error of our method when
the recovered and true surfaces are aligned in the same range of depth.

Since all the algorithms recover relative height, the range of the recovered height values

can vary greatly. In order to compare any two surfaces, we need to normalize them to the

same range. The average absolute error measure scales the height values so that the ranges

of the two surfaces are equal { we used the same method for this as [43]. This method can

be extremely sensitive to noisy outliers { a single point can drastically change the absolute

range of height values. For this reason, we evaluate one more error measure, the best error of

�t. In this measure we �nd the scaling and translation along the Z axis of the two surfaces,

so that the distance between them will be minimal, in a least squares sense. These results

are reported in Table 1. Using the average absolute error method that was used in [43], we

notice that the improvement is between 12 and 67 percent in error reduction, depending on

the image. The median improvement is 45 percent. 10 out of 12 images of the images had

errors reduced by 33 percent or more.

We also provide the standard deviation � of the absolute depth errors. It is not perfectly

clear in [43] whether the numbers they provide for standard deviation are for � or �2. The

results are provided in Table 2. In general the standard deviation results agree with the mean

error results in the sense that smaller mean errors have smaller standard deviations. We see

that with the exception of Vase, head-on (0,0,1) illumination produces signi�cantly higher

errors. This is due to the convex/concave ambiguities, either local or global.

Mean gradient error This indicates the error in surface orientation. It is not clear again

how this was computed in [43]. In Table 3 we provide measurements for the average error in

the p and q directions of the gradient (i.e. the horizontal dz=dx and vertical dz=dy directions)

and an average of the two errors is provided. We used the forward approximation in the
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calculation of the gradient. The gradient was computed on the �nal interpolated depth.

Di�erence images of the absolute depth error The rightmost two columns of Figures

4 and 5 are depth error images. These images provide information on the distribution of the

errors and the e�ect that the underlying surface structure has in the reconstructed results.

The intensity of each pixel is relative to the error in depth at that point of the reconstructed

surface. The higher the error of a region, the brighter the region will appear. For visibility

purposes intensity values are scaled in the 0-255 range. Since the scaling is not the same for

all images, it is not possible to compare two di�erent reconstructions in this way. We can only

make meaningful comparisons between pixels of the same image.

Observing the error images we notice that most of the error is near the boundaries, except

for the (0,0,1) images with convex/concave ambiguities. On the side-lit images large self

shadowed areas where �tting is not possible violate the integrability of the surface. In the

Penny and the Sombrero images the resolution of the �tted model is not high enough for the

high frequency details of the images.

Histograms of the percentage depth error In Figures 6, 7 we show the percentages

of depth errors with respect to the true depth as distributions of those errors. Each bar of the

histograms represents the number of pixels with a relative error within the interval less than

or equal to the indicated value. The percentage depth error is computed by:

jtrue depth� estimated depthj
true depth

� 100%

Pixels with more than 100% error, typically on problem areas such as boundaries, shadowed

areas, or convex concave ambiguities, are plotted as 101% error. Penny and Sombrero images

are the ones with a large number of error over 100%, probably due to the discontinuities in

the boundaries of Penny and the convex/concave ambiguities and self shadowing of Sombrero.

Constraint satisfaction and timing The illumination constraint in Equation (5) which

seeks to minimize the di�erence between the illumination reected from the model and the

intensities measured in the image, is imposed as a hard constraint on the model, meaning
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Figure 6: Histograms of the percentage depth error for the Vase (Rows 1 and 2) and Penny (Rows
3 and 4) reconstructions, relative to the true depth. Column (a) is for light(0,0,1), Column (b) is for
light(1,0,1), Column (c) is for light(5,5,7) Histograms on Rows 1 and 3 are for recovered and true
surfaces aligned in the same range of depth, histograms on Rows 2 and 4 are for recovered and true
surfaces aligned in a \closest �t" manner. Each bar in the histograms represents the summation of
the number of pixels for the depth error within the interval less than or equal to the indicated value.
All pixels with more than 100% error are counted as 101% error.
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Figure 7: Histograms of the percentage depth error for the Mozart (Rows 1 and 2) and Sombrero
(Rows 3 and 4) reconstructions, relative to the true depth. Column (a) is for light(0,0,1), Column (b)
is for light(1,0,1), Column (c) is for light(5,5,7) Histograms on Rows 1 and 3 are for recovered and
true surfaces aligned in the same range of depth, histograms on Rows 2 and 4 are for recovered and
true surfaces aligned in a \closest �t" manner. Each bar in the histograms represents the summation
of the number of pixels for the depth error within the interval less than or equal to the indicated
value. All pixels with more than 100% error are counted as 101% error.
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that it has to be entirely satis�ed by the �tting process. Thus it is not surprising that in all

images the model converged in satisfying the constraint in average within 0.5 to 1.5 8-bit gray

levels. As we have seen earlier in the case of not precisely known light source, in cases where

the imaging assumption do not hold, in order to satisfy the illumination constraints, excess

wrinkling might be introduced in the reconstructed surface.

All the experiments were conducted on an SGI O2 workstation, with an R10000 proces-

sor at 175 MHz and 192M of memory. Di�erent images needed signi�cantly di�erent times.

The Penny images converged within 1000 iterations whereas the Mozart images needed ap-

proximately 10000 to 12000 iterations. The experiments were terminated with a very strict

criterion on the average change c on the model parameters, namely c < 10�4 � sc where sc is
the scale of the model. Measurements of error on results obtained at 10 percent of iterations

show an increase in average depth error of less than 15 percent with respect to the �nal result

for most of the images. This suggests that when time is of essence, adequate results can be

obtained much faster. By far the most time consuming part of the algorithm, when dealing

with large meshes is the matrix inversion described in Section 4.3. For a large mesh with

about 8000 active triangles more than 90% of the CPU time is spent on the matrix inversion.

An additional 5% is spent on constructing the matrix. For a large mesh with about 8000

active triangles, each iteration needs approximately 2 to 2.5 seconds of CPU time, whereas

for smaller meshes with about 800 nodes this times drops below 100 ms. This is why the

multiresolution approach is necessary. For really large models, that require a lot of memory

to store the data structures the size of the available memory can signi�cantly a�ect run-times.

Indicatively, a low resolution model of Vase of about 200 triangles converged in approximately

30 seconds, a high resolution model of Penny with more than 2000 triangles required approx-

imately 20 minutes and a very high resolution model of Mozart with almost 10000 triangles

required more than 4 hours, using a multi-resolution method.

Fast Constraint Force Calculation The e�ect of the new fast method for constraint

force computation described in Section 4.3 were signi�cant both in terms of error reduction

and in terms of speed. Compared to the local computation method that we previously used
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[34], median drop in average absolute depth errors was 25%. The biggest improvement was for

the side illuminated images. In the frontally illuminated images the drop was less than 10%,

possibly because SFS in general is not as successful in these images, and smoothing plays a

larger role. In terms of speed, improvement was even more dramatic. A mesh with 200 nodes

could take more than 10 seconds per iteration with the old method, whereas now this is done

in a few milliseconds (approximately 20 ms).

6.1.2. Real Images

(a) David: Original (b) Recovered shape
(c) Original light source
rendering

(d)Light source with or-
thogonal tilt rendering

(e)Light source with op-
posite tilt rendering

(a) Peppers: Original (b) Recovered shape
(c) Original light source
rendering

(d)Light source with or-
thogonal tilt

(e)Light source with op-
posite tilt rendering

Figure 8: Real images: Reconstruction and 3 renderings under the original light source, light source
with orthogonal tilt and light source with opposite tilt

In Figure 8 we have the reconstructed height maps of the two real images. Estimates

of the light source were provided with the images. The real images that were tested were:

Pepper, with estimated light source (-0.707,0.642,1), David, with estimated light source (-

0.707,0.707,1). In Pepper we have albedo discontinuities and self-occlusions, which violate the

assumptions of the algorithm. The estimated light sources for those images are the ones given

in [43]. We also provide three renderings of each recovered shape; the �rst under the original

light source, the second under a light source with tilt orthogonal to the original and the third

under a light source with opposite tilt. The fact that renderings under the light source used

for the reconstruction are so close to the original image highlights the advantage of imposing

illumination constraints as hard constraints that have to be satis�ed exactly.
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Visual inspection of our results for synthetic and real images, shows that our method

manages to recover surface information and detail in most cases. Discontinuities are handled

well, thanks to the elasticity of the model. A number of the inherent problems of SFS, such as

convex/concave ambiguities, problems arising from the violation of the assumptions, rippling

parallel to the direction of the light [44, 23], appear in some of the results. The C0 elements

that are used for e�ciency reasons, tend to favor at surfaces. The amount of detail recovered

depends on the number of elements in the model. When �tting a �ne mesh, local detail will

appear in the �rst few iterations. As the �tting progresses, the deformation will deepen and

broaden but without signi�cant loss of detail. This is an advantage of the hard constraints

approach.

6.2. Non-Lambertian Di�use Reectance

Two experiments were performed on synthetic images of a sphere and Mozart, rendered using

the lighting model of [29] described in Section 3.2. The parameters for � = 0:543788 and

� = 0:770950, are the values that model plaster surfaces [5]. Illumination was at an angle of

22.5 degrees o� the viewing axis for the sphere experiment and in the direction (5,5,7) for the

Mozart experiment. In both cases the shape was recovered correctly with similar error results

as Lambertian reectance. Reconstruction results are shown in Figure 9.

(a) Lambertian re-
ectance image

(b) Di�use Non-
Lambertian [29]

(c) recovered shape
from (b)

(d) Lambertian re-
ectance image

(e) Di�use Non-
Lambertian [29]

(f) recovered shape
from (e)

Figure 9: (c), (f) are recovered shapes from the images (b), (e) using the Non-Lambertian Di�use
reectance model described in [29]. (a), (d) are the corresponding images of the same geometry with
the same albedo under the Lambertian model.

6.3. Unknown Light

We now present experiments of coupled estimation of light direction and SFS on real and

synthetic data. We get substantially improved results in light estimation compared to previous

methods, and consequently in the shape estimation.
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(a) Penny (5,5,7) (b) Penny (0,0,1) (c) Mozart (5,5,7) (d) Mozart (0,0,1) (e) Mozart (1,0,1)

Figure 10: Top: Synthetic Images and Light Directions. Bottom: Fitted Models. Fitting was
performed under unknown light i.e. the illumination under which the images were synthesized was
not taken into account for the �tting.

(a) Original Image (b) Fitted Model (c) Dual of �tted model

Figure 11: In the case of the penny lit from [1,0,1], the correct shape (c) is the dual of the �tted
model (b).

6.3.1. Synthetic Data

We �rst present results of experiments on synthetic data sets where we had ground truth for

the shape and the generating light source direction. Each data set was illuminated under three

di�erent light source directions. For each image we �rst estimated the light source directions

using the method in [44]. This method gave accurate results for the images that were lit

head-on (with direction (0,0,1)). In these cases our method obviously gave no improvement

(although it did not decrease accuracy | the lighting position remained stable). In all other

cases there was a marked improvement over [44].

To test the robustness of our method to an initially poor lighting-direction estimate, we

introduced to the images obtained with lighting direction (0,0,1) an initial lighting direction

error of 45 degrees. In the Mozart example the light estimate converged to 4.8 degrees from

the true direction vector and the in the penny example it converged to 3.1 degrees. The
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Figure 12: (a) Light direction error analysis with respect to initial estimate. We plot the error in
the �nal estimate when the direction of the initial estimate is 30,45,60 and 90 degrees o� the true
direction. Each initial lighting direction o� the true light forms a cone with respect to the true light
axis. We sample the cone at intervals of 30 degrees. Four sequences at di�erent angles were generated
for the Mozart image with true light direction (5,5,7) and one sequence for Penny illuminated from
above (0,0,1). (b) Light estimation intermediate results for Mozart lit from [5,5,7]. Initial estimate
at top right was 45 degrees o� the true light, denoted by a square. Crosses are the estimates of our
algorithm connected by a line in the order that the algorithm successively generates them. The �nal
estimate was 2 degrees o� the truth. The circle at the bottom left is the estimate generated by the
algorithm in [44] which was 23.7 degrees o� the true light.

Figure 13: Experiments on real data. Initial image on the left and 4 views of the recovered model

recovered shapes can be seen in Figure 10.

The examples with light source direction (5,5,7) (or � = � = �=4) gave the best results.

The initial estimate from the [44] method for Mozart was 23.7 degrees o� the true vector and

our method recovered the illumination direction with a 2 degrees error. The initial estimate

for the penny was 83 degrees o�. Our model converged to 5.6 degrees of the true light vector.

The examples lit sideways (with � = 0, direction (1,0,1)) were the ones with the highest

errors. The method in [44] gave an estimate for Mozart that was 18.9 degrees o� from

the correct direction. Our method reduced the error to 9.7 degrees. Although a signi�cant

improvement, it still wasn't close enough to avoid visible errors in the reconstruction. As for

the penny example, the initial estimate was 83 degrees o� from the true light but only 7 from

its dual (direction (-1,0,1). As expected, our method converged to the dual with an error of 5
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degrees. As can be seen in Figure 11 the �tting process gave us the dual shape, as described

earlier. We converted this to the correct �t by taking the complement of the normals with

respect to the viewing direction.

In our experiments, we found the Levenberg-Marquart method typically converges very

quickly (within three to �ve iterations) for the estimates of � and �. We also found our

light estimation method typically converges to the accurate estimate quickly, in less than 20

iterations of a low resolution model for the Penny experiments.

We analyzed how the choice of the initial lighting estimate a�ects the error of the recovered

light direction. The initial estimates were chosen in the following way: We selected an initial

estimate at 30, 45, 60, 90 degrees o� the true vector. Then we rotated each estimate around

the true vector and formed a cone. We sampled the cone at intervals of 30 degrees. This

gave us 12 di�erent estimates for each �xed angle o� the true vector, which we used as initial

estimates to our method. We see that for all the experiments where the initial estimate was

no more than 30 degrees o� the true vector, our algorithm gave a lighting position within 5

degrees from the correct answer (Figure 12(a)). The successive light estimates returned in one

of those experiments (initial estimate is 45 degrees o� from the truth) are shown in Figure

12(b), as they quickly converge towards the the true light source direction.

We also tested how the initial shape a�ects the light estimation. The Mozart (5,5,7) image

was �tted using a sphere, an ellipsoid and a planar mesh. All three converged to 2.2, 3.5

and 4.6 degrees, respectively. So, based on our experiments, we observe that the method can

estimate the light direction, provided that the initial shape has the ability to deform to �t the

data. It can take longer to converge if the initial shape is far from the true data.

6.3.2. Real Data

Figure 13 shows the �tting results to a real image of a face. We compare the reconstruction

to data obtained by stereo using the method in [11]. The camera pose and the perspective

projection parameters were supplied with the stereo data. We compared the recovered light

vector, to the light vector that can be estimated from the stereo data, and the two estimates are

2.6 degrees o�. The recovered depth is on average 1.34 percent o� from the true data. There
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are visible errors in the reconstruction of the mouth and the eyes due to the albedo changes

and at the tip of the nose due to specularities that violate the Lambertian assumption. These

are typical shortcomings when SFS alone is used on real data. However, the light estimation

was not adversely a�ected by the violations of the shading assumptions.

7. Conclusions and Future Work

In this paper we presented a method for the integration of nonlinear holonomic constraints

in deformable models and its application to the shape and illuminant direction estimation

from shading problems. Experimental results demonstrate that our method performs better

than previous Shape from Shading algorithms applied to images of Lambertian objects under

known illumination. It is also more general as it can be applied to non-Lambertian surfaces and

does not require knowledge of the illuminant direction. Using our theory for the numerically

robust integration of nonlinear holonomic constraints within a deformable model framework,

we demonstrated how any type of illumination constraint, from the Lambertian model to

more complex highly nonlinear models [27, 29] can be incorporated in a deformable model

framework.

Our method also works when the light source direction is unknown. We coupled our shape

estimation method with a method for light estimation, in an iterative process, where improved

shape estimation results in improved light estimation and vice versa. This method resulted

to light direction estimation for constant albedo Lambertian surfaces within 5 degrees of the

true direction, when the initial estimate was within 45 degrees from the truth.

Future work includes integration of this method with other image cues, such as stereo

and optical ow. In such cases the question of heterogeneous constraints on the same model

will need to be addressed and each type of constraint applied appropriately. We also plan to

generalize to more general illumination situations with more than one light sources.

A. Further Generalizations of the Approach
Perspective Projection Perspective projection can be easily handled in the deformable model

formulation since the reconstruction takes place in 3D space and so the mathematical treatment does

not change. An image point xp = (X;Y;�f) = (�fx=z;�fy=z;�f), where f is the focal length of

the projection will correspond to model point x = (x; y; z) = (�zX=f;�zY=f; z). That means that

34



(a) Original image (b) Fitted model (c) No external forces (d) No external forces (e) External forces

Figure 14: In (b) a model �tted under perspective projection (original image in (a)), with a low-
resolution model. In (c) the case of the sombrero lit from the top; there is convex/concave ambiguity,
one possible solution seen in (d). Knowledge about how to resolve the ambiguity, (e.g. singular
points) can be applied to the model in the form of external forces. Here a few points in the inner
lower circle were pulled down. The resulting model is in (e).

as z changes the model point that corresponds to P changes too. Points that were visible might

become occluded, and visibility checking would be required after every iteration. Also Equation (7)

needs to be slightly modi�ed, as the sampled image values I 0L(x; y) are parameterized by X and Y ,

related to the model points by the perspective transformation:
@I0L(X;Y )

@q
=

@I0L(X;Y )

@xp(X;Y )

@xp(X;Y )

@q
=;

@I0L(X;Y )

@xp(X;Y )

@xp(X;Y )

@x(x; y; z)

@x(x; y; z)

@q
(20)

where
@xp(X;Y )

@x(x; y; z)
=

"
f=z 0 �fx=z2

0 f=z �fx=z2]

#
(21)

Furthermore, as the computed depth changes image points might project in di�erent elements and

hence constraints might be applied to di�erent elements in subsequent iterations.

In Figure 14(b) we show the results of �tting to a perspective projection image. The focal length

was assumed to be 2 and the distance from the focal point was assumed to be 4, so the perspective

distortion e�ects on the image are quite noticeable. The light source direction was (5,5,7). Our light

source estimate was 2.5 degrees o�. We show the coarse model that we used while still estimating

the light source. Once the light stabilizes we increase the model's resolution and �t it more closely

to the lighting constraints.

Singular Points Information It has been shown [28], that the known ambiguities in shape

from shading estimation can be resolved with the knowledge of singular points in the image. Here

we show how we can incorporate such biases in the deformable model formulation. In the sombrero

image viewed head-on in �gure 14(c), there is a convex-concave ambiguity. Our deformable model

�ts the convex solution only. If we know that we want the inner lower circle to be lowered down,

we can simply apply external forces fe in (10) on a few of the points on that circle (in the example

presented here just �ve). Then the whole model will converge to the desired solution, in order to

satisfy the illumination constraint. Each shading ambiguity has to be resolved independently through

the introduction of the proper forces; no forces were applied to the tip of the sombrero which still

points upwards.

This could also be accomplished in a more robust way, by enforcing the knowledge of the position

of a certain point as a hard constraint, in the method of [26]. The trade-o� would be that the size

of the matrix to be inverted in Equation (17) would increase even more.
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