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Abstract — Integrating a large number of Web information sources may significantly increase
the utility of the World-Wide Web. A promising solution to the integration is through the use of
a Web Information mediator that provides seamless, transparent access for the clients. Information
mediators need wrappers to access a Web source as a structured database, but building wrappers by
hand is impractical. Previous work on wrapper induction is too restrictive to handle a large number of
Web pages that contain tuples with missing attributes, multiple values, variant attribute permutations,
exceptions and typos. This paper presents SoftMealy, a novel wrapper representation formalism. This
representation is based on a finite-state transducer (FST) and contextual rules. This approach can
wrap a wide range of semistructured Web pages because FSTs can encode each different attribute
permutation as a path. A SoftMealy wrapper can be induced from a handful of labeled examples
using our generalization algorithm. We have implemented this approach into a prototype system and
tested it on real Web pages. The performance statistics shows that the sizes of the induced wrappers
as well as the required training effort are linear with regard to the structural variance of the test pages.
Our experiment also shows that the induced wrappers can generalize over unseen pages.
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1. INTRODUCTION

The rise of the World-Wide Web has made a wealth of data readily available. Integrating these
data may significantly increase the utility of the World-Wide Web and create innumerable new
applications. For example, integrating information form a large number of Web vendors allows
an on-line shopping agent to find the best bargain for the users. However, the Web’s browsing
paradigm does not readily support retrieving and integrating data from multiple Web sites. Today,
the only way to integrate the huge amount of available data is to build specialized applications,
which are time-consuming and costly to build, and difficult to maintain.

A promising approach to integrating Web information sources is through the use of information
mediators [2, 3,9, 12, 13, 15, 21]. An information mediator provides a query-only intermediate layer
between the clients and a large number of heterogeneous information sources, including different
types of structured databases and the Web sources, over computer networks. Clients of infor-
mation mediators can query information sources and integrate the results without knowing their
implementation details such as their addresses, access passwords, formats, languages, platforms,
etc. Given a query, the information mediators will determine which information sources to use,
how to obtain the desired information, how and where to temporarily store and manipulate data.
Information mediators are much more extensible and flexible than traditional multidatabase ap-
proaches because they can perform dynamic integration of relevant information sources in response
to a query.

Information mediators rely on wrappers to retrieve data on the World-Wide Web. The primary
task of such a wrapper is to extract information in a given set of Web pages and return the results as
structured data tuples. For example, consider the fragment of the Caltech CS department faculty
page! in Figure 1, where we have five data tuples. Each tuple provides information about a faculty
member as a vector of attributes. In this case the attributes are URL U, name N, academic title

fRecommended by Gottfried Vossen
fwww.cs.caltech.edu/csstuff/faculty.html
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~| Netscape: Caltech CS Dept Faculty Page | o |J|

http: /A ca. caltech. edu/esstuff /faculty. htmi]

Go To:

Caltech Computer Science Department

Faculty and Research Staff

® Yaser Abu-hostafe, Professer of Blecrricad Engineering nd Compurer Seience

® Jim Arvo, Asseciaze Frofessor of Computer Selence

@ Al Barr, Associate Professor of Computer Scicnce

@ David E. Breen, Assistont Director of Computer Graphics Laborezory

® Jehoshoa Brock, Associote Professor of Computerion and Nevral Systems & Blectriced
Engincering

® Mani Chandy, Professor of Computer Stience and Executive Officer for Compuzer Science

® David Laidlavw, Senior Research Fellow

e CalK 1 Member of the Institute

® Richard Lyon, Visiting Associate of Computer Science

w Algin Martin, Frofessor of Compuser Stisnce

» Corver Mead, Gordow and Bewty Moore Professer af Bngineering nd Applied Sciense

® Peter Schrdder, Assistonz Professor of Computer Stience and Graduate Options
Fepresentotive

® John Tanner, Visiting Associote of Computer Seiznce

» Fred Thompson, Frofessor Bmerinug of Applied Philosophy and Compuser Seisnce

® John Thornley, Fosedoczored Scholu

Flease send suggestions ard comections to www @es.caltech edy

=l T =2

Fig. 1: Caltech CS Faculty Web Page

<LI> <A HREF="http://www.cs.caltech.edu/people/mani.html">
Mani Chandy</A>, <I>Professor of Computer Science</I> and
<I>Executive Officer for Computer Science</I>
<LI> <A HREF="http://www.cs.caltech.edu/~arvo/home.html">
Jim Arvo</A>, <I>Associate Professor of Computer Science</I>
<LI> <A HREF="http://www.gg.caltech.edu/~david/">
David E. Breen</A>, <I>Assistant Director of Computer
Graphics Laboratory</I>
<LI> John Tanner,
<I>Visiting Associate of Computer Science</I>
<LI> Fred Thompson, <I>Professor Emeritus of Applied Philosophy
and Computer Science</I>

Fig. 2: A Fragment of the HTML Source of Figure 1 (as for November 1997)

A and administrative title M. A wrapper for this Web page is supposed to take its HTML source
as input (see Figure 2), extract the attributes from each tuple and return a set of faculty tuples
(U,N,A,M).

This task is usually considered as an information extraction problem (see e.g., [1]). However, it
is difficult to build a wrapper based on the traditional information extraction approaches because
they are aimed at free text extraction in some particular domains and require substantial natural
language processing. Meanwhile, a large portion of the data on the Web are rendered regularly
as itemized lists of attributes, such as many searchable Web indexes (e.g., search.com), and the
example Web page in Figure 1. For those semistructured Web pages, a wrapper can exploit the
regularity of their appearance to extract data instead of using linguistic knowledge. The goal of
this work is to develop an approach to rapidly wrap these semistructured Web pages.

Though it is simpler to program a wrapper by hand for semistructured Web pages than for free
text, the task is not trivial and may still require substantial programming techniques. Furthermore,
Web pages change frequently. Rebuilding wrappers by hand can be expensive and impractical.
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According to a survey by Norvig!, the monthly failure rate of the wrappers at Junglee is more
than 8 percent. To resolve this problem, researchers are developing many approaches to automatize
wrapper construction (e.g., [4, 7, 14]).

However, there are problems with the previous work. The wrappers in their work extract a tuple
by scanning the input HTML string, recognizing the delimiters surrounding the first attribute, and
repeating the same steps for the next attribute until all attributes are extracted. Kushmerick [14]
advanced the state of the art by identifying a family of PAC-learnable wrapper classes and their
induction algorithms. Wrappers of more sophisticated classes are able to locate the margins of
a tuple or skip useless text at the beginning and the end of a page based on delimiters, but the
attribute extraction steps remain unchanged.

For example, to extract the first tuple in Figure 1, their wrapper will scan the HTML string to
locate the delimiters for attribute U. In this case the delimiters are “<A HREF="” and “">”. After
locating U the wrapper will proceed to extract N, A and M and complete the extraction of this tuple.

This approach, however, fails to extract the rest of this example page, although the page appears
to be structured in a highly regular fashion. This example page is not a special case. My study
shows that the Web pages that their wrappers fail to wrap can be characterized by the following
features:

e Missing attributes (e.g, a faculty may not have an administrative title)

e Multiple attribute values (e.g., a faculty may have two or more administrative titles)

e Variant attribute permutations (e.g., the academic title that appears before the
administrative title in most tuples may appear after the administrative title in others)

e Exceptions and typos

According to [14], 30% of the searchable Web indexes in his survey cannot be wrapped in this
manner. As the number of application domains and the complexity of Web-based software are
rising, the percentage may increase quickly.

Two problems make the previous work fail to wrap those pages. The first problem is the
assumption that there is exactly one attribute permutation for a given Web site. However,
Web pages that display semistructured data [6] usually need many different attribute permutations
for data with missing attributes or multiple attribute values. In our example Web page, there are
four different attribute permutations for just five tuples:

(U,N,A,M) (U,N,A) (U,N,M) (N,A) (N,A)
Their assumption makes it impossible to wrap Web pages with more than one attribute permuta-
tions and thus is invalid.

The second problem is the use of delimiters, because it prevents the wrapper to recognize
different attribute permutations. Considering the situation when the wrapper has extracted the
name N from a tuple in our example page and attempts to extract the next attribute. The strings
that may serve as the delimiters surrounding the next attribute for the first three tuples are the
same “</A>, <I>” and “<I>|<LI> 7%, but the next attribute could be A or M. As a result, it is not
sufficient to distinguish different attribute permutations based on delimiters. This situation occurs
very often because minimizing the number of distinct delimiters appearing in a single document
is considered as a good formatting practice. The use of delimiters has another problem. How to
extract the state and zip code from “CA90210” with delimiters? There is no delimiter at all. This
situation occurs very often in many Asian Web pages because no space is required between two
words in their languages. Unless the wrapper can take the context of the margin between two
attributes into account, it is very difficult to wrap these pages.

This paper presents a novel approach to wrapper induction. Our goal is to quickly wrap a wide
range of semistructured Web pages that contain tuples with missing attributes, attributes with
multiple values, variant attribute permutations, exceptions and typos. The wrapper is represented
as a finite-state transducer (FST) where each state may have multiple outgoing edges. The wrapper
uses disjunctive contextual rules to recognize the context of separators between adjacent attributes.
This representation allows the wrapper to handle diverse structuring patterns while retaining

fNorvig is the chief scientist at Junglee, a commercial information mediator provider www. junglee.com.
1| denotes a newline, following [14].
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parsing efficiency. Moreover, theoretic properties of FSTs are well-established that allow us to
predict the behavior of a wrapper. Our generalization algorithm can induce the contextual rules
from training examples of the tuple extraction. The algorithm generalizes rules by climbing domain-
independent taxonomy trees, which reduce the number of the examples required to induce a correct
wrapper. Our induction approach is independent of any features specific to HTML and therefore
can be applied to other text files.

We have implemented our approach into a prototype system and successfully wrapped many
Web pages with diverse structuring patterns. The performance statistics shows that the sizes of
the induced wrappers as well as the training effort are linear with regard to the structural variance
of the test pages. Our experiment also shows that our system can generalize over unseen pages
and structural patterns.

The remainder of the paper is organized as follows. Section 2 describes the FST representation
of the wrappers. Section 3 describes the generalization algorithm that induces contextual rules. We
then present the empirical evaluation of our approach in Section 4 and compare our approach with
related work in Section 5. Finally, the last section concludes with a summary of the contributions
and future work.

2. WRAPPER REPRESENTATION

This section describes the SoftMealy representation, which is based on a finite-state transducer
(FST) where each distinct attribute permutation in the Web page can be encoded as a successful
path and the state transitions are determined by matching contextual rules that characterize the
context delimiting two adjacent attributes.

2.1. Data Model and Attributes

We assume that a schema that defines attributes of the tuples to be extracted is given. The
order of attributes in the schema is not significant and there may be zero or more values for each
attribute. Also, our approach can accommodate compound attributes of primitive attributes, but
the actual model may depend on the modeling language used by client information mediators.
For example, the schema of our example Web page simply states that this page contains tuples of
faculty with four types of attributes (U,N,A,M), but it is not necessary that there is exactly one
value for each attribute.

2.2. Tokens

A Web page is simply an HTML source file encoded by a programmer or returned from a
searchable Web index. An HTML source file is then a string of characters. The wrapper segments
an input HTML string into tokens before it starts to extract the tuples. Each token is denoted as
t(v), where t is a token class and v is a string. Below are the token classes and their examples:

e All uppercase string: “ASU” — CAlph (ASU)

An uppercase letter, followed by a string with at least one lowercase letter: “Professor”
— C1Alph(Professor)

A lowercase letter, followed by zero or more characters: “and” — 0Alph(and)
Numeric string: “123” — Num(123)

HTML tag: “<I>” — Html(<I>).

Punctuation symbol: “” — Punc(,)

Control characters — since they are invisible, we will use their length as the argument:
a newline — NL(1), four tabs — Tab(4), and three blank spaces — Spc(3)

We also distinguish between word and nonword token classes. The first four token classes are
words whereas the others are nonwords. This distinction is important for the wrapper induction.

Tt is not necessary to define HTML tags as a class of tokens in our approach. The motivation to include HTMTL
tags here is to improve the learning time and accuracy for Web pages.
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?/¢€ ? / next_token
() w
next_token t 7/ e @
R —

Fig. 3: Body Transducer

2.3. Separators and Contextual Rules

A separator is an invisible borderline between two adjacent tokens. A separator s is described
by its context tokens, which consist of the left context s” and the right context s®. Separators
are designed to replace delimiters. To extract an attribute, the wrapper recognizes the separators
surrounding an attribute. Separators for an attribute may not be the same for all tuples in a
semistructured Web page. Contertual rules are defined to characterize a set of individual separa-
tors. A contextual rule is expressed as one or more disjunctive sequences of tokens t(v) and its
generalized form #(_), which denotes any token of class ¢ (e.g., Html(_) denotes any HTML tag).

Example 1 Consider the first tuple in Figure 2. The separator s between ”<I>” and ”Professor”
is described by
s = ... Punc(,) Spc(1) Html(<I>)
sB = C1Alph(Professor) Spc(1) 0Alph(of) ...
This separator marks the beginning of A, but it is specific to this tuple. The class of separators S
at the beginning of A for all tuples is characterized by the following contextual rules:
ST .= Html(</A>) Punc(,) Spc(.) Html(<I>) |
Punc(.) NL(.) Spc(.) Html(<I>) |
Punc(,) Spc(.) Html(<I>)
S® = C1A1ph()
where “|” means “or”. S covers the separators whose left context satisfies one of the three disjuncts
and the right context is any C1A1ph token. The first disjunct states that the left context is a token
string “</A>” followed by a comma, one or more spaces and “<I>”, from left to right. The second
and third disjuncts can be interpreted in a similar manner. m|

2.4. Finite-State Transducer

The FST in SoftMealy takes a sequence of the separators rather than the raw HTML string
as input. The FST matches the context tokens of the input separators with contextual rules to
determine state transitions. This is analogous to moving a flashlight beam through a token string.
When we pictorially present a finite-state transducer, we adapt the standard notation (see e.g.,
[18]) unless explained otherwise. A question mark “?” stands for any input separator that does
not match on any other outgoing edge, and next_token denotes the token string right next to the
input separator. For example, the next_token of the separator in Example 1 is ”Professor”. We
also use “+” to denote string concatenation.

A FST is constructed for one tuple type. If there are many types of tuples in a page, we can
build a FST for each type. The substring that contains a type of tuples in a Web page is called
the body or the scope of that type of tuples. Figure 3 shows the part of the FST that extract a
body string. The FST tries to match h”, the left context of the separator at the head of the body,
and tF, the right context of the separator at the tail of the body. This way, the body transducer
extracts the string between h” and t# and feed this string to the tuple transducer as the input.
The tuple transducer than iteratively extracts the tuples from the body string. In each iteration,
the tuple transducer accepts a tuple and returns the extracted attributes.

A tuple transducer is the core of a SoftMealy wrapper. Formally, a tuple transducer is a 5-tuple
(21,%2,Q, R, E) such that:
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e Y, is the set of separators as the input alphabet.
e Y5 is the set of characters as the output alphabet.
e () is a finite set of states containing:

— Initial state b and final state e represent the beginning and the end of a tuple,
respectively.

— k is a state if there is an attribute &k to be extracted.

— For each attribute k there is a state k that corresponds to the dummy at-
tribute, the tokens that we intend to skip between the end of attribute &
and the next attribute. For example, N =“</A>, <I>” for the first tuple in
Figure 2 because it is between N =“Mani Chandy” and the next attribute
“Professor...”

e R is the set of contextual rules. We use s(i,j) to denote the set of contextual rules
(a subset of R) that characterize the class of separators (a subset of ¥;) between two
attributes 4, j (including dummy attributes and b, e).

e ECQ xRxZX}xQ is the set of edges. A state transition from i to j is legal if there
exists an edge (i,r,0,j) € E such that the next input separator satisfies . The output
string o is arranged as follows:

— If i # j and j represents an attribute to be extracted, then the output o is
“5=" +next_tokent.

— If i = j and j represents an attribute to be extracted, then o is next_token.

— Otherwise, o is €.

An edge from state i to j encodes that attributes 4 and j are adjacent in the target Web pages
when their separator satisfies the associated contextual rule. This way, each attribute permutation
can be encoded as a successful path in the transducer. For the sake of compactness, we can
combine edges that connect the same pair of states into a single edge. This is possible because
the contextual rules can be disjunctive and next_token is used as the output string whenever
applicable. Therefore, there is at most one edge between two states.

States allow the tuple transducer to decide when to extract tokens and when to skip, depending
on whether it is at an attribute state or at a state for a dummy attribute. At final state e, if the
FST reaches the end of the body, the extraction will terminate. Otherwise, state e will become
state b for the extraction of the next tuple. Figure 4 shows the diagram of the tuple transducer
for the example Web page.

The contextual rules might cover each other and make the FST nondeterministic, which is not
efficient and error-prone. To deal with this problem, in the current implementation, we use a rule
priority policy that prefers a specific rule to a general one. More precisely, the policy prefers rules
that are longer or with more ground tokens. This heuristic worked well in the experiments but we
already have several concrete proposals and will address the problem in the future. See the last
section for more detail.

To sum up, the extraction starts by tokenizing an input Web page, and then uses a FST to
recognize separators that mark the head and tail of the body and return the tuples in the body.

3. WRAPPER INDUCTION

A FST consists of input/output alphabets, states and edges. In the case of SoftMealy FSTs,
the components remaining to be induced are the edges and their associated contextual rules. In
this section, we first present an algorithm that generalizes contextual rules from labeled tuples in
a set of sample pages, then we discuss a procedure for generating contextual rules for the body
transducer. We also present an algorithm for rapid error recovery to deal with the situations when
a generated contextual rule is not sufficiently expressive to correctly extract all tuples.

fSince the output strings are tokens, and HTML tags are a class of tokens, the FST will output an entire
“<a href=...>” HTML tag as a person’s URL. A simple post-processing step can extract the actual address from
an HTML tag. This applies to other HTML anchors and images.
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?/€ ? / next_token ?2/¢€

s<b,U>/ s<UN>/
s<U,U>/¢ 5 next_token

"=t
next_token

s<b,N>/

"N="+ next_token

? | next_token _
s<N,N>/ €

s<A,e>/ €

? [ next_token _ ?/€ ? / next_token _

s<AM>/ S<N,A>/
m next_token 6 S<AA> [ € o next_token

s<N,M>/

"M="+ next_token 7€

Fig. 4: Tuple Transducer

3.1. Generalization Algorithm

The input to the generalization algorithm is a set of labeled tuples, which provides the positions
of the separators and the attribute permutations. A tuple is said to be labeled if the positions
of its attributes are known. Labeling can be provided by a human or an oracle. The labeled
tuples provides the positions of the separators and the attribute permutations (including dummy
attributes) of the tuples. The algorithm takes these positions as training examples and generalizes
their context into contextual rules as the output.

The first step of learning is to construct corresponding states and edges according to the
attribute permutations appearing in the training tuples. The next step is to learn the contextual
rules for the edges. The learner will collect the separators that delimit the same pairs of attributes
together. This produces a set of training instances of s(i,j) for each pair of adjacent attributes 4
and j. Each instance is expressed as ground context tokens of the separator. Our goal is to induce
contextual rules that cover all separator instances in the sample pages.

To constrain the search space of a large number of the contextual rules that can be induced, we
incorporate an inductive bias that constrains the length of separator instances. This bias requires
that the context of a separator instance includes the adjacent zero or more nonword tokens plus at
most one word token (i.e., CAlph, C1Alph, 0Alph and Num; others are nonword tokens), and that
the context should not span across the separator of another pair of attributes. This bias is based
on our heuristic that a short context string including a word token is sufficient to characterize a
separator class.

Example 2 Consider the first tuple in Figure 2. Labeling this tuple yields an attribute permuta-
tion (b,U,U,N,N, A, A, M,e) and the positions of their separators. After applying the inductive
bias for the length of training instances, the instances for separators s(N,A) and s(A4, A) and
s{A, M) are as follows:

s(JY,A)L = Html(</A>) Punc(,) Spc(1) Html(<I>)
s(N,A)® = C1A1ph(Professor)
s(A, A)L := C1Alph(Science)
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s(A, A)® = Html(</I>) Spc(1) 0Alph(and)
s{(A, MY* ::= OAlph(and) NL(1) Spc(5) Html(<I>)
s{(A, M)® ::= C1Alph(Executive)

We note that from our inductive bias, s{N, A}’ does not include C1Alpha(Chandy) because it will
make the context string span across the preceding separator between N and N. Also, the bias
excludes the control characters after the token “and” for s(A, A)*. O

With the training set for each separator class, we can apply an induction algorithm (e.g., [16])
to produce contextual rules. However, due to the bias, the length of each training instance may be
different. We cannot directly apply existing induction algorithms because the training instances
of those algorithms must be feature vectors with fixed length. Therefore, we develop an algorithm
that aligns training instances into columns, and then generalize each columns to generate new
rules.

The alignment of the tokens in the training instances is as follows. Formally, a training instance
for the left context is of the form

[word] nonword®,

that is, an optional word token followed by zero or more nonword tokens. Symmetrically, the right
context is of the form
nonword™ [word).

Our algorithm will align word tokens to the same column if they exist, and align nonword tokens
to the right for left context and to the left for right context. The motivation of this alignment
is that nonword tokens should be aligned according to their relative positions with the separator.
This way, the tokens next to the separator will be aligned together. Also, the closest word token
to the separator is usually an important signal of attribute transition and thus should be aligned
together.

Example 3 Suppose we label tuples number 1, 2, 4 and 5 in Figure 2 and collect a training set for
s{N, A). After the alignment, we have four columns for s{N, A)* and one column for s{(IV, A)E

1.s8(N,A)r ::= Html(</A>) Punc(,) Spc(1) Html(<I>)
2.5(N,A)Y ::= Html(</A>) Punc(,) Spc(1) Html(<I>)
4.s5(N, A\ = Punc(,) NL(1) Spc(5) Html(<I>)
5.5(N, A)L = Punc(,) Spc(1) Html(<KI>)
1.3(N, A)R = C1lAlph(Professor)

2.5(N,A)® = C1Alph(Associate)

4.s5(N, A)® = C1Alph(Visiting)

5.s(N,A)® == C1Alph(Gordon)

For an example where both word tokens and nonword tokens present, consider the following two
training instances for s{(A4, M)’ and the resulting alignment:

s{(A, M) ::= 0Alph(and) NL(1) Spc(5) Html(<I>)

s{A, MY* := 0Alph(and) Spc(1) Html(<KI>)

In this example, the leftmost word tokens (i.e., 0Alph(and)) are aligned together and the remaining
nonword tokens are aligned to the right. |

The generalization algorithm induces contextual rules by taxonomy tree climbing [16]. The
algorithm generalizes each column by replacing each token with their least common ancestor with
other tokens in the same taxonomy tree. Figure 5 shows fragments of the taxonomy trees. We
introduce a new token class CnAlph in the taxonomy tree to cover all tokens led by an uppercase
letter. Our current implementation applies a heuristic that always generalizes a control character
token t(v) to ¢() (i.e., when ¢ is one of NL, Spc or Tab). Another heuristic generalizes a token t(v)
to t(-) when there is no other token in the column that shares the same taxonomy tree with ¢.
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CnAlph())

CAlph(_) C1Alph(l) OAlph()) Punc()

VN 2PN PN 2PN

... ground tokens . . .

Fig. 5: Token Taxonomy Trees

This heuristic allows us to generate contextual rules for well structured Web pages using a single
training tuple.

After the generalization, duplicate instances will be removed and the remaining instances con-
stitute the output contextual rules. The complete algorithm is given as follows:

Algorithm 1 (Generalization)

1 INPUT D = training set that has been aligned;

2 FOR each column ¢ in D

3 FOR each token t(v) in ¢

4 IF 3 t'(v') € c such that t and t' in the same taxonomy tree THEN
5 replace t(v) with their least common ancestor

6 remove duplicate instances in D;

7 RETURN D;

Example 4 The generalization of the instances in Example 3 yields the following contextual rules:

1.s(N,A)" == Html(</A>) Punc(,) Spc(.) Html(<I>)
2.s(N,A)L = Html(</A>) Punc(,) Spc(.) Html(<KI>)
3.5(N, A = Punc(.)  NL(.) Spc(.) Html(<I>)
4 S(N,A)L n= Punc(,) Spc(.) Html(<I>)
1.8(N,A)® 1= C1A1ph()
2.5(N, A)® == C1a1ph()
3.s(N, A)® == C1A1ph()
4.8(N, A)® == C1A1ph()

Removing the duplicates, we obtain the contextual rules

S(N,A)L = Html(</A>) Punc(,) Spc(.) Html(<I>) |
Punc(_) NL(.) Spc(.) Html(<I>) |
Punc(,) Spc(.) Html(<I>)

S(N,A)R == C1Alph(.)

They are identical with ST and ST in Example 1. |

3.2. Generating Contextual Rules to Extract the Body

The body transducer in Figure 3 is designed to skip distracting text around the body that
contains the list of the interested tuples in the input Web page. Unlike the separators between
attributes, the head and tail separators of the body usually appear in unstructured free text where
our length bias may not be adequate. Therefore, we developed a slightly different algorithm to
generate contextual rules for the separators of the body.

Given the positions of the head separator h and the tail separator ¢, our algorithm starts
by extracting their context strings under the length constraint that follows the bias described in
Section 3.1 (i.e., one word token, followed by a sequence of nonword tokens). The context strings
serve as the initial contextual rules. The system then tests the initial rules by actually applying
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s<?p,?e’> s<?e’,?n>

Correction:E"."._."l 2 ‘ 2 ‘ o [0V

Fig. 6: Incorrect Extraction

them to extract the body. If the result is incorrect, then the rules are too general and need to be
specialized. The system specializes an incorrect rule by including the next token in the left context
for AL or in the right context for ¢#. These two steps are repeated until the rules can correctly
extract the body. We note that all tokens in the resulting rules are ground because the system
does not generalize them.

Example 5 The contextual rules for the head and tail separators of the Caltech faculty page are
as follows:

hY = Clalpha(Staff) Html(</H2>) NL(1) Html(<HR>) NL(1) Html(<UL>)
t? = Html(</UL>) NL(1) Html(<HR>) NL(1) Html (<ADDRESS>) NL(1) Html(<I>) Clalpha(Please)

In this case, the initial rules selected based on the length bias yield correct extraction and thus no
more tokens are included. O

We can extend this algorithm to generalize the contextual rules of the head and tail separators
for the output pages of searchable Web indexes. After generating the rules for the body of each
example page, the system takes these ground rules as the training instances and applies Algorithm 1
to induce new rules that cover all example pages. If the resulting rules are too general, we can
repeatedly apply the same specialization steps to include new tokens to the training instances until
the rules can recognize the body of each example page correctly.

3.3. Rapid Error Recovery

The generalized contextual rules may yield incorrect extraction in several situations. The first
situation is when the wrapper encounters an unseen attribute permutation. Since our algorithm
cannot induce rules for an unseen pair of adjacent attributes, we need to include at least one
training instance for each possible pair. The second situation is when the data type (e.g., numeric
or string ) of the attribute to be extracted is different from any training example, and the wrapper
can not identify the separators around this attribute. As in the first situation, we need to include
this new instance as a training example. The third situation is when the generalized rules cover
each other and make the transducer nondeterministic. To deal with this problem, we use a rule
priority policy that prefers a specific rule to a general one. However, this heuristic policy may still
make a wrong choice. Exceptions and typos in semistructured Web pages also contribute to errors.
Nevertheless, the wrapper must return all tuples correctly.

We have an approach to rapid error recovery. Suppose s{?p, 7e) and s(?e, ?n) are the separators
around the first incorrectly recognized attribute ?e during the extraction (see Figure 6)t. To recover
from this error an oracle is required to provide labeling for the attribute 7e. In effect the labeling
should involve providing the correct position of s{?e,?n) and the correct names of the target
attribute ?¢’ and its next attribute ?n’. Our error recovery system takes the labeling as the input
and infers the cause of the error and the recovery steps to correct the error. The inference is based
on the decision tree shown in Figure 7.

t?p, ?e, n and other symbols started by a “?” mark denote variables that can be instantiated by attribute
names.
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Fig. 7: Decision Tree of Error Recovery

The recovery involves generating new rules to compensate existing rules. This is achieved
by creating new training instances and applying Algorithm 1 to generate correct new rules. This
approach recovers most of the error cases. However, there are two cases that cannot be recovered in
this way. The first case is when the existing rules are overly general and need to be specialized. The
second case is when the names of the surrounding attributes are incorrect but it is not discernible
by any contextual rules due to the lack of their expressive power. We deal with these cases by
memorizing the entire string of the left attribute for the first case, and the right attribute for the
second case. We refer to the type of rules obtained in this manner as string rules, and to make
distinction, the generalized contextual rules are referred to as pattern rules. The priority of string
rules is higher than pattern rules. This approach is simple yet effective in our tests.

Example 6 Consider the third tuple shown in Figure 2. Using the learned contextual rules for
s{N, A) in Example 4, the transducer incorrectly regards “Assistant Director ... Laboratory” as
A (academic title) rather than M (administrative title). That is, we have ?p = N, ?e = A, In = ¢
from the test result, but the correct attribute names are 7¢’ = M and 7n' = e. According to
Figure 7, the root of the decision tree is to check whether ?e’ =?e. Since 7’ = A # M =7e,
we need to generate new rules for s(?p,?e'), that is, s(N, M). Now, we need to check the next
condition specified in the lower node of the second layer of the decision tree. Since the position of
the separator between A and e is equal to the position of the separator between M and e, moving
to the “yes” branch in the decision tree, we see that A and M are not discernible using contextual
rules and we need to generate a pattern rule for the left context and a string rule for the right
context to cover this tuple. The resulting new rules are as below:

(N, M)® ::= ‘‘Assistant Director of Computer
_ Graphics Laboratory’’
s(N,M)L ::= C1Alph(Bruck) Punc(,) Spc(1l)

We note that it includes all control characters. With this new rule, the transducer can correctly
extract this tuple and the others. In our experiment, a correct wrapper for the example Web page
is completed using a total of four training tuples and two recovered error attributes. a

Figure 7 only shows the inference for the cases where the contextual rules of the affected state
are all pattern rules. If the rules include string rules generated from previous error recovery steps,
and the resulting FST still make mistakes, the system will need to generate a string rule to overrule
the existing string rules. This occurs when the existing string rule matches a substring of a wrong
attribute or appears as a partial combination of two adjacent attributes. These situations, however,
never happened in our tests so far.

There is a case beyond the capability of our error recovery approach. The case occurs when
two identical strings, with the same previous attribute, represent different attributes. Consider the
situation when we want to extract the first name and the last name of a person but we also want to
skip the middle names. Since the number of middle names varies and they may appear exactly the
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same as a last name, unless our extractor has the expressive power of the context-free languages,
there is no way to extract the data correctly in general. However, if all the middle names appear
differently from the last names, our wrapper can memorize the confusing cases as string rules and
cover this case.

4. EXPERIMENTAL RESULTS

We have implemented our learning algorithm into a prototype system in JAVA. The system
has a GUI that allows a user to open a Web site, define the attributes, and label the tuples in the
Web page with a mouse. The system learns a wrapper from labeled tuples. If an error appears in
the output, the user can provide correct labeling and invoke the error recovery program to correct
the error until the output is completely correct.

We conducted two experiments to evaluate SoftMealy. The first experiment is to test its
expressiveness. The second experiment is to test whether the learning system can generalize over
unseen pages. The remainder of this section presents the results of these two experiments.

4.1. Experiment for Expressiveness

We have successfully applied SoftMealy to wrap a set of Web pages that itemize Computer
Science faculty members at universities in North America. The test pages are selected randomly
from the index provided by the Computing Research Association (cra.org). For each page, we
constructed a wrapper to extract a subset of predefined 14 attributes (e.g., name, URL, picture,
et cetra.), depending on their availability in the page. We chose this domain because it is a rich
source of itemized Web pages with diverse structural variations. It is our intention not to select
test pages with any presumed format in mind.

Table 1t shows the profile of the test pages and the performance statistics. The average number
of different attribute permutations of the test pages is 2.63, which shows that these pages are not
strictly structured. The number of training instances TI for each page is the maximal number of
labeled tuples used to learn a correct wrapper in our random trials.

To evaluate the generalization of the learned contextual rules, we compared the number of
learned disjuncts R with the number of separator classes SP (i.e., the number of edges). We also
compared R with the total number of tuples NT in a page. Ideally, R should be independent of NT
but correlated with SP. Figure 8(a) and (b) show the correlations. The results favor our approach
because we obtained a strong correlation coefficient 0.980 (= 1) between R and SP and almost no
correlation -0.031 (~ 0) between R and NT.

The number of training instances TI is also correlated with SP, with correlation coefficient equal
t0 0.773 (see Figure 8(c)). This shows that our learning algorithm can learn correct contextual rules
for each class of separators with a handful of training tuples. The outlier at the upper right corner
is obtained from the faculty page of the Drexel University!. This page is nested and particularly
difficult to wrap because, in addition to its many exceptions, it is a “nested” structured page [14]
with distracting free text in some (not all) inter-tuple regions. However, SoftMealy still managed
to wrap it.

4.2. Generalizing over Unseen Pages

Wrappers are particularly useful when applied to wrap searchable Web information sources.
These Web sources output a semistructured Web page that contains a list of tuples in response
to a user query. It is important for a wrapper to generalize over unseen output pages for these
information sources. To evaluate this capability, we apply our system to wrap the ASU Web
directory®. This Web source provides the information of the faculty, staff and students at ASU with
a total of 12 possible attributes. This source is particularly interesting for our evaluation because

TThis experiment was conducted in November 1997.
fcbis.ece.drexel.edu/ECE/ece_bios.html
$www.asu.edu/asuweb/directory/



Generating Finite-State Transducers 533

L
100 —
o
2 .
g::s 50 — o0t °
L]
L ]
*e
o,
* L]
o %%, © *
L AL
0 T T T
0 50 100 150
ltems
L ]
100 —
0
X o
El | .
o 50 :a .
L]
(X}
.
e
.
TH
[ }
0 \ \ \
0 10 20 30
Separators
25 T .
8 20
o
c
oo
E 15 —
2
€ 107 .
g o
= 5 — 'u: :/r'.".. ....
ee e @
L4
L]
0 \ \ \
0 10 20 30
Separators

Fig. 8: Scatterplots of (a) Rules and Tuples, (b) Rules and Separators, and (c) Training Instances and Separators



534 CHUN-NAN Hsu and MiNG-TzunG DunG

URL NT A AP S SP R TI
www.cs.nmt.edu/Faculty.html 6 6 3 14 16 38 6
www.cs.olemiss.edu/faculty/ 8 3 2 8 8 21 5
www.cs.fit.edu/people/faculty.html 11 1 2 4 4 14 5
www.cs.brandeis.edu/faculty-descriptions/ 11 7 2 20 19 50 6
www.cs.caltech.edu/csstuff/faculty.html 15 4 4 10 12 31 5
www.cs.colostate.edu/people.html 18 2 2 6 7 17 4
www.cs.dartmouth.edu/faculty/ 18 7 5 16 19 56 6
www.cs.msstate.edu/FACULTY_AND_STAFF/ 18 6 3 14 16 49 9
www.cse.fau.edu/faculty.html 21 2 1 6 5 14 5
www.cs.gmu.edu/faculty/ 21 1 1 4 3 7 2
www.cs.columbia.edu/home/people/people.html#faculty 22 1 1 4 3 8 3
cyclone.cs.clemson.edu/html/whoswho/facultyindex.shtml 22 7 4 15 17 49 5
www.cs.gmu.edu/ofchours.html 23 5 4 15 16 45 9
www.cs.jhu.edu/faculty.html 24 2 1 5 4 16 4
www.cs.wm.edu/cspages/people/faculty.html 25 6 5 20 16 50 9
www.cs.msu.edu/fac/index.html 29 2 2 5 5 13 4
www.cs.iastate.edu/faculty /index.html 29 3 3 7 9 23 4
www.cs.nps.navy.mil/people/faculty/ 29 1 1 4 3 9 5
www.cs.concordia.ca/People/Faculty.html 31 4 2 10 10 29 7
www.cs.duke.edu/cgi-bin/factable?text 32 5 2 12 12 26 5
www.cs.washington.edu/people/faculty/ 34 1 1 4 3 8 2
www.eas.asu.edu/~csedept/people/faculty.html 35 7 3 17 18 51 5
gauss.nmsu.edu:8000/faculty /faculty.html 35 4 2 9 9 26 5
www.cs.nyu.edu/cs/new_faculty.html? 36 3 2 8 10 35 6
simon.cs.cornell.edu/Info/Faculty /faculty-list.html 39 2 1 6 5 15 5
www.seas.gwu.edu/seas/eecs/faculty.html 41 4 3 8 11 35 6
cbis.ece.drexel.edu/ECE/ece_bios.html 46 10 13 28 33 108 25
class.ee.iastate.edu/fac_staff/index.html 48 3 2 8 8 24 6
www.ri.cmu.edu/ri-home/people.html 51 2 1 6 5 18 5
www-eecs.mit.edu/faculty /index.html 157 2 1 6 5 21 6

Key: NT= # of tuples, A= # of attributes, AP = # of attribute permutations, S= # of states,
SP = # of separator classes,R = # of disjuncts, TI = # of training instances.

Table 1: Performance Statistics on Wrapping CS Faculty Web Pages

its output pages contain a large number of different attribute permutations due to the diversity
of the information available for different personnel categories at a university (e.g., students, staffs,
and faculty).

The experiment was conducted as follows. We sent 11 random queries to the source and
obtained 11 output pages. We sorted the pages on their size (i.e., the number of tuples) and
selected the largest page as the test page and the other 10 pages as the training pages. The test
page contains 69 tuples and 17 different attribute permutations while the training pages contain
a total of 85 tuples and 18 different attribute permutations. Among these attribute permutations,
only seven appearing in the test page also appear in the training pages.

To plot the learning curve, we sorted the training pages in the ascending order of their size,
and applied the learning system to generate a wrapper for each observed training page so far, and
used the generated wrapper to extract the test page. We labeled a total of 15 tuples in order
to successfully wrap the 10 training pages and obtained 92 contextual rule disjuncts. The result
is shown in Figure 9, where all the data points are cumulative. Interestingly, even though there
are 10 unseen attribute permutations in the test page, SoftMealy still covered 60 out of 69 tuples
(= 87%) in the test page. We note that because an error may affect the extraction of the rest of
the page, four tuples not covered in the test page would have been covered if their previous tuples
had been extracted correctly.

To see why SoftMealy can generalize over unseen attribute permutations, consider the example
FST in Figure 4, which covers not only the four attribute permutations appearing in the example
Web page, but also the other two attribute permutations because the learned contextual rules
constitute a total of six paths in this FST.
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Fig. 9: Learning Curve of SoftMealy on Wrapping ASU Directory

Except for a small portion of the tuples that serve as the training instances, in the training
page, the total number of unseen tuples in both training and test page is 139. The generalized
wrapper covered 130 tuples among these unseen tuples. This amounts to a 94% overall tuple
extraction accuracy.

To further verify the utility of SoftMealy, we surveyed a list of searchable Web indexes given
n [14]. Since these Web sites create pages by a program, they have a uniform format. But still,
[14] concluded that his approach cannot wrap 30% of them. We surveyed the same list and have
yet to encounter any semistructured resource that cannot be wrapped by SoftMealy.

5. RELATED WORK

This section first discusses the notion of semistructuredness of data and documents in the
literature. Next, we survey approaches to wrapper construction for semistructured Web pages and
compare our work with these approaches. We discuss briefly the impact of XML on the wrappers.

5.1. Semistructuredness of Data and Documents

The term “semistructured” has been used in several different ways in previous work related to
the World-Wide Web. In AI community, including this work, the term relates to the manner that
a Web page is presented, while in the databases community, the term concerns the manner that
the content information of a Web page is organized (see e.g., [6]).

We consider a Web page that provides itemized information as structured if each attribute in a
tuple can be correctly extracted based on some uniform syntactic clues, such as delimiters or the
orders of the attributes. On the other hand, a Web page is unstructured if linguistic knowledge
is required to extract the attributes correctly. For example, the job page of Computing Research
Association' is structured because every attribute is contained in a cell of an HTML table, while
the SIGMOD job page! is unstructured, because it lists each job offer as a free sentence. It is
important to emphasize that the structuredness of a Web page must depend on the attributes
that the users are interested to extract. In the case of the SIGMOD job page, it is considered

tera.org/jobs
tuww.acm.org/sigmod/jobs
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unstructured because we intend to extract job titles, employers, application deadlines, et cetera,
but if each job offer description is regarded as a single attribute then the page is structured.
Usually, machine generated Web pages are very structured, while hand generated Web pages are
less structured but there are plenty of exceptions. It is easy to construct a wrapper for a structured
Web page but difficult for an unstructured one because it requires lexical knowledge.

Semistructured Web pages are those that are not unstructured. Semistructured Web pages may
contain tuples with missing attributes, attributes with multiple values, variant attribute permuta-
tions, exceptions and typos. Therefore, it is likely that the contents of a semistructured Web page
does not fit in a structured data model. In other words, the contents of a semistructured Web page
are usually semistructured data. However, it is also possible that structured data are presented
in a semistructured or even unstructured fashion. The approach described in this paper focuses
on generating wrappers for semistructured Web pages that contain semistructured or structured
data.

5.2. Wrapper Construction

Wrapper construction is essential to allow machines to extract data from semistructured Web
pages. The most primitive approach to this problem is to program a wrapper for each Web site by
hand in some programming language such as Perl. This approach was found impractical because
it is too difficult to update and maintain the wrappers. To solve this problem, many approaches
are proposed to rapid wrapper construction. One class of the approaches is to use an easy-to-
program language to create wrappers. Some researchers use existing grammar definition tools
such as yacc, LL(k) grammars, etc. Others define their own specialized languages for wrapper
construction, such as the wrapper construction language in the TSIMMIS project [8], the concept
description frame of InfoExtractor [19], and the procedural language defined in [5]. These languages
are sufficiently expressive (usually at least as expressive as regular expressions, i.e., finite state
automata), but mastering those languages still requires substantial computer background. These
approaches become unacceptable when skillful programmers are not available.

Another class of the approaches to rapid wrapper construction relies on heuristics to automatize
the construction. Doorenbos et al. [7] proposed an approach to generating wrappers automatically
in their ShopBots project. Their approach applies the knowledge about the possible attribute
values and “environmental assumptions” to wrap machine-generated pages of on-line venders.
Ashish and Knoblock [4] proposed another approach by locating HTML tags that presumably
surround an interesting attribute. Hsu et al. [11] proposed a template-based approach that also
takes advantage of HTML tags. These approaches, however, only cover a small proportion of the
Web pages. It is difficult to extend their heuristic to other Web pages.

Kushmerick [14] advanced the state of the art with a wrapper induction approach. Like in
our work, their wrappers are induced from labeled training tuples. He defined a family of wrapper
classes, which essentially consist of linear FSTs that extract data by recognizing delimiters between
attributes. He was able to establish a PAC bound on the number of training examples. However,
his representation is too restrictive to wrap semistructured pages with variant structuring patterns.
Our approach is more flexible because the states in our FST may have multiple outgoing edges.
Another advantage of our approach is the use of separators. Recognizing separators is more
flexible than recognizing delimiters because separators are described by their contexts which allow
a wrapper to distinguish different attribute transitions, but in many cases it is impossible by
recognizing delimiters.

More recently, Muslea et al. proposed Stalker [17] that can learn wrappers more expressive
than Kushmerick’s work. Their wrappers are based on a set of “disjunctive landmark automata”.
Each landmark automaton is specialized in extracting an attribute. As a result, to complete the
extraction, their wrapper needs to apply landmark automata several times, each time the wrapper
needs to scan the Web page once. In contrast, our wrapper can read in a Web page as a stream
and output extracted tuples as a stream from the partially read Web page in real time. This feature
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is important to allow a client information mediator to efficiently answer a query on line. It is not
clear, however, how landmark automata compare with SoftMealy in terms of expressiveness and
learnability. We plan to perform an empirical comparative study soon.

Doorenbos et al. [7] and Kushmerick [14] also describe approaches to automatically labeling a
Web page using the knowledge about possible attribute values. Though we think it is more difficult
to obtain the required knowledge than labeling tuples by hand, if the knowledge is available, we
can apply their approaches to produce training examples for our generalization algorithm.

5.3. XML and the Wrappers

A wrapped World-Wide Web implies a wide-open machine-comprehensible environment avail-
able to all kinds of intelligent agents. The explosive growth of the Web sites on the Internet gives
us an example that it is possible to wrap the World-Wide Web if we provide practical tools for
ordinary users. The emergence of XML [20] appears to be “the” tool that will solve all the prob-
lems for the wrappers. We think XML will make wrapper induction simpler but will not eliminate
the need of wrappers. After all, XML markup only provides one of many possible semantic inter-
pretations of a document. When an application needs to extract data at a different granularity,
or to integrate data in different domains, we still need wrappers to provide other interpretations.
Moreover, wrappers can help mark up huge amount of legacy data in XML.

6. CONCLUSIONS AND FUTURE WORK

This paper has presented an approach to wrapping semistructured Web pages. The key features
of our approach are as follows. First, the FST representation allows a wrapper to encode different
attribute permutations. Second, the disjunctive contextual rules allow a wrapper to characterize
the context of separators. Third, the learning algorithm can bring to bear token taxonomy trees
and induce accurate contextual rules with a handful of examples. Finally, exceptions can be taken
care of by memorizing string rules. The experimental results show that the approach performs well
on a wide range of semistructured Web pages.

A limitation of our approach is that it is not able to generalize over unseen separators. As
a result, the number of training instances required to generate a correct wrapper may depend
on how we select the instances. The number of training instances can be minimized by selecting
representative instances for each new pair of adjacent attributes. On the other hand, if all of our
selected instances contain the same set of separators, we will need many error recovery steps for
unseen separators. To make the performance more reliable, we can improve the quality of training
instances by using an interactive GUI to guide the labeling or using the knowledge of the ranges
of attribute values to analyze the page and recognize possible new separators in advance.

We plan to perform theoretical analysis to reveal more insights on the behavior of our wrapper.
The future work also includes applying a number of algorithms for removing ambiguity, deter-
minization, and minimization [18] to optimize the learned wrapper. We are currently working on
including negative examples in the induction of contextual rules to improve the accuracy. It is also
important to make the wrappers robust against changes so that they can skip errors and return
the most reasonable tuples.
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