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Abstract

We present a new method for the detection and estima-
tion of multiple directional illuminants, using a single im-
age of any object with known geometry and Lambertian re-
flectance. We use the resulting highly accurate estimates
to modify virtually the illumination and geometry of a real
scene and produce correctly illuminated Mixed Reality im-
ages. Our method obviates the need to modify the im-
aged scene by inserting calibration objects of any partic-
ular geometry, relying instead on partial knowledge of the
geometry of the scene. Thus, the recovered multiple illumi-
nants can be used both for image-based rendering and for
shape reconstruction. Our method combines information
both from the shading of the object and from shadows cast
on the scene by the object. Initially we use a method based
on shadows and a method based on shading independently.
The shadow based method utilizes brightness variation in-
side the shadows cast by the object, whereas the shading
based method utilizes brightness variation on the directly
illuminated portions of the object. We demonstrate how
the two sources of information complement each other in
a number of occasions. We then describe an approach that
integrates the two methods, with results superior to those
obtained if the two methods are used separately. The re-
sulting illumination information can be used (i) to render
synthetic objects in a real photograph with correct illumi-
nation effects, and (ii) to virtually re-light the scene.

1. Introduction

In order to integrate seamlessly a virtual object in a real
scene (i.e. synthesize a Mixed Reality image), we need
to simulate accurately the interactions of the virtual object
with the illumination of the scene. Furthermore, to manip-
ulate realistically existing images, knowledge of illuminant
directions is necessary both in image based computer graph-
ics, and in computer vision for shape reconstruction. This
problem is particularly hard for diffuse (Lambertian) sur-

faces and directional light sources and cannot be solved us-
ing local information only. Lambertian reflectance is the
most common type of reflectance. In this work we con-
centrate on directional light sources because they have the
most pronounced effects in the appearance of a scene and
any errors in their estimation will cause noticeable errors
and inconsistencies in the resulting Mixed Reality images.
Previous methods that estimate multiple light sources re-
quire images of a calibration object of given shape (typ-
ically spheres) which needs to be removed from the scene
and might cause artifacts. Instead, our method relies on par-
tial knowledge of the geometry of the scene and can be used
on objects of arbitrary shape. This allows us to possibly use
any diffuse object of the scene for illumination calibration.
We present a new method that integrates information from
shadows and shading in the presence of strong directional
sources of illumination. The shadow based method utilizes
brightness variations inside the shadows cast by the object,
whereas the shading based method utilizes brightness varia-
tions on the directly illuminated portions of the object. The
proposed integrated method is both more accurate and more
general in its applicability, than the two methods applied
separately.

In the last few years, there has been an increased interest
in estimating the reflectance properties and the illumination
conditions of a scene based on images of the scene. The
interest in computing illuminant directions first arose from
shape from shading applications, and focused on recovering
a single light source [6, 11, 32, 21]. However, illumination
in most real scenes is more complex and it is very likely
to have a number of co-existing light sources in a scene.
An early attempt to recover a more general illumination de-
scription [7], modeled multiple light sources as a polyno-
mial distribution. A discussion of the various types of light
sources can be found in [10]. With the advent of Image
Based Modeling and Rendering (IMBR) methods in Com-
puter Graphics, it quickly became apparent that accuracy,
photorealism and generality of many IMBR applications de-
pends on the knowledge of such properties and parameters.



As a result a number of methods were proposed, which re-
covered illumination parameters or reflectance properties of
the scene in the form of BRDFs (Bidirectional Reflectance
Functions) [3, 30, 29, 24, 13, 20, 14, 9, 26, 4, 15, 22]. Most
of these methods are geared towards the production of high
quality images, requiring extensive data collection with the
use of specialized equipment [3, 4, 30, 29] and off-line pro-
cessing [9, 15], or have particularly restrictive assumptions,
e.g. a single light source [14, 22]. Such methods would
not be of use if only one or a few images of the scene are
available. More relevant work is the system proposed by
[13], aimed at interactive relighting of indoor scenes, re-
quiring knowledge of complete scene geometry and using
fast radiosity methods. Radiosity computations in a com-
plex outdoor scene, even if accurate geometry was known,
would be prohibitively slow.

In particular, estimation of illumination parameters from
images is necessary, in order to compensate for illumina-
tion artifacts, and also to allow super-imposition of syn-
thetic images of new objects into real scenes. Most such
methods need to use a calibration object of fixed shape,
typically a sphere. In [17] a calibration object that com-
prises of diffuse and specular parts is proposed. In [3] a
specular sphere is used as a light probe to measure the in-
cident illumination at the location where synthetic objects
will be placed in the scene. Such a sphere though might
have strong inter-reflections with other objects of the scene,
especially if they are close to it. Using the Lambertian shad-
ing model, Yang and Yuille [28] observed that multiple light
sources can be deduced from boundary conditions, i.e., the
image intensity along the occluding boundaries and at sin-
gular points. Based on this idea, Zhang and Yang [31] show
that the illuminant directions have a close relationship to
critical points on a Lambertian sphere and that, by identify-
ing most of those critical points, illuminant directions may
be recovered if certain conditions are satisfied. Conceptu-
ally, a critical point is a point on the surface such that all
its neighbors are not illuminated by the same light sources.
However, because the detection of critical points is sensi-
tive to noise, the direction of extracted real lights is not very
robust to noisy data. Recently, an illuminant direction de-
tection method that minimizes global error was proposed by
Wang and Samaras [27]. In general, each point of a surface
is illuminated by a subset of all the directional light sources
in the scene. The method segments the surface robustly into
regions (“virtual light patches”), with each region illumi-
nated by a different set of sources. Then, real lights can be
extracted, based on the segmented “virtual light patches” in-
stead of critical points that are relatively sensitive to noise.
Since there are more points in a region than on the bound-
ary, the method’s accuracy does not depend on the exact
extraction of the boundary and can tolerate noisy and miss-
ing data better. When the observed shape is not spherical its

normals are mapped to a sphere (for an example see Fig.6),
although a lot of normals will be missing. However the
method works well even for incomplete spheres, as long
as there are enough points inside each light patch for the
least-squares method to work correctly.

Inserting calibration objects in the scene complicates the
acquisition process, as they either need to be physically re-
moved before re-capturing the image, which is not always
possible, or they need to be electronically removed as a post
processing step, which might introduce artifacts in the im-
age. Our proposed method can be applied to objects of
known arbitrary geometry, as long as that shape contains a
fairly complete set of normals for a least-squares evaluation
of the light sources. Thus, it would be possible to estimate
the illuminants from the image of a scene, using geome-
try that is part of the scene. The idea of using arbitrary
known shape, can also be found in the approach of Sato et
al. [24], which exploits information of a radiance distribu-
tion inside shadows cast by an object of known shape in the
scene. Recently, under a signal processing approach [20, 1]
a comprehensive mathematical framework for evaluation of
illumination parameters through convolution is described.
Unfortunately, this framework does not provide a method
to estimate high-frequency illumination such as directional
light sources when the BRDF is smooth as in the Lamber-
tian case. Convolution is a local operation and the problem
is ill-posed when only local information is considered [2].
Our method uses global information to overcome this prob-
lem, and in this sense, it is complementary to the methods
of [20, 1, 14].

In this paper, we propose a new method for multiple di-
rectional source estimation, that integrates illumination es-
timation from shading [27] and shadows [24]. Both meth-
ods rely on knowledge of the illuminated geometry but do
not require a specific calibration object. However they have
different strengths and weaknesses. Often the shadow of
a light source that shades a large visible area of an ob-
ject is occluded and vice-versa. The Hough transform
can introduce spurious lights in the shading-based method
and the extended area source approximation of directional
sources in the shadow-based method can introduce signifi-
cant errors. We demonstrate how the two sources of infor-
mation complement each other in a number of occasions.
Even when both methods are applicable at the same time,
combining them reduces error and speeds up computation.
Hence, we arrive at an approach that integrates the two
methods, with results superior to those obtained if the two
methods are used separately. The resulting illumination in-
formation can be used (i) to render synthetic objects in a
real photograph with correct illumination effects, and (ii) to
virtually re-light the scene.

The rest of this paper is structured as follows: Section 2
describes the notion of critical points and their properties as

2



they pertain to our problem. Section 3 describes the basic
shading-based algorithm and extensions that make it robust
to noise and missing data. These properties of our algorithm
allow its application to objects of arbitrary shape in Section
3.4. The shadow based algorithm is in Section 4. The two
methods are compared and integrated in Section 5. We ap-
ply our method to the synthesis of Mixed Reality images in
Section 6 and conclude with future work in Section 7.

2. Critical Points
Definition 1 Given an image, letLi, i = 1, 2, . . ., be the
light sources of the image. A point in the image is called
a critical point if the surface normal at the corresponding
point on the surface of the object is perpendicular to some
light sourceLi.

We assume that images are formed by perspective or
orthographic projection and the object in the image has
a Lambertian surface with constant albedo, that is BRDF
f(θi, φi; θe, φe) is known to be a constant and each surface
point appears equally bright from all viewing directions:

E = ρLiL̂ · n̂ = ρLicosθi (1)

whereE is the scene radiance of an ideal Lambertian sur-
face,ρ is the albedo,̂L represents the direction andLi the
amount of incident light, and̂n is the unit normal to the
surface.

Initially, the algorithm is developed using a sphere model
and subsequently extended [27] to objects of arbitrary
shape.

• We assume the observed object is a sphere with Lam-
bertian reflectance properties whose physical size is al-
ready known.

• For light sources whose direction is co-linear with the
lens axis of the camera1, the best possible result is their
equivalent frontal light sourceLfrontal.

It has been proven in [31] that it is not possible to recover
the exact value of the intensity of any individual light source
among four (or more) pairs of antipodal light sources (i.e.
opposite direction light sources). However, this kind of sit-
uation, i.e. an object illuminated by antipodal light sources,
happens rarely, so for simplicity in the rest of this paper, we
will make an additional assumption that there are no antipo-
dal light sources.

2.1. Sphere cross section with a planeP

Let P be an arbitrary plane such thatS, the center of
the sphere, lies on it (Fig.1),Li, i = 1, 2, . . ., be the light
sources of the image and(Li)P their projections onP. A
point on the arcτ can be specified by its corresponding an-
gle parameter in[α, β] using the following proposition [31]:

1We assume that they are co-linear when they form an angle less than
a thresholdω depending on the resolution.

SP
q

θ
*
φ LP

�L

N

τ

α β

1

Figure 1. L and its projectionLP onto planeP.
Proposition 1 Consider an angle interval[α, β] of a sphere
cross section (Fig.1). We can always find a partitionθ0 =
α < θ1 < . . . < θn = β of the interval[α, β] such that in
each[θi−1, θi] we haveE(θ) = bi sin θ + ci cos θ for some
constantsbi and ci, 1 ≤ i ≤ n (Fig.2), whereE(θ) is the
intensity function along the arcτ .
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Figure 2. the xy-space and theθR-space for the case with
two directional light sources.
Intuitively, (bi−1, ci−1) represents the virtual light

source of the[θi−2, θi−1] part, and(bi, ci) of the neigh-
boring [θi−1, θi] part. These two virtual light sources will
be different, if each of these two parts is lit by a differ-
ent illuminant configuration. More formally, Proposition
2 (from [31]) describes the difference between(bi−1, ci−1)
and(bi, ci):

Proposition 2 In the configuration of Proposition 1, for
any 1≤ i ≤ n, we defineΛi as the index set of real light
sources contributed to the[θi−1, θi] part of the arcτ . Then
the Euclidean distance between two (bi, ci) pairs is√

(bi − bi−1)2 + (ci − ci−1)2 =
∑

j∈Λ′∪Λ′′

‖(Lj)P ‖ (2)

where‖(Lj)P ‖ is the Euclidean norm,Λ′ = Λi−1 \Λi (the
index set of elements inΛi−1 but not inΛi), Λ′′ = Λi\Λi−1,
and

∑
j∈Λi

Lj is the virtual light source corresponding to
[θi−1, θi].

Propositions 1 and 2 show that the difference between
(bi−1, ci−1) and(bi, ci) will be maximized at a critical point
for these two virtual light sources. As we can see from
Eqn.(2), possible critical points can be detected by thresh-
olding‖(Lj)P ‖.

2.2. Properties of critical points

Let Σ be the set of all critical points andΩ be the space
of the sphere image. Then intuitivelyΣ will cut Ω into a
decomposition, i.e.

Ω = (
⋃
i∈I

ui)
⋃

Σ (3)

where eachui ⊂ Ω is a subset ofR2 which does not contain
any critical points andI is an index set.
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Proposition 3 Given a decomposition of the image as de-
scribed by (3), for any image regionui, which corresponds
to a 3D surface regionsi, there exists a light sourceL such
that whensi is illuminated byL , the resulting image is ex-
actly the same asui.

Proposition 2 already provides us with a criterion to
detect critical points on the sphere based on the dis-
tance between (bi, ci) pairs. Unfortunately, this criterion
greatly depends on the intensities of virtual light sources,∑

j∈Λ′∪Λ′′ ‖(Lj)P ‖, which are projected on the plane with
respect to each different cross section. To locate the critical
points more accurately, we provide another way to detect
critical points on each cross section. Instead of using the
distance between (bi, ci) pairs, we can use the tangent an-
gles defined on the intensity curve (Fig.3(a)) [27].

Proposition 4 Along a sine curve, at a critical pointθc,
the inner angleγ between two tangent lines of each side
(T1,T2) will be larger than 180 degrees.
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Figure 3. (a) inner angleγ. (b) Angles between two tan-
gent lines.

3. Shading-Based Illuminant Detection

3.1. Critical Point Detection

From Proposition 1 we know that, for every cross sec-
tion of the sphere with a planeP such thatS, the center
of the sphere, lies onP (illustrated in figures 2, 4), there
is a partitionθ0 = a < θ1 < . . . < θn = β of the
angle interval[α, β] such that in each[θi−1, θi], we have
E(θ) = bi sin θ + ci cos θ for some constantsbi and ci,
1 ≤ i ≤ n. By applying a standard recursive least-squares
algorithm [5], we can use the following two consecutive
windows to detect the local maximum points of inner an-
glesγ and distance defined by Eqn.(2). Starting from an
initial point A, any point B on the same arc can be deter-
mined uniquely by the angleθ between SA and SB. Then
we cover this part AB by two consecutive windows AW and
WB (Fig.4).
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Figure 4. a part of arcτ , AB, is covered by two consecu-
tive windows AW and WB.
With points B and W moving from the beginning point

A of the visible part of the circle to its ending point C along
the arcτ , we could estimatebi andci from the data in the

two consecutive windows AW and WB respectively. Once
a local maximum point of Eqn.(2) is detected, it signifies
that we have included at least a ‘critical point’ in the second
window WB. Because the inner angleγ defined in Proposi-
tion 4 is very sensitive to noise, we use two different criteria
simultaneously to detect critical points. First we examine
the distance defined in Proposition 2, then if the distance
is above a thresholdTdistance, we try to locate the critical
point by searching for the maximum inner angleγ along
the curve. In practice, for the distance criterion threshold
Tdistance, we use a ratioTratio instead of the direct Eu-
clidean norm to normalize for the varying light intensities.
Tratio is calculated from Proposition 2:

Tratio =

√
(bi − bi−1)2 + (ci − ci−1)2

max{
√

b2
i−1 + c2

i−1,
√

b2
i + c2

i }
(4)

where(bi−1, ci−1) and(bi, ci) are calculated from the two
consecutive windows AW and WB. Therefore, we can keep
growing the first window AW to find critical pointpc using
the recursive least-squares algorithm again. Then we fix the
initial point A atpc and keep searching for the next ‘critical
point’ until we exhaust the whole arcτ .

3.2. Segmenting the Surface

Definition 2 All critical points corresponding to one real
light will be grouped into a cut-off curve which is called a
critical boundary.

Intuitively, each critical boundary of the sphere in our
model is on a cross section plane through the center of the
sphere. Therefore, critical points can be grouped into criti-
cal boundaries using the Hough transform in a(ζ, θ) angle-
pair parameter Hough space, i.e. we apply the cross-section
plane equation in the following form:{

x · nx + y · ny + z · nz = 0
nx = r cos θ, ny = r sin θ cos ζ, nz = r sin θ sin ζ

(5)
where (x, y, z) is the position of each critical point,
(nx, ny, nz) is the normal of the cross-section plane,r is
the radius of the sphere andζ, θ ∈ [0, 180]. Typically, we
use one-third of the highest vote count in the Hough trans-
form as the threshold above which we detect a(ζ, θ) angle
pair as a possible critical boundary.

Although critical points provide information to deter-
mine the light source directions [31], they are relatively sen-
sitive to noisy data. Since most real images are not noise
free, if we only use the Hough transform to extract criti-
cal boundaries, we will very likely find more boundaries
than the real critical boundaries. Noise can either introduce
many spurious critical points or move the detected critical
points away from their true positions. However, non-critical
point areas are less sensitive to noise and provide important
information to determine the light source directions.
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Definition 3 Critical boundaries will segment the whole
sphere image into several regions, and intuitively, each seg-
mented region is corresponding to one virtual light. Each
region is called a virtual light patch.

Once we get the patches corresponding to each virtual
light, the directions of virtual light sources can be calcu-
lated.

Let A, B, C andD be four points in a patch correspond-
ing to one virtual light source andnA, nB , nC andnD be
their normals respectively. From the Lambertian Eqn.(1),
augmented by an ambient light term, we have

nAx nAy nAz 1
nBx nBy nBz 1
nCx nCy nCz 1
nDx nDy nDz 1

 ·


Lx

Ly

Lz

α

 =


IA

IB

IC

ID

 (6)

whereIA, IB , IC andID are brightness of each pixel in the
source image corresponding to four pointsA, B ,C andD
respectively.

If nA, nB , nC and nD are non-coplanar, we can ob-
tain the direction of the corresponding virtual light source
L, [Lx, Ly, Lz]T , and the ambient light intensityα by solv-
ing the system of equations in (6). Ideally, we would solve
for the directions of virtual light sources by using four non-
coplanar points from corresponding patches. Due to com-
putation and rounding errors, four non-coplanar points are
not always enough for us to get a numerically robust es-
timate of the direction of a virtual light source. Further-
more, it is not necessary that we can always find several
non-coplanar points in an interval of an arc in some plane
P as described above. These problems are avoided by
scanning the image both horizontally and vertically instead
of one direction only and recovering the two dimensional
patches that are separated by critical boundaries. Then from
each two dimensional patch, we use the internal non-critical
points of each virtual light patch to solve for the direction
of the virtual light source2.

3.3. Recovering the True Lights

Proposition 5 If a critical boundary separates a region
into two virtual light patches with one virtual light each,
e.g.L1, L2, then the difference vector betweenL1 andL2,
Lpre = L1 − L2, is called the real light pre-direction with
respect to this critical boundary. Since we have already
assumed that there are no antipodal light sources (i.e. op-
posite direction light sources), the real light direction will
be either the pre-directionL1−L2, or its oppositeL2−L1

(Fig.5).

To find out the true directions, we pick a number of
points on the surface, e.g.P1, P2, ..., Pk and their normals,

2We only use points that are at least 2 pixels away from the critical
boundary for increased robustness to noise.
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Figure 5. Illustration of real light pre-direction.Lr is the
real light direction.

e.g.N1,N2, ...,Nk, then the true directions will be the so-
lution of:

E(Pj) =
∑
i∈Λ

max(eiLi ·Nj , 0)+Lv ·Nj , 1 ≤ j ≤ k. (7)

whereLv is the virtual light source of a possible frontal
illuminant whose critical boundaries could not be detected
and will be checked as a special case.

Selecting points in the area inside the critical boundaries
is a robust way to detect real lights. This can be done using
standard least-squares methods [5, 18].

After we find all the potential critical boundaries, Propo-
sition 5 provides a way to extract real lights by calculating
the light difference vector of two virtual light patches of
two sides along the critical boundary. However, one real
light might be calculated many times by different virtual
light patch pairs, and since our data will not be perfect, they
will not be necessary exactly the same vector. We introduce
an angle threshold to cluster the resulting light difference
vectors into real light groups, that can be approximated by
one vector.

By minimizing the least-squares errors of virtual light
patches, we are able to merge the spurious critical bound-
aries detected by the Hough transform, by the following
steps (for an example see Fig.10):

1. Find initial critical boundaries by Hough transform
based on all detected critical points.

2. Adjust critical boundaries. We adjust every critical
boundary by moving it by a small step, and a reduc-
tion in the least-squares error indicates a better solu-
tion. We keep updating boundaries using a “greedy”
algorithm in order to minimize the total error.

3. Merge spurious critical boundaries. If two crit-
ical boundaries are closer than a threshold angle
Tmergeangle (e.g. 5 degrees), they can be replaced by
their average, resulting into one critical boundary in-
stead of two.

4. Remove spurious critical boundaries. We test every
critical boundary, by removing it temporarily and if the
least-squares error does not increase, we can consider
it a spurious boundary and remove it completely. We
test boundaries in increasing order of Hough transform
votes (intuitively we test first boundaries that are not as
trustworthy).
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5. Calculate the real lights along a boundary by subtract-
ing neighboring virtual lights as described in Proposi-
tion 5.

3.4. Arbitrary Shape

In this section we extend our method to work with
any object of known shape. Obviously, there should ex-
ist enough non-coplanar points on the object illuminated by
each light to allow for a robust least-squares solution. We
assume no inter-reflections. We map the image intensity
of each pointPi of the arbitrary shape to a pointSi of a
sphere, so that the normal atPi is the same as the normal at
Si. We detect all potential critical points based on the points
mapped on the sphere. As expected, not every point on the
surface of the sphere will be corresponding to a normal on
the surface of the arbitrary shape, so there will be many
holes on the mapped sphere, e.g. the black area in Fig.6.
Thus, many critical points’ locations will be erroneously
calculated even for noise-free data. Consequently, the criti-
cal boundaries calculated by the Hough transform based on
these critical points might not be correct or even far away
from their correct positions in some cases. Since we can
not recover these missing data from the original image, it is
impossible to adjust the critical boundaries detected by the
Hough transform itself. On the other hand, as long as the
critical boundaries are not too far from the truth, the major-
ity of the points in a virtual patch will still correspond to the
correct virtual light (especially after the adjustments steps
described in Sec. 3.3. Thus it is still possible, using sparse
points on the sphere, to calculate the true light for each vir-
tual light patch based on Proposition 5. If two points have
the same normal but different intensities, we use the brighter
one (assuming that the other is in shadow).

Figure 6. Vase and its sphere mapping. Both image sizes
are 400 by 400. Black points on the sphere represent nor-
mals that do not exist on the vase’s surface.

4. Shadow-Based Illuminant Detection

Besides the shading information we explored above, a
picture of a real scene is very likely to contain some shadow
information. Hence the illumination distribution of the
scene might also be recovered from a radiance distribution
inside shadows cast by an object of known shape onto an-
other object surface of known shape and reflectance. In
[24], the illumination distribution of a scene is approxi-
mated by discrete sampling of an extended light source and
the whole distribution is represented as a set of point sources

Figure 7. Illumination distribution of a scene is approx-
imated by discrete sampling over the entire surface of the
extended light source.

Figure 8. Each shadow pixel provides a linear equation
for estimating illumination distribution by shadows.

equally distributed in the scene as shown in Fig.7. The total
irradiance E at the shadow surface received from the entire
illumination distribution is computed by

E =
n∑

i=1

LiSi cos θi (8)

whereLi(i = 1, 2, . . . , n) is the illumination radiance per
solid angleδ = 2π/n coming from the direction(θi, φi),
andSi are occlusion coefficients.Si = 0 if Li is occluded
by objects, andSi = 1 otherwise. Then this approximation
leads each image pixel inside shadows to provide a linear
equation with unknown radiance of those sources as shown
in Fig.8 [25].

Finally, a set of linear equations (Eqn. 9) is derived from
the brightness changes observed in the shadow image and
solved for unknownLi’s.

a11 a12 a13 . . . a1n

a21 a22 a23 . . . a2n

a31 a32 a33 . . . a3n

. . . . . .
am1 am2 am3 . . . amn

 ·


L1

L2

L3

...
Ln

 =


P1

P2

P3

...
Pm


(9)

Under the assumption of the Lambertian model, the
BRDF f(θi, φi; θe, φe) for a Lambertian surface is known
to be a constant. Then, in Eqn.9 the coefficientsai(i =
1, 2, . . . , n) representKd cos θiSi whereKd is a diffuse re-
flection parameter of the surface. Therefore, by selecting a
sufficiently large number of image pixels, it is possible to
solve for a solution set of unknownLi’s.

To estimate the illumination distribution of a real scene,
we need to assume that the number of image pixels in shad-
ows is far larger than the number of illumination radiance
values to be calculated.

5. Integration of Shading and Shadows

In this section, we are going to propose a framework that
combines the respective advantages of shading and shadow
information, allowing us to obtain improved results com-
pared to using each of them independently.
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5.1. Advantages of Shadows over Shading

As can be seen from Fig.6, arbitrary shapes do not al-
ways provide enough normals on the surface to make a com-
plete sphere mapping, so many data points on the sphere
will be missing non-uniformly. Consequently, there is a
possibility that some critical boundaries will be lost and the
corresponding real lights will not be estimated. Fig.12 is
an example of a synthetic vase image whose top part is lit
by two directional light sources. From the sphere mapping
(Fig.12(b)), it is clear that very few of the object’s normals
map to the top part of the sphere and so not enough critical
points can be detected. However, shadow information can
be used to estimate the intensity and direction of each light
source.

5.2. Advantages of Shading over Shadows

While recovering the illumination distribution of the
scene from a radiance distribution inside shadows, complete
shadows cast by an object of known shape onto another ob-
ject surface of known shape and reflectance are required.
However, this might not be possible in situations where the
light direction is nearly parallel to the surface. Obviously in
this case shadows can not provide enough information to es-
timate the real illuminants. In particular the azimuth of the
light source can still be estimated reliably but not the eleva-
tion. An experiment showed that in this situation, big errors
will be introduced to the illumination distribution estimated
by shadow information only (Fig.12(d-e)). Furthermore, in
the method proposed in [24], a large number of samples is
needed to capture the rapid change of radiance distribution
around a direct light source. Radiance distribution inside a
direct light source has to be sampled densely and the estima-
tion becomes more stable if we observe the difference be-
tween radiance of two shadow regions for each light source:
one illuminated and the other not illuminated. Therefore,
due to the discrete sampling of the geodesic dome, it is very
likely that one directional light will be represented by sev-
eral adjacent sampling solid angles so the precision of es-
timation will also be limited. In the following sections, a
region on the geodesic dome in [24] composed by adjacent
sampling solid angles, whose estimated illuminant intensity
is not close to zero, will be referred to as anillumination re-
gion. In Fig.9, we can see that the illumination distribution
estimated by shading information provides higher accuracy
than the one estimated by shadows.

5.3. Shading and Shadows

Definition 4 A shadow is called a complete shadow when
all the parts of the scene the shadow falls on are visible. The
outmost edge of a complete shadow corresponding to a di-
rectional light source is generated by the occluding bound-
ary of the object surface.

Fig.11 shows that the occluding boundary of a smooth
surface will be a critical boundary in the context of shading.
Consequently, when there is information both from shad-
ing and from shadows, we can use the shadow information
to give us an initial estimate of the directions of the light
sources, and then we can use the shading information to re-
fine it to compute the directions and intensities of the real
light sources.

In order to incorporate shadow information, we augment
the algorithm of Sec. 3.3 by steps 2, 3 and 4:

1. Find initial critical boundaries by Hough transform
based on all detected critical points.

2. Calculate an initial illumination distribution using the
estimation from shadows [24]. Mark directions on
the geodesic dome, for which possible shadows are
not complete or observable due to occlusions, as ‘ex-
cluded’.

3. For each critical boundary, if its pre-direction is in a
‘non-excluded’ solid angle whose illuminant intensity
is close to zero, consider it a spurious critical boundary
and reject it. Otherwise mark the illumination region
on the geodesic dome, containing this solid angle, as
‘registered’.

4. For each ‘non-registered’ illumination region, add a
critical boundary whose pre-direction is close to the
direction determined by the peak center of this region
as an initial critical boundary.

5. Adjust critical boundaries. We adjust every critical
boundary by moving it by a small step, and a reduc-
tion in the least-squares error indicates a better solu-
tion. We keep updating boundaries using a “greedy”
algorithm in order to minimize the total error.

6. Merge spurious critical boundaries. If two crit-
ical boundaries are closer than a threshold angle
Tmergeangle (e.g. 5 degrees), they can be replaced by
their average, resulting into one critical boundary in-
stead of two.

7. Remove spurious critical boundaries. We test every
critical boundary, by removing it temporarily and if the
least-squares error does not increase, we can consider
it a spurious boundary and remove it completely. We
test boundaries in increasing order of Hough transform
votes (intuitively we test first boundaries that are not as
trustworthy).

8. Calculate the real lights along a boundary by subtract-
ing neighboring virtual lights as described in Proposi-
tion 5.
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(a) (b) (c) (d) (e)

Figure 9. (a) A synthetic vase illuminated by three directional light sources. (b) Estimated illumination distribution using the
shadow information only. (c) Error image generated by illumination distribution estimated in (b). (d) Detected critical boundaries
using the shading information only. (e) Error image generated by illumination distribution estimated in (d).

(a)original image (b)generated image (c)error image (d)initial (e)resulting critical boundaries

Figure 10. Real sphere image: an almost Lambertian rubber ball with five light sources. Image size: 456x456. (a) the original
image, (b) the generated image of a Lambertian ball with the five light sources extracted from (a), (c) the error image: darker color
means higher error, (d) the initial eight boundaries and virtual light patches extracted by the Hough transform, and (e) the resulting
critical boundaries and virtual light patches calculated by our algorithm, three out of the initial eight boundaries were automatically
merged and the locations of the other five boundaries were automatically adjusted.

�

Directional Light Source

R

Shadow
�

Critical Boundary

1

Figure 11. Outline of estimating illumination distribution
by shadows.

Step 3 reduces significantly the spurious critical bound-
aries to be processed in step 6 and 7, which are the most
time consuming steps of the method. In our experiments
this amounts to a 30% speed up (or more in the case of
noisy data with a lot of spurious boundaries).

6. Mixed Reality Image Synthesis

The combination of shading and shadow information
can provide better estimation of illumination distribution.
These estimates can be used to synthesize Mixed Reality
images, i.e. real images with superimposed virtual ob-
jects correctly lit. Furthermore, under the assumptions
of Lambertian BRDF and known geometry, we can re-
render the real images to generate new images by modify-
ing the estimated illumination configuration. These abilities
are demonstrated by the following real image experiments:
Based on a scene containing two rubber toys illuminated by
three light sources, we generated a new image where one
light has been switched off in Fig.13(b), which can be com-
pared with a real image of the scene with the same light
truly switched off. In the generated image we superimpose
a synthetic object with correct shading and cast shadows
in Fig.13(e). The original image and 3D geometry were
captured by the range scanner system described in [8]. In
Fig.13(a) we can see that there are some inaccuracies and

noise on the recovered 3D shape. The original image is
1534 x 1024 pixels with the two toys at the center of the im-
age. To demonstrate the ability of our algorithm to use only
partial scene information for accurate estimation, only the
duck toy was used to estimate the illuminant directions. The
second toy is used for visual evaluation of the results. Based
on the size of the duck, the diameter of the mapping sphere
is 400. The following parameter values were chosen for the
algorithm: sliding window widthw = 30 pixels (approx-
imately 13.5 degrees), distance ratioTratio = 0.5 and an-
gle threshold for boundary merging (described in Sec. 3.3)
Tmergeangle = 5.0 degrees.

Notice that the error of the generated image is mostly
located along the edges of surfaces and shadows and this
is because (1) the range scanned 3D shape in Fig.13(a)
has higher levels of estimation noise near the edges and
the inter-reflections between the object and the table were
not modeled, and (2) the simple rendering program used,
does not simulate perfectly the shadowing effects of the
real lights. The remaining noise in the generated image in
Fig.13(b) is due to inaccuracies in shape estimation and vi-
olations of the Lambertian assumption. Nonetheless illumi-
nant estimation is still possible. In Fig.13(h-k) we display
the results of the various steps of the algorithm in Sec. 5.3.

7. Conclusions and Future Work

In this paper we presented a method for the estimation
of multiple illuminant directions from a single image, in-
corporating shadow and shading information. We demon-
strate how information from each source enhances the in-
formation from the other source. We do not require the im-
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aged scene to be of any particular geometry (e.g. a sphere).
This allows our method to be used with the existing scene
geometry, without the need for special light probes when
the illumination of the scene consists of directional light
sources. Experiments on synthetic and real data show that
the method is robust to noise, even when the surface is not
completely Lambertian. We apply the results of our method
to generate Mixed Reality images, by successfully modi-
fying scene illumination and seamlessly re-rendering, in-
cluding superimposed synthetic objects. Future work in-
cludes study of the properties of arbitrary surfaces (so that
we can avoid the intermediate sphere mapping), speeding
up of the least-squares method and extending the method to
non-Lambertian diffuse reflectance for rough surfaces.
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(a) (b) (c) (d) (e)

Figure 12. (a) A top lit synthetic vase. (b) One critical boundary (in red color) was missing when using shading information only.
(c) Yellow areas are illuminant estimates using shadow information. Red points represent the true light directions, green points the
estimates of the integrated method. (d) A synthetic vase with partial shadows. (e) Yellow areas are illuminant estimates from (d)
using shadow information with 4 degrees average angle error and high error of illuminant intensity. Red points represent the true
light directions, green points the estimates of the integrated method.

(a)original image (b)generated image (c)real image (d)error image

(h)Estimation by shadows (i)Initial boundaries

(e)superimposed synthetic object (g)3D shape (j)after adding shadow information (k)resulting critical boundaries

Figure 13. Real arbitrary shape image experiment: a scene illuminated by three light sources. Image Size: 1534x1024(scene),
400x400(mapping sphere). (a) the original image, (b) the generated image of a scene with the two light sources extracted from (a),
(c) the real image of the scene illuminated by the two real lights, (e) the error image: darker color means higher error. The noise
in the generated image is mainly due to the inaccuracies in the estimation of shape and the edges of each shadow. Nonetheless
illuminant estimation is still possible, (e) a synthetic object is superimposed into the generated image (b), (g) the 3D shape of the
two objects’ frontal surfaces, R,G,B color values represent the x,y,z components of the normal, (h) the distribution of illuminants
estimated by the shadow information. Notice that for each direction light source there are more than one non-zero intensity solid
angles corresponding to it, (i) the initial eight boundaries extracted by the Hough transform, (j) the remaining five boundaries after
adding the shadow information, and (k) the resulting critical boundaries calculated by our algorithm, two of the five boundaries in
(k) were automatically removed and the locations of the other three boundaries were automatically adjusted.
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