
Record Location and Reconfiguration in
Unstructured Multiple-Record Web Documents

D.W. Embley and L. Xu
Department of Computer Science

Brigham Young University
Provo, Utah 84602, U.S.A.

{embley,lx,}@cs.byu.edu

ABSTRACT
Record extraction from data-rich, unstructured, multiple-
record Web documents works well [8], but only if the text
for each record can be located and isolated. Although some
multiple-record Web documents present records as contigu-
ous, delineated chunks of text (which can thus be located
and isolated [9]), many do not. When some values of tex-
tual records are factored out, are split unnaturally across
boundaries, are joined unnaturally within boundaries, or are
linked by off-page connectors, or when desired records are
interspersed with records that are not of interest, it is diffi-
cult to automatically cull records and piece values together
to form clean, delineated chunks of text that each repre-
sent a single record of interest. In this paper we attack this
problem and propose an algorithm to find and rearrange (if
necessary) records in an HTML document by attempting to
maximize a record-recognition heuristic with respect to a
given application ontology. Tests we conducted show that
this technique properly locates and reconfigures records for
all classified types of rearrangements both for artificial and
for actual multiple-record Web documents.

1. INTRODUCTION
The World Wide Web contains abundant repositories of in-
formation in Web documents. Many of these Web docu-
ments contain lists of unstructured text whose contents can
be extracted to form database records. As an example, Fig-
ure 1 shows a list of car advertisements; each ad is an un-
structured record that contains values such as the year of the
car, its make and model, its features, its selling price, and
a contact number. We call these Web documents multiple-
record Web documents.

Over the past two years, we have experimented success-
fully with extracting record data from data-rich, unstruc-
tured, multiple-record Web documents. Applications have
included car ads, job ads, obituaries, real estate, precious
gems, computer monitors, games, musical instruments, stocks,
and personals [8, 13]. As a measure of success, we have com-
puted recall and precision ratios for each attribute for each
application. We achieved recall ratios in the range of 90%
and precision ratios near 98% for both car ads and job ads.
For obituaries, a much more complex challenge, recall ratios
ranged from 70% to 100%, and precision ratios ranged from
93% to 100% (except for names of relatives, which dropped
to 71%). Our results compare favorably with the results
others have obtained (e.g. [1, 2, 3, 4, 5, 7, 11, 14, 15, 16, 12,

19, 20]).1

In our experiments, however, we have assumed that the in-
put is a set of clean, plain-text record chunks. Initially, we
obtained these unstructured records by hand, but we have
since developed an algorithm to discover record boundaries
automatically and to clean and present unstructured records
to our downstream data-extraction system [8]. This record-
boundary-discovery algorithm works well (near 100%) for
Web documents such as the one in Figure 1 in which each
unstructured record exists as an isolated text chunk. Be-
cause it only finds record delimiters, however, it fails for
Web documents that have characteristics like the ones in
Figure 2, where the car ads are: (1) factored—the year val-
ues 1999 and 1998 appear only once for each group of car ads
in Figure 2(a); (2) joined—the next to last ad in Figure 2(a)
mentions three cars jointly; (note also that the dealer and
phone number are factored to the end of the ad); (3) off-
page—the second ad in Figure 2(a) contains an off-page link
to the page in Figure 2(b); (4) split—the natural white-
space boundary splits the third ad in Figure 2(b); and (5)
interspersed—the second 1998-ad in Figure 2(a) is an ad for
a washer and dryer, which is interspersed among the car ads.

The contribution of this paper is that it shows how to resolve
each of these problems. The technique for each is similar.
The main idea is to define a record-recognition heuristic that
measures how well an unstructured record matches a prede-
fined ontology description for the application of interest. We
adapt the Vector Space Model (VSM) [18] from the field of
information retrieval to define our record-recognition heuris-
tic. The heuristic measure (1) increases when we “defactor”
a set of records (e.g. distribute the years in Figure 2(a) to
each of the records); (2) increases when we divide joined
records that appear within a delimited record group and
increases even more when we defactor end values in joined
record groups; (3) increases when we pull in off-page text;
(4) increases when we group records split across apparent
boundaries; and (5) increases when we discard unsuitable
interspersed records. As a result, when we rearrange a doc-
ument to “maximize” the record-recognition heuristic for a
multiple-record Web document, the result becomes a list of
text chunks, one for each individual unstructured record.

Section 2 describes the application ontologies we use in our

1For a specific comparison between our work and the work
cited here, see [8].

Figure 1: Regular Car Ads

(a) Base Car Ads (b) Off-Page Car Ads

Figure 2: Irregular Car Ads

1. Car [-> object];
2. Car [0:0.975:1] has Year [1:*];
3. Car [0:0.925:1] has Make [1:*];
4. Car [0:0.908:1] has Model [1:*];
5. Car [0:0.45:1] has Mileage [1:*];
6. Car [0:2.1:*] has Feature [1:*];
7. Car [0:0.8:1] has Price [1:*];
8. PhoneNr [1:*] is for [1:1.15:*];
9. Year matches [4]
10. constant {extract ”\d{2}”;
11. context ”\b’[4-9]\d\b”;
12. substitute ”̂ ” -> ”19”
13. ...
14. Mileage matches [8]
15. ...
16. keyword ”\bmiles\b”, ”\bmi\.”, ”\bmi\b”,
17. ”\bmileage\b”;
18. ...

Figure 3: Car-Ads Application Ontology (Partial)

work. Section 3 explains how we adapt VSM for use as a
record-recognition heuristic. Section 4 presents an algorithm
that uses our adapted record-recognition heuristic to rear-
range a multiple-record HTML document and to produce
automatically the ontology-applicable unstructured records
contained within the document. Section 5 discuss the results
of applying our heuristic algorithm to several Web docu-
ments. We make concluding remarks in Section 6.

2. APPLICATION ONTOLOGY
For our work in data extraction, we define an application
ontology to be a conceptual-model instance that describes
a real-world application in a narrow, data-rich domain of
interest (e.g. car advertisements, obituaries, job advertise-
ments) [8]. Each of our application ontologies consists of
two components: (1) an object/relationship-model instance
that describes sets of objects, sets of relationships among
objects, and constraints over object and relationship sets,
and (2) for each object set, a data frame that defines the
potential contents of the object set. A data frame for an ob-
ject set defines the lexical appearance of constant objects for
the object set and establishes appropriate keywords that are
likely to appear in a document when objects in the object
set are mentioned. Figure 3 shows part of car-ads appli-
cation ontology, including object and relationship sets and
cardinality constraints (lines 1-8) and a few lines of the data
frames (lines 9-18). (The full ontology for car ads is about
600 lines in length.)

An object set in an application ontology represents a set
of objects which may either be lexical or nonlexical. Data
frames with declarations for constants that can potentially
populate the object set represent lexical object sets, and
data frames without constant declarations represent non-
lexical object sets. Year (Line 9) and Mileage (Line 14)
are object sets of length 4 characters and 8 characters re-
spectively; Car, Make, Model, Price, and PhoneNr are the
remaining object sets in our car-ads application.

We describe the constant lexical objects and the keywords
for an object set by regular expressions using Perl syntax.
When applied to a textual document, the extract clause in
a data frame causes a string matching a regular expression to
be extracted, but only if the context clause also matches

the string and its surrounding characters. A substitute
clause lets us alter the extracted string before we store it
in an intermediate file, in which we also store the string’s
position in the document and its associated object set name.
One of the nonlexical object sets is designated as the object
set of interest—Car for the car-ads ontology. The notation
“[-> object]” in Line 1 designates the object set of interest.

We denote a relationship set by a name that includes its
object set names (e.g. Car has Year and PhoneNr is for
Car). The min:max pairs and min:ave:max triples in the
relationship-set name are participation constraints: min des-
ignates the minimum number of times an object in the ob-
ject set can participate in the relationship set; ave desig-
nates the average number of times an object is expected to
participate in the relationship set; and max designates the
maximum number of times an object can participate, with
* designating an unknown maximum number of times. The
participation constraint on Car for Car has Feature, for ex-
ample, specifies that a car need not have any listed features,
that a car has 2.1 features on the average, and that there is
no specified maximum for the number of features listed for
a car.

For our car-ads application ontology, we obtained partici-
pation constraints as follows. We selected 10 different re-
gions covering the United States and found a car-ad page
from each of these regions. From each of these pages we se-
lected 12 individual car-ads by taking every n/12-th car-ad
where n was the total number of car-ads on the page. We
then counted by hand and obtained minimum, average, and
maximum values for each object set in each relationship set.

3. A RECORD-RECOGNITION HEURISTIC
We are interested in recognizing the existence of chunks of
unstructured text that constitute record information both
for individual records and for groups of records. We have
adapted the Vector Space Model (VSM) [18], a common
information-retrieval measure of document relevance, for this
purpose. VSM measures the cosine between two vectors—in
our case, between an ontology vector OV representing what
we expect to find and a document (or subdocument) vector
DV representing we actually find. VSM also measures the
magnitudes of the two vectors.

To construct the ontology vector OV , we (1) identify the
lexical object-set names—these become the names of the
coefficients of OV , and (2) determine the average partici-
pation for each lexical object set with respect to the object
set of interest specified in O—these become the values of the
coefficients of OV . The ontology vector for the car-ads appli-
cation in Figure 3 is < Year:0.975, Make:0.925, Model:0.908,
Mileage:0.45, Price:0.8, Feature:2.1, PhoneNr:1.15 >.

We can construct a document vector DV for an entire doc-
ument or for any subpart part of a document (even down to
single lines of text and single sub-line phrases). The names
of the coefficients of DV are the same as the names of the
coefficients of OV . We obtain the value of each coefficient of
DV by automatically counting the number of appearances
of constant values that belong to each lexical object set.
By applying the car-ads application ontology in Figure 3 to
the entire document in Figure 1 we find 7 Y ear values, 6

Make values, and so forth, and obtain the document vector
< Year:7, Make:6, Model:6, Mileage:3, Price:6, Feature:7,
PhoneNr:7 >.

We have discussed the creation of a document vector as if
correctly detecting and classifying the lexical values in a
document is easy—but it is not easy. We identify potential
lexical values for an object set as explained in Section 2;
this can be error-prone, but we can adjust the regular ex-
pressions to improve this initial identification and achieve
good results [8]. After initial identification, we must decide
which of these potential object-set/constant pairs to accept.
In our downstream processes, we use sophisticated heuristic
based on keyword proximity, application-ontology cardinal-
ities, record boundaries, and missing-value defaults to best
match object sets with potential constants. For upstream
rearrangement of records we use techniques that are far less
sophisticated and thus also far less costly. In our simple
upstream procedures we consider only, two cases: (1) a rec-
ognized string has no overlap either partially or completely
with any other recognized string, and (2) a recognized string
does overlap in some way with at least one other recognized
string. For Case 1, we accept the recognized string for an
object set even if the sophisticated downstream processes
would reject it. For Case 2, we resolve the overlap sim-
plistically, as follows. There are three subcases: (1) exact
match, (2) subsumption, and (3) partial overlap. (1) If a lex-
ical value v is recognized as potentially belonging to more
than one lexical object set, we use the closest keyword that
appears before or after v to determine which object set to
choose; if no applicable keyword is found, we choose one of
the object sets arbitrarily. (2) If a lexical value v is a proper
substring of lexical value w, we retain w and discard v (3)
If lexical value v and lexical value w appear in a Web doc-
ument, such that a suffix of v is a prefix of w, we retain v
and discard w.

The VSM measure defined in [18], calculates the acute an-
gle between an ontology vector OV and a document (or
subdocument) vector DV as cos θ = P/N , where P is the
inner product of the two vectors and N is the product of the
lengths of the two vectors. When OV is the ontology vec-
tor for the car-ads application ontology (given above) and
DV is the document vector for the car-ads document in Fig-
ure 1 (given above), the VSM measure is 0.948. When the
distribution of values among the object sets in DV closely
matches the expected distribution specified in OV , the angle
θ is close to zero degrees, and cos θ is close to one.

As a by-product of computing the VSM measure, we obtain
the lengths of the vectors OV and DV . Because the vector
coefficients for OV are the estimates for one record and the
vector coefficients for DV are the values identified for one or
more records, the length |DV | divided by the length |OV | is
a rough estimate of the number of records in the document
(or the part of the document) being measured. For our
example, |DV | ÷ |OV | = 5.355. This is a little low as an
estimate for the seven records in Figure 1, but these car ads
are a little shorter than typical car ads.

input: Application ontology O and applicable Web document D.
output: Data file F containing reorganized individual records.
1. Parse O and compute the magnitude of the ontology vector;
2. Parse D and compute the magnitude of the document vector;
3. Count occurrences, NrOcc, for each HTML tag in D

and obtain the best-guess record boundary, btag;
4. For each text component TC between successive btag’s in D:

Obtain the linked documents for all off-page links in TC;
Let TC′ be TC with the text of the linked documents

inserted for the off-page links in TC;
If V SMmeasure(TC ′) > V SMmeasure(TC),

Replace TC by TC′;
5. For each text component TC in D:

Let pTC be the previously text component, if any;
Let fv be the current potential outside-boundary

factored value, if any;
5a. Use the VSM measure to reorganize and process

joined records in TC:
Obtain any inside-boundary factored values;
Divide the joined records into individual records;
Distribute any inside-boundary factored values to the

previously-joined but now individual records;
5b. Use the VSM measure to recognize and combine

adjacent record fragments and distribute
outside-factored values to individual records:

If V SMmeasure(pTC + TC) > V SMmeasure(TC),
Combine pTC and TC as the next pTC;

Else
add pTC to F ;
If V SMmeasure(fv + TC) > V SMmeasure(TC)

Combine fc and TC as the next pTC
Else

If the VSM measure determines that TC
is a new potential factored value;

fv is set to TC;
pTC is set to empty;

Else pTC is set to TC;
add pTC to F

6. For each record R in F :
Use the VSM measure to discard inapplicable

interspersed records;
7. Output each remaining record in R.
Figure 4: Record Location and Rearrangement
(RLR) Algorithm

4. RECORD LOCATION AND REARRANGE-
MENT ALGORITHM

Figure 4 shows our algorithm for locating and rearranging
records within a given Web document D. We assume that
D has been filtered with respect to the application ontology
and is thus a multiple-record Web document suitable for the
application.2 D may contain only a list of regular car ads,
in which case the algorithm simply outputs the list, or it
may contain a mixture of any or all of the categorized prob-
lems: having records that are factored, joined inside bound-
aries, off-page or partially off-page, split across boundaries,
or interspersed among inapplicable records. The algorithm
is based on a hill-climbing search that improves the VSM
measure for a single record. When processing a text com-
ponent within D, the possibility that the current record is
factored, split, or joined is checked based on the VSM mea-
sure. The adjusted record maximizes the VSM measure by
the operations in the algorithm.

2In previous work [10], we have shown how to identify car-
ads Web documents with over 90% accuracy.

Comments on the steps of our Record Location and Rear-
rangement (RLR) Algorithm follow:

Step 1: The ontology vector OV is constructed based on
the cardinality information in the parsed ontology.

Step 2: We use a standard algorithm [6] to parse D. The
document vector DV is constructed based on the ex-
tracted data from D.

Step 3: Since OV is the vector for a single generic record
and DV is the vector representing every record in a
document, the length of DV divided by the length
of OV (|DV | ÷ |OV |) approximates the number of
records in D. To find the best-guess boundary tag, we
count the occurrences of each HTML tag and compare
it to N = |DV | ÷ |OV |. Our comparison uses a
list of HTML tags L each of which typically separate
records. We choose the HTML tag in L whose count
is greater than N but smaller than the count for any
other tag in L with a count greater than N . If no
such tag exists, we choose the tag in L whose count
is highest. If D contains no tags in L, we choose the
HTML tag in a similar way, but without reference to
L. After obtaining the best-guess boundary tag, we
discard superfluous header and trailer text leaving just
the record data.3

The best-guess boundary tag separates text compo-
nents. Before continuing, the algorithm computes the
vector for each text component TC. We denote this
vector V SMmeasure(TC) and we use it as the base-
line measure for hill climbing.

Step 4: The idea in this step is to gather relevant off-page
information into each of the records. Although cascad-
ing links beyond a single page are possible, we found
none in the Web documents we encountered. Our algo-
rithm, as presently coded, does not handle cascading
links.

Step 5a: We use threshold values for the VSM measure to
check whether the current text component contains
multiple records. We also check the head and the tail
of the current text component to see if there are inside-
boundary factored values that do not appear in the
middle of the joined multiple records. When distribut-
ing the data into individual records, the algorithm uses
a multiple-slot template and assumes that the layout
pattern for these records is regular.

Steps 5b: In this step we look (1) for adjacent components,
which when joined together would improve the VSM
measure, and (2) for outside-boundary factored val-
ues, which when distributed to the text components
would improve the VSM measure. If we have a pre-
vious text component, we will have already joined it
with even earlier text components, if appropriate, and
we will have already distributed factored values into it,
if appropriate. We compare this (possibly adjusted)
prior text component with the current text compo-
nent. If the VSM measure improves, we join the two

3The details of how we discard superfluous header and
trailer text is based on some additional heuristics described
in [10] and is beyond the scope of our discussion here.

together and proceed to the next text component. If
not, we add the prior text component to the output
file and continue our consideration of the current text
component by checking whether the current factored
value, if any, improves the VSM measure. If it does, we
combine the current text component with the factored
value and let it be the prior text component for the
next iteration. Otherwise, we consider the possibil-
ity that the text component itself is the next factored
value. We use the VSM measure to make this determi-
nation and either we assign the current text component
to be the current outside-boundary factored value and
the prior text component for the next iteration to be
empty, or we simply let the current text component be
the prior text component for the next iteration.

Step 6 After the rearrangements in Steps 4 through 5, we
have a list of potential records. We use a C4.5 [17],
machine-learned, VSM threshold [10] to check each
one. If the record exceeds the VSM threshold, we keep
it; otherwise we discard the below-threshold record.

5. RESULTS
To guide us in creating the Record Location and Rearrange-
ment (RLR) Algorithm, we used twelve artificial Web doc-
uments. We designed these documents to span the various
cases covered in the algorithm—the Web document in Fig-
ure 1 represented the extreme case with no irregularities and
the combination document in Figure 2 represented the ex-
treme case with all types of irregularities. We constructed
these two documents and the other ten from actual car-ads
Web documents, but we made them “short” (less than a
dozen car ads) and “sweet” (stripped of superfluous infor-
mation beyond the basic record information).

Once our RLR algorithm successfully processed these twelve
“training” documents, we tested our RLR algorithm on 30
actual Web documents. We had selected these 30 Web doc-
uments, three from each of 10 different geographic regions in
the U.S., before developing our RLR algorithm. Indeed, we
selected these documents for an entirely different purpose.

An examination of these 30 documents revealed the follow-
ing: eight contained only regular car ads; thirteen contained
joined car ads inside of record boundaries, all with inside-
boundary factored values; one contained outside-boundary
factoring; thirteen contained non-car-ads interspersed with
car ads; and none contained split or off-page car ads.4 Alto-
gether in these documents we found 304 car ads that needed
to be rearranged and 47 non-car-ads that needed to be dis-
carded. Our RLR algorithm correctly rearranged 91% of
the 304 and correctly discarded 94% of the 47. The com-
bined output of our RLR algorithm over all ads in the 30
documents (including regular ads) correctly produced 1,041
of the grand total of 1,077 car ads, for an accuracy of 97%.

Over all 30 car-ads documents, our RLR algorithm produced

4Car ads are short and we thus did not and do not expect
to find car-ads that are split across boundaries or are linked
to off-page information. We have, however, found obituar-
ies that have these characteristics, and we have done some
successful testing of our RLR algorithm on these documents
using an obituaries application ontology.

36 false drops (36 = 1,077-1,041) and 3 false positives. The
3 false positives were all ads for snowmobiles, which are a
lot like car ads. Of the 36 false drops, 9 were regular car ads
and 27 were rearranged car ads. For all 9 of the regular car
ads and 2 of the 27 rearranged car ads, the ontology failed
to find enough values (mostly models) to bring the VSM
measure above the threshold, and these 11 car ads were thus
improperly discarded. We can fix this problem by improving
our ontology. Twenty of the false drops all came from the
same “strange” within-boundary record group— “strange”
because it repeated an identical phone number five times,
once for every five car ads. This is a pattern we had not
anticipated. Finally, five of the false drops were grouped in
a joint car ad that was so badly formed that even a human
had considerable difficulty trying to extract and form the
car ads.

6. CONCLUDING REMARKS
We presented an approach to locating, delineating, and re-
arranging records in unstructured multiple-record Web doc-
uments. The key idea to the success of this approach is to
heuristically maximize a VSM measure of similarity between
the expectations for value occurrences specified in an appli-
cation ontology and the actual occurrences found in a docu-
ment. Encoding this heuristic in an algorithm allowed us to
recognize and properly deal with records that had been fac-
tored, “unnaturally” split across boundaries, “unnaturally”
joined within boundaries, linked to additional off-page in-
formation, and interspersed with records not applicable to
the application ontology. Results from tests we conducted
showed that we correctly located, delineated, and rearranged
97% of the records we encountered.

7. REFERENCES
[1] B. Adelberg. NoDoSE—a tool for semi-automatically

extracting structured and semistructured data from
text documents. In Proceedings of the 1998 ACM
SIGMOD International Conference on Management of
Data, pages 283–294, Seattle, Washington, June 1998.

[2] N. Ashish and C. Knoblock. Semi-automatic wrapper
generation for Internet information sources. In
Proceedings of the CoopIS’97, 1997.

[3] S. Brin. Extracting patterns and relations from the
World Wide Web. In Proceedings of the WebDB
Workshop (at EDBT’98), 1998.

[4] J. Cowie and W. Lehnert. Information extraction.
Communications of the ACM, 39(1):80–91, January
1996.

[5] M. Craven, D. DiPasquo, D. Freitag, A. McCallum,
T. Mitchell, K. Nigam, and S. Slattery. Learning to
extract symbolic knowledge from the World Wide
Web. In Proceedings of the 15th National Conference
on Artificial Intelligence (AAAI-98), pages 509–516,
Madison, Wisconsin, July 1998.

[6] Docuverse DOM SDK, 2000. URL:
http://www.docuverse.com/htmlsdk/.

[7] R. Doorenbos, O. Etzioni, and D. Weld. A scalable
comparison-shopping agent for the World-Wide Web.
In Proceedings of the First International Conference

on Autonomous Agents, pages 39–48, Marina Del Rey,
California, February 1997.

[8] D. Embley, D. Campbell, Y. Jiang, S. Liddle,
D. Lonsdale, Y.-K. Ng, and R. Smith.
Conceptual-model-based data extraction from
multiple-record Web pages. Data & Knowledge
Engineering, 31(3):227–251, November 1999.

[9] D. Embley, Y. Jiang, and Y.-K. Ng. Record-boundary
discovery in Web documents. In Proceedings of the
1999 ACM SIGMOD International Conference on
Management of Data (SIGMOD’99), pages 467–478,
Philadelphia, Pennsylvania, 31 May - 3 June 1999.

[10] D. Embley, Y.-K. Ng, and L. Xu. Filtering
multiple-record Web documents based on application
ontologies. 2000. (submitted for publication).

[11] D. Freitag. Information extraction from html:
Application of a general machine learning approach.
In Proceedings of AAAI/IAAI, pages 517–523, 1998.

[12] J. Hammer, H. Garcia-Molina, J. Cho, R. Aranha,
and A. Crespo. Extracting semistructured information
from the Web. In Proceedings of the Workshop on
Management of Semistructured Data, Tucson,
Arizona, May 1997.

[13] Home Page for BYU Data Extraction Group, 2000.
URL: http://www.deg.byu.edu.

[14] N. Kushmerick, D. Weld, and R. Doorenbos. Wrapper
induction for information extraction. In Proceedings of
the 1997 International Joint Conference on Artificial
Intelligence, pages 729–735, 1997.

[15] W. Lehnert, C. Cardie, D. Fisher, J. McCarthy,
E. Riloff, and S. Soderland. Evaluating an information
extraction system. Journal of Integrated
Computer-Aided Engineering, 1(6), 1994.

[16] I. Muslea, S. Minton, and C. Knoblock. STALKER:
Learning extraction rules for semistructured,
Web-based information sources. In Proceedings of
AAAI’98: Workshop on AI and Information
Integration, Madison, Wisconsin, July 1998.

[17] J. Quinlan. C4.5: Programs for Machine Learning.
Morgan Kaufmann, San Mateo, California, 1993.

[18] G. Salton and M. McGill. Introduction to Modern
Information Retrieval. McGraw-Hill, New York, 1983.

[19] D. Smith and M. Lopez. Information extraction for
semi-structured documents. In Proceedings of the
Workshop on Management of Semistructured Data,
Tucson, Arizona, May 1997.

[20] S. Soderland. Learning to extract text-based
information from the World Wide Web. In Proceedings
of the Third International Conference on Knowledge
Discovery and Data Mining, pages 251–254, Newport
Beach, California, August 1997.

