XWRAP: An XML-enabled Wrapper Construction
System for Web Information Sources

Ling Liu, Calton Pu, Wei Han

Georgia Institute of Technology
College of Computing, Atlanta, Georgia 30332-0280

{lingliu,calton,weihan } @cc.gatech.edu

Abstract. This paper describes the methodology and the
software development of XWRAP, an XML-enabled wrap-
per construction system for semi-automatic generation of
wrapper programs. By XML-enabled we mean that the
metadata about information content that are implicit in
the original web pages will be extracted and encoded ex-
plicitly as XML tags in the wrapped documents. In addi-
tion, the query-based content filtering process is performed
against the XML documents. The XWRAP wrapper gen-
eration framework has three distinct features. Fuirst, it ex-
plicitly separates tasks of building wrappers that are spe-
cific to a Web source from the tasks that are repetitive
for any source, and uses a component library to provide
basic building blocks for wrapper programs. Second, it pro-
vides a user-friendly interface program to allow wrapper
developers to generate their wrapper code with a few mouse
clicks. Third and most importantly, we introduce and de-
velop a two-phase code generation framework. The first
phase utilizes an interactive interface facility to encode the
source-spectfic metadata knowledge identified by individual
wrapper developers as declarative information extraction
rules. The second phase combines the information extrac-
tion rules generated at the first phase with the XWRAP
component library to construct an executable wrapper pro-
gram for the giwen web source. We report the initial ex-
periments on performance of the XWRAP code generation
system and the wrapper programs generated by XWRAP.

1. Introduction

The extraordinary growth of the Internet and World
Wide Web has been fueled by the ability it gives con-
tent providers to easily and cheaply publish and dis-
tribute electronic documents. Companies create web
sites to make available their online catalogs, annual
reports, marketing brochures, product specifications.
Government agencies create web sites to publish new
regulations, tax forms, and service information. Inde-

pendent organizations create web sites to make avail-
able recent research results. Individuals create web
sites dedicated to their professional interest and hob-
bies. This brings good news and bad news.

The good news is that the bulk of useful and valu-
able HTML-based Web information is designed and
published for human browsing. The bad news is that
these “human-oriented” HTML pages are difficult for
programs to parse and capture. In addition, most of
the web information sources are created and main-
tained autonomously, and each offers services indepen-
dently. A popular approach to address the problem
of data integration on the Web is to write wrappers'
to encapsulate the heterogeneity in accessing diverse
data sources. For instance, the most recent generation
of information mediator systems (e.g., Ariadne [10],
CQ [13, 14], Internet Softbots [12], TSIMMIS [7, 8])
all include a pre-wrapped set of web sources to be ac-
cessed via database-like queries. However, developing
and maintaining wrappers by hand turned out to be
labor intensive and error-prone.

In this paper, we propose an adaptive approach to
build an interactive system for semi-automatic con-
struction of wrappers for Web information sources,
called XWRAP. The goal of our work can be in-
formally stated as the transformation of “difficult”
HTML input into “program-friendly” XML output,
which can be parsed and understood by sophisticated
query services, mediator-based information systems,
and agent-based systems. A main technical challenge
is to discover boundaries of meaningful objects (such
as regions and semantic tokens) in a Web document, to
distinguish the information content from their meta-
data description, and to recognize and encode the
metadata explicitly in the XML output.

!Wrappers are software programs that can transform data
from a less structured representation into a more structured
representation.

Extraction Knowledge + Feedbacks

The Wrapper Generator System XWrap

Syntactical Structure
EnteraURL| Normalication __ Parsetree

'

Information Extraction Extraction rules

— Generating iri ; Region Semantic Hierarchical

RemoeDoc _ Reparing Generating Exetgracti on Ioken Structure

Fetch Rules Syntax Errors Parse Tree Extraction Extraction XWRAP
Testing Request \ Remote document fetching rules Region Stoken H-structure Rulebase
+ Feedbacks extraction | extraction | extraction

‘ rules rules rules
Testing and Packaging Code Generation
L. < (Data Wrapping)
Wrapper Program Wrapper Program Structural

Testing Release

Transformation

Generating Wrapper
(Learn By Example) Progr 2

'

Source-specific Wrapper Program

Figure 1: XWRAP system architecture for data wrapping

This is not the first time the problem of infor-
mation extraction from a Web document has been
addressed. [3, 9] discover object boundaries manu-
ally. They first examine the documents and find the
HTML tags that separate the objects of interest, and
then write a program to separate the object regions.
[1, 16, 2, 10, 11, 12, 17] separate object regions with
some degree of automation. Their approaches rely pri-
marily on the use of syntactic knowledge, such as spe-
cific HI'ML tags, to identify object boundaries.

The first main contribution of the XWRAP approach
is a set of interactive mechanisms and heuristics for
generating information extraction rules with a few
clicks. The second contribution is the two-phase code
generation approach for generating executable wrap-
per programs. The first phase utilizes an interactive
interface facility that communicates with the wrap-
per developer and generates information extraction
rules by encoding the source-specific metadata knowl-
edge identified by the individual wrapper developer.
In contrast, most of the existing approaches require
the wrapper developers to write information extrac-
tion rules by hand using a domain-specific language.
The second phase utilizes the information extraction
rules generated at the first phase and the XWRAP
component library to construct an executable wrap-
per program for the given web source. The two-phase
code generation approach presents a number of ad-
vantages over existing approaches. First, it provides a
user-friendly interface program to allow users to gener-
ate their information extraction rules with a few clicks.
Second, it provides a clean separation of the informa-

tion extraction semantics from the generation of pro-
cedural wrapper programs (e.g., Java code). Such sep-
aration allows new extraction rules to be incorporated
into a wrapper program incrementally. Third, it facili-
tates the use of the micro-feedback approach to revisit
and tune the wrapper programs at run time.

2. The Design Framework

The architecture of XWRAP for data wrapping con-
sists of four components - Syntactical Structure Nor-
malization, Information Extraction, Code Generation,
Program Testing and Packaging. Figure 1 illustrates
how the wrapper generation process would work in the
context of data wrapping scenario.

Syntactical Structure Normalization is the first
component and also called Syntactical Normalizer,
which prepares and sets up the environment for infor-
mation extraction process by performing the following
three tasks. First, the syntactical normalizer accepts
an URL selected and entered by the XWRAP user,
issues an HTTP request to the remote server identi-
fied by the given URL, and fetches the corresponding
web document (or so called page object). This page
object is used as a sample for XWRAP to interact
with the user to learn and derive the important in-
formation extraction rules. Second, it cleans up bad
HTML tags and syntactical errors [15, 18]. Third, it
transforms the retrieved page object into a parse tree
or so-called syntactic token tree.

Information Extraction is the second component,
which is responsible for deriving extraction rules that
use declarative specification to describe how to extract
information content of interest from its HTML for-
matting. XWRAP performs the information extrac-
tion task in three steps - (1) identifying interesting
regions in the retrieved document, (2) identifying the
important semantic tokens and their logical paths and
node positions in the parse tree, and (3) identifying
the useful hierarchical structures of the retrieved doc-
ument. Each step results in a set of extraction rules
specified in declarative languages.

Code Generation is the third component, which
generates the wrapper program code through apply-
ing the three sets of information extraction rules pro-
duced in the second step. An essential technique in
our implementation is the smart encoding of the se-
mantic knowledge represented in the form of declara-
tive extraction rules and XML-template format (see
Section). The code generator interprets the XML-
template rules by linking each executable component
with each type of rules. We found that XML gives us
great extensibility to add more types of rules seamless-
nessly. As a byproduct, the code generator also pro-
duces the XML representation for the retrieved sample
page object.

Testing and Packing is the fourth component and
the final phase of the data wrapping process. The
toolkit user may enter a set of alternative URLs of
the same web source to debug the wrapper program
generated by running the XWRAP automated testing
module. For each URL entered for testing purpose,
the testing module will automatically go through the
syntactic structure normalization and information ex-
traction steps to check if new extraction rules or up-
dates to the existing extraction rules are derived. In
addition, the test-monitoring window will pop up to
allow the user to browse the test report. Whenever an
update to any of the three sets of the extraction rules
occurs, the testing module will run the code genera-
tion to generate the new version of the wrapper pro-
gram. Once the user is satisfied with the test results,
he or she may click the release button (see Figure 7)
to obtain the release version of the wrapper program,
including assigning the version release number, pack-
aging the wrapper program with application plug-ins
and user manual into a compressed tar file.

Due to the space restriction, in the subsequent sec-
tions we focus our discussion primarily on informa-
tion extraction component of the XWRAP, and pro-
vide a walkthrough example to illustrate how the three
sets of information extraction rules are identified, cap-

tured, and specified.

3. Information Extraction

The main task of the information extraction compo-
nent is to explore and specify the structure of the re-
trieved document (page object) in a declarative ex-
traction rule language. For an HTML document, the
information extraction phase takes as input a parse
tree generated by the syntactical normalizer. It first
interacts with the user to identify the semantic to-
kens (a group of syntactic tokens that logically be-
long together) and the important hierarchical struc-
ture. Then it annotates the tree nodes with semantic
tokens in comma-delimited format and nesting hierar-
chy in context-free grammar. More concretely, the in-
formation extraction process involves three steps: (1)
Identifying regions of interest on a page; (2) Identi-
fying semantic tokens of interest on a page; and (3)
Determining the nesting hierarchy for the content pre-
sentation of a page. Each of the three steps generates
a set of extractions rules to be used by the code gen-
eration phase to generate wrapper program code.

3.1. Preprocessing

Before the information extraction process begins, the
Syntactical Structure Normalization is performed. It
fetches the remote documents and repairs the bad syn-
tax. The clean HTML document is fed to a source-
language-compliant tree parser, which parses the block
character by character, carving the source document
into a sequence of atomic units, called syntactic to-
kens. Each token identified represents a sequence of
characters that can be treated as a single syntactic
entity. The tree structure generated in this step has
each node representing a syntactic token, and each
tag node such as TR represents a pair of HTML tags:
a beginning tag <TR> and an end tag </TR>. All non-
leaf nodes are tags and all leaf nodes are text strings,
each in between a pair of tags. Different languages may
define what is called a token differently. For HTML
pages, the usual tokens are paired HTML tags (e.g.,
<TR>, </TR>), singular HTML tags (e.g.,
, <P>),
semantic token names, and semantic token values.

Example 1 Consider the weather report page for Sa-
vannah, GA at the national weather service site (see
Figure 2), and a fragment of HTML document for
this paper in Figure 3. Figure 4 shows a portion of
the HTML tree structure, corresponding to the above
HTML fragment, which is generated by running a

<TABLE><TR><TD COLSPAN=3><H3>Maximum and Minimum Temperatures
</H3> </TD></TR><TR><TD ALIGN=CENTER BGCOLOR='"#FFFFFF''><FONT FACE=
"Arial,Helvetica'">Maximum
Temperature
F(C)</TD><TD ALIGN=CENTER BGCOLOR=
"#FFFFFF'">Minimum
Temperature
F(C)
</TD><TD></TD></TR><TR><TD ALIGN=CENTER>82.0(27.8)
</TD><TD ALIGN=CENTER>62.1(16.7)</TD><TD><FONT FACE=
"Arial, Helvetica'">In the 6 hours preceding Oct 29, 1998 - 06:53 PM EST / 1998.10.29 2353
UTC</TD></TR><TR><TD ALIGN=CENTER>80.1(26.7)</TD>

<TD ALIGN=CENTER>45.0(7.2)</TD><TD><FONT FACE="Arial,
Helvetica'">In the 24 hours preceding Oct 28, 1998 - 11:53 PM EST / 1998.10.28 0453 UTC
</TD></TR><TR><TD COLSPAN=3><HR SIZE=1 NOSHADE WIDTH=''100%'"></TD></TR></TABLE>

Figure 3: An HTML fragment of the weather report page at nws.noaa.gov site

TABLE] 2]

TR 0]
TD ™
H3 B
FONT FACE é%ﬂ%k é%%%%
Maxi mun an E%E Eg&r
Thgnr;er:uarpures Ve Fum M n?rrun?R BR

Tenpature

D

TR 2]

TD D TD
i FRE © FREO FRE

enpty \

string o
82.0 62.1 |nO B %LtEngl ng
27.8) (16.7)
()) the 1998-06: 53
6 hours

(C) Tenpature F(O)

Figure 4: A fragment of the HT'ML tree for the Savannah weather report page

HTML-compliant tree parser on the Savannah weather
source page. In this portion of the HT'ML tree, we have
the following six types of tag nodes: TABLE, TR, TD, B,
H3, FONT, and a number of semantic token nodes at leaf
node level, such as Maximum Temperature, Minimum
Temperature, 84.9(29.4),64.0(17.8), etc.

XWRAP defines a set of tree node manipulation func-
tions for each tree node object. We use dot nota-
tion convention to represent the node path. A single-
dot expression such as nodeA.nodeB refers to the
parent-child relationship and a double-dot such as
nodeA..nodeB refers to the ancestor-descendent rela-
tionship between nodeA and nodeB.

3.2. Region Extraction

Region extraction is performed via an interactive in-
terface, which lets the XWRAP user guide the identi-
fication of important regions in the source document,
including table regions, paragraph regions, bullet-list

regions, etc. The output of this step is the set of region
extraction rules that identify regions of interest from
the parse tree.

In the first prototype of XWRAP, the region extractor
begins by asking the user to highlight the tree node
that is the start tag of an important element. Then
the region extractor will look for the corresponding
end tag, identify and highlight the entire region. In
addition, the region extractor computes the type and
the number of sub-regions and derives the set of region
extraction rules that capture and describe the struc-
ture layout of the region. For each type of region, such
as the table region, the paragraph region, the text sec-
tion region, and the bullet list region, a special set of
extraction rules are used.

For example, for regions of the type TABLE, Figure 5
shows the set of rules that will be derived and fi-
nalized through interactions with the user. The rule
Tree Path specifies how to find the path of the table
node. The rule Table_Area finds the number of rows

Region ExtractionRules(String sourcename)::
Tree Path(String node_id, String node_path){
setTablelNode = node_id;
node_path = getNodePath(node.id); }

setRowTag(node_id) = 7THN;
setColTag(node_id) = 7CH;

rowlax = getNumOfRows(node_id) ;
colMax = getNum0fCols(node_id); }

setRowStartIndex(node_id) = 7rowSI;
setRowEndIndex(node_id) = 7rowEI;
setColStartIndex(node_id) = 7colSI;
setColEndIndex(node_id) = 7colEI;
getEffectiveArea(nodeid); }

Table Style(String node_id){

else

setTableNameNode (node_id) = THN;
TH = getTableName (THN);
TP = getNodePath(TNN); }

Table Area(String node_id, String TN, String CN, Integer rowMax, Integer colMax){

Effective Area(String node_id, String rowSI, String rowEI, String colSI, String colEI){

if (ElementType(child(child(node_id, 1), 1)) = ‘Attribute’
if ElementType(child(child(nodeid, 1), 2)) = ‘Attribute’)
setVertical(node_id) = 1, setHorizontal(node_id) = O;

setHorizontal(nodeid) = 1, setVertical(nodeid) = 0; }

getTableInfo(String node_id, String THN, String TN, String TP){

Figure 5: Extraction rules for a table region in an HI'ML page

and columns of the table. The rule Effective Area
defines the effective area of the table. An effective area
is the sub-region in which the interesting rows and
columns reside. By differentiating the effective area
from a table region, it allows us, for example, to re-
move those rows that are designed solely for spacing
purpose. The fourth rule Table Style is designed for
distinguishing vertical tables where the first column
stands for a list of attribute names from horizontal ta-
bles where the first row stands for a list of attribute
names. The last rule getTableInfo describes how to
find the table name by giving the path and the node
position in the parse tree.

Example 2 Consider the weather report page for Sa-
vannah, GA at the national weather service site (see
Figure 2), and a fragment of HTML parse tree as
shown in Figure 4). To identify and locate the region of
the table node TABLE[2], we apply the region extrac-
tion rules given in Figure 5 and obtain the following
source-specific region extraction rules for extracting
the region of the table node TABLE[2].

1. By applying the first region extraction rule,

Ot

XWRAP can identify the tree path for TABLE[2]
to be
HTML.BODY.TABLE[O].TR[0].TD[4].TABLE[2].

. To identify the table region, we first need the user

to identify the row tag TR and the column tag TD
of the given region of the TABLE[2] node. Based
on the row tag and column tag, the region ex-
tractor may apply the second extraction to de-
duce that the table region of TABLE[2] consists
of maximum 5 rows and maximum 3 columns.

. The extraction rule Effective_Area will be used

to determine the effective area of the table node
TABLE[2]. It requires the user’s input on the row
start index rowSI = 2, the row end index rowEI
= 4, the column start index colSI = 1 and the
column end index colEI = 3.

By applying the rule Table_Style, we can deduce
that this table is a horizontal table, with the first
row as the table schema.

To determine how to extract the table name
node, XWRAP first infers the path expression

Current W eathes Conditions - Gavannak, Savannah |nizenational hirpot, A, United % tates

Liriiaiat - Hak
S Tk EUIT N D e e
Bagk: " 574501 " Ficlrad < Hawe - Soaph " Goiel = Frink 2 Seclap | 51 !
" Bockmads & Locavoedim sy T s rasa go v e e cume s

Mational Weather Service e
Internet Weather Source

Main Page Current Weather Conditions

Current Savannah, Savannah international Airport, GA, United
Conditions States

= in the United (RS AV 1207 SEM 0112009 148

= workd wide

Conditions at

Farecasts

Wind
Watches and _—
Warnings Visibility

Sky conditions
Temperature
Dew Point

FAGQ Relative
Humidity
Gloasary Pressure
{altimeter)
ob

Coded
Obaervations

Maximum and Minimum Temperatures

Maximum Minimum
Temperabure Temperature
Fic) F(@

| Ve T iR VRSP TR VS B

Figure 2: An example weather report page at the
nws.noaa.gov site

for the table name node highlighted by the user.
Then by applying the fifth region extraction rule
getTableInfo, we can extract the table name.
(see Section for details on semantic token ex-
traction).

The design of our region extraction rules is robust in
the sense that all the important information (such as
the number of tables in a page, the number of at-
tributes in a table) will be computed at runtime. In
addition, the region extraction rules are defined in a
declarative language, independent of the implemen-
tation of the wrapper code. This higher level of ab-
straction allows the XWRAP wrappers to enjoy bet-
ter adaptability to unexpected changes at the remote
sources.

3.3. Semantic Token Extraction

The semantic-token extractor is an interactive pro-
gram, which guides a wrapper developer to walk
through the tree structure generated by the syntac-
tic normalizer, and highlight the semantic tokens of

interest in the source document page. The output of
this step includes a set of semantic token extraction
rules that can be used to locate and extract the se-
mantic tokens of interest of the Web documents from

the same web site, and a comma-delimited file?, con-

taining all the element type and element value pairs of
interest. The first line of a comma-delimited file con-
tains the name of the fields that denote the data. A
special delimiter should separate both field names and
the actual data fields. The XWRAP system supports
a variety of delimiters such as a comma (,), a semi-
colon (;), or a pipe (|). To identify important semantic
tokens, the S-token extractor examines successive tree
nodes in the source page, starting from the first leaf
node not yet grouped into a token. The S-token ex-
tractor may also be required to search many nodes
beyond the next token in order to determine what the
next token actually is.

Example 3 Consider a fragment of the parse tree for
the Savannah weather report page shown in Figure 4.
From the region extraction step, we know that the leaf
node name Maximum and Minimum Temperatures of
the left most branch TR[0] is the heading of a table re-
gion denoted by the node TABLE[2]. Also based on the
interaction with the user, we know that the leaf nodes
of the subtree anchored at TABLE[2].TR[1].TD[0O]
should be treated as a semantic token with the
concatenation of all three leaf node names, i.e.,
the string Maximum Temperature F(C), as the to-
ken name; and the leaf nodes of the tree branch
TABLE[2].TR[2].TD[0], i.e., the string 84.9 (29.4),
is the value of the corresponding semantic token. Thus
a set of semantic token extraction rules can be derived
for the rest of the subtrees anchored at TR[3] and
TR[4], utilizing the function getStoken().

<ST_extract>
ST_extract (String ST_name[], String ST_vall][l)
<!-- Start of the repetition -->
<? XG-Iteration-XG ¢ ‘Start"?>
<loop> integer row_i = 3, 4
<loop> integer col_j = 0,1,2
<rule_exp>
extract ST_val[row_i,col_j] =
“TABLE[2].TR[row_i].TD[col_j].getStoken()
where “TABLE[2].TR[1].TD[col_j].getStoken()
= ST_name[col_jl;
</rule_exp>
</loop>
</loop>
</ST_extract>

2A comma-delimited format is also called delimited text for-
mat. It is the lowest common denominator for data interchange
between different classes of software and applications.

Maximum Tempature F(C); Minimum Tempature F(C); <TD></TD>
82.0(27.8);62.1(16.7); In the 6 hours preceding Oct 29,
1998 - 6:53 PM EST / 1998.10.29 2353 UTC
80.1(26.7);45.0(7.2);In the 24 hours preceding Oct 28,
1998 - 11:53 PM EST / 1998.10.28 0453 UTC

Figure 6: A fragment of the comma-delimited file for the Savannah weather report page

By traversing the entire tree of the node TABLE[2] and
applying the derived extraction rules, we may extract
all the token values for each given token name in this
region. Similarly, by traversing the entire tree of Sa-
vannah page, the semantic-token extractor produces
as output a comma-delimited file for the Savannah
weather report page. Figure 6 shows the portion of
this comma-delimited file that is related to TABLE[2]
node. The first line shows the name of the fields (the
rows) that are being used. The second and third lines
are two data records.

3.4. Hierarchical Structure Extraction

The goal of the hierarchical structure extractor is to
make explicit the meaningful hierarchical structure of
the original document by identifying which parts of
the regions or token streams should be grouped to-
gether. More concretely, this step determines the nest-
ing hierarchy (syntactic structure) of the source page,
namely what kind of hierarchical structure the source
page has, what are the top-level sections (tables) that
forms the page, what are the sub-sections (or columns,
rows) of a given section (or table), etc. The outcome of
this step is the set of hierarchical structure extraction
rules specified in a context-free grammar, describing
the syntactic structure of the source document page.
The following simple heuristics are frequently used
by the hierarchy extractor to make the first guess of
the sections and the nesting hierarchy of sections in
the source document to establish the starting point
for feedback-driven interaction with the user. These
heuristics are based on the observation that the font
size of the heading of a sub-section is generally smaller
than that of its parent section.

e Identifying all regions that are siblings in the
parse tree, and organizing them in the sequential
order as they appear in the original document.

e Obtaining a section heading or a table name using
the paired header tags such as <H3>, </H3>.

e Inferring the nesting hierarchy of sections or the
columns of tables using font size and the nesting
structure of the presentation layout tags, such as
<TR>, <TD>, <P>, <DL>, <DD>, and so on.

We develop a hierarchical structure extraction algo-
rithm that, given a page with all sections and head-
ings identified, outputs a hierarchical structure extrac-
tion rule script expressed in an XML-compliant tem-
plate for the page. Figure 7 shows a fragment of the
XML template file corresponding to the part of a NWS
weather report page shown in the right side of Fig-
ure 7. It defines the nesting hierarchy, annotated with
some processing instructions.

The use of XML templates to specify the hierarchical
structure extraction rule facilitates the code genera-
tion of the XWRAP for several reasons. First, XML
templates are well-formed XML files that contain pro-
cessing instructions. Such instructions are used to di-
rect the XWRAP XML-template engine to the spe-
cial placeholders where data fields should be inserted
into the template. For instance, the processing in-
struction XG-InsertField-XG has the canonical form
of <?XG-InsertField-XG ‘‘FieldName'?>3. It looks
for a field with a specified name “FieldName” in the
comma-delimited file and inserts that data at the
point of the processing instruction. Second, an XML
template also contains a repetitive part, called XG-
Iteration-XG, which is necessary for describing the
nesting structure of regions and sections of a web
page. The XG-Iteration-XG processing instruction de-
termines the beginning and the end of a repetitive
part. A repetition can be seen as a loop in classi-
cal programming languages. After the template engine
reaches the “End” position in a repetition, it takes a
new record from the delimited file and goes back to

3XG stands for XWRAP code Generator.

E_,JX\\"IBD
File XWrap Window

Cumrent Weather Conditions - Savannah, Savannah Intemational =[O x]

| Bl Edt View Go Favortes Hel | & |

Enter URL Source Horma.. STokenExtract HStruciExtract J Er o= HAddless I@ bitp: /gy T rws.noaa.govAweather/current /K Sa. himl j
Al YL e WERHES:S J Links @East of the web @Channa Guide @Cuslom\ze Links @Inlemet Esplaier »
ESnurce hitp:itgsv7.nws.noaa.goviweather/currentKS AV html - T
Template ” Browse || Expand | Collapse ‘ ather Service
[Table Heuristic Deseription
| Hame [curent wed | save | [anayze | AllowrSpace | false - weather Sou rce
Row Coniition From |5 forward ~ ¥| to |2 backward v

from 1| [forward =] 1o 1] [packwara «

Calumn Condition

Current Weather Conditions

Savannah, Savannah International Airport, GA,
United States
(KSAV) 3207 08N 081-12.08W 14M

Tahle Direction vetical ¥ i Posttion |first v

Row Tag Hame TR Column Tag Hame D
= TAHLE
@ <= TR

@ = TD

@ =B
@ = FONT
@ = FONT

@ + FONT

Conditions at [Feb 05, 1935- 13:53 PMEST 7]
199902.05 2053 UTC

Wind from the SE (140 degrees) at 4 MPH (4 KT)
Visibility 10 mile(s)

4

Sky clear

Coniion [wind [visioliity [Sky condit [Temperat.| Dew Point| Relalie.

Pressure | Pressure | ob

conditions

Feb 05, 1. |from the .. |10 miles) |clear BEOF (.. [2F.0F 2. |22%

[30:38 n. .| 0.07 inch... K8AV L... |

Temperature 66.0F (159 C)

Dew Point 27 0F (-2.8C)

EH\erarySIruclureEn(rad : Relative 27%
Normalize... ” STokenEx... || Save | Description ‘ Humidity
R R e Pressure 30.251n. Hg (1024 hPa)
<termplate name="Current_Waather_Condition"= (altimeter)
<l--Sart of the repetefion.-» i
<TG o1t on-XG Sttt 7 Pressure 0.07 inches (2.3 hPaj lower than three hours
<Curent_eather_Condition_Child= tendency ago

<Canditinns_ats

< PXG-InsertField-¥G ' Conditions at' #=
=iConditions_at=

<Wirid=

<PHG-InserField-HG "Wind" 2=
<Mind=

=Vigiility=

=7HG-InsertField-KG Yisihility' 7=
=Misihility=

<Cky_conditions =
<PHG-InsenField-HG "Sky conditions” *=
<iSky_conditions>

=Tamparatura=

< PXG-InzenField-RG 'Temperature" 7=

ob KSAY 0520537 14004KT 10EM CLR
19M03 A3025 RMK AO2Z SLP244
TO1891028 56023

Maximum and Minimum Temperatures

Maximum Minimum
Temperature Temperature
F(C) F{C)
|| B In the R halire frecedinn Fek ﬂ?l »ILI
Ii [T (@ inemet zone A

Figure 7: A screenshot of the Hierarchical Structure Extraction Window

the “Start” position to create the same set of XML
tags as in the previous pass. New data is inserted into
the resulting XML file.

The XWRAP code generator generates the wrapper
code for a chosen web source by applying the comma-
delimited file (as shown in Figure 6 for the running ex-
ample), the region extraction rules (as given in Exam-
ple 2), and the hierarchical structure extraction rules
(see Figure 7), all described using the XWRAP’s XML
template-based extraction specification language. Due
to the space limitation, the details on the language and
the example code generated by XWRAP are omit-
ted here. Readers may visit the XWRAP web site
www.cc.gatech.edu/projects/dis1l/XWRAP for fur-
ther details.

4. Experimental Results
4.1. Representative Web Sites

We have chosen 4 web sites that are representative in
our opinion to report our experiments.

1. NOAA weather site shown in Figure 2 and Fig-
ures 7. NOAA pages combine multiple small ta-
bles (vertical or horizontal) with some running
text. Number of random samples collected: 10 dif-
ferent pages.

2. Buy.com, a commercial web site [www2.buy.com)]
with many advertisements and long tables. This
is a web site with frequent updates of content and
changes of format. It is an example of challeng-
ing sites for wrapper generators. Web pages used

Data Generation Revision | Extraction Rules XML Template Accuracy
Source Time(minutes) | (times) Length(lines) Length(lines) | Verification
NOAA 40 2 114 153 100%
CIA Factbook | 25 1 237 23 100%
Buy.com 16 0 102 46 100%
Stockmaster 23 1 90 46 100%
Figure 8: XWRAP Performance Results
Data Avg. vs. | Document Document Result XML | Doc/XML
Source St. Dev. | Size(byte) | Tree Length | Size(byte)
NOAA Average 31135 1145 7593 4.1
St. Dev. 465 23 42 0.1
CIA Factbook | Average 16115 834 18981 0.98
St. Dev. 4503 188 5623 0.1
Buy.com Average 44075 832 5172 9.6
St. Dev. 11871 232 2014 3.4
Stockmaster Average 21218 523 370 57.3
St. Dev. 1137 32 11 2.4

Figure 9: Performance Statistics w.r.t. source document size and result XML size

in our evaluation are generated dynamically by a
search engine. Pages used include book titles that
contain keywords such as “JDBC” and “college
life”. Number of random samples: 20 pages.

3. Stockmaster.com, another commercial site with
advertisements, graphs, and tables. This is an ex-
ample of sites with extremely high frequency up-
dates. Pages used in our evaluation are also gener-
ated dynamically, including stock information on
companies such as IBM and Microsoft. Number
of random samples: 21 pages.

4. CIA Fact Book, a
(www.odci.gov/cia/publications/factbook) used
in several papers [16, 2]. Although infrequently
updated, it is included here for comparison pur-
poses. Number of random samples: 267 pages.

well-known web site

4.2. Evaluation of Wrapper Generation

The first part of experimental evaluation of XWRAP
concerns the wrapper generation process. We mea-
sured the approximate time it takes for an expert
wrapper programmer (in this case an experienced
graduate student) to generate wrappers for the above
4 web sites. The results are shown in Figure 8.

Our initial experience tells us that the main bottle-
neck in the wrapper generation process is the number
of iterations needed to achieve a significant coverage
of the web site. The main advantage of our wrapper

is the level of robustness. The wrappers generated by
XWRAP can handle pages that have slightly different
structure (such as extra or missing fields (bullets or
sections) in a table (a text section) than the example
pages used for generating the wrapper. However, when
the pages are significantly different from the exam-
ple pages used in the wrapper generation process, the
wrapper will have to be refined. Several improvements
on the GUI have been made since this experiment to
further shorten the wrapper generation process.

4.3. Evaluation of Wrapper Execution

All measurements of wrapper executions were car-
ried out on a dedicated 200MHz Pentium machine
(jambi.cse.ogi.edu). The machine runs Windows NT
4.0 Server and there is only one user in the system.
All the XWRAP software is written in Java. The main
Java package used is Swing.

Figure 9 shows the first characterization of web page
samples. We see that NOAA and Stockmaster.com
have high uniformity (low standard deviation) in doc-
ument size, due to their form-oriented page content
(standard weather reports and standard stock price re-
ports). The CIA Fact Book has medium standard devi-
ation in document size, since the interesting facts vary
somewhat from place to place. The Buy.com pages
have high variance in document size, since the num-
ber of books available for each selection topic varies
greatly. For variable-sized pages in Buy.com and CIA

Data Avg. vs. Fetch Expand Tree | Extraction | Generate Total Correlation
Source St. Dev. | Time(ms) | Times(ms) Times (ms) Times(ms) | Time(ms) | Doc/Time
HOAA Average 4391 8531 3841 1128 18520 0.45

St. Dev. | 1032 1055 228 116 1636
CIA Factbook | Average 1907 11916 4709 3902 23043 0.93

St. Dev. | 265 3366 1175 1297 5776
Buy.com Average 6908 T 2748 838 18909 0.66

St. Dev. | 4333 1553 1439 287 6602
Stockmaster Average 1972 5489 1412 468 9973 0.35

St. Dev. | 489 453 497 121 1131

Figure 10: Performance of Wrappers w.r.t. Fetch, Expand, Extract, and Result Generate time

Fact Book, we calculated the correlation between the
input document size and the output XML file size
(from the data table not shown in the paper due to
space constraints). The correlation is strong: 1.00 for
Buy.com and 0.98 for CIA Fact Book. This shows con-
sistent performance of wrappers in mapping input to
output.

Another interesting observation shown Figure 9 is the
fact that the wrapper-generated document tree length
is proportional to the input document size, and this,
however, may not be true for the result XML file size.
We call wrappers that ignore a significant portion of
the source pages (in this case, the advertisements in
Buy.com and Stockmaster.com) low selectivity wrap-
pers. In our case, Buy.com and Stockmaster.com are
low selectivity due to heavy advertisement, and their
Input-Doc-Size/Output-XML-Size ratio is high (9.6
and 57.3, respectively). Purely informational sites such
as NOAA and CIA Fact Book tend to have high se-
lectivity (4.1 and 0.98, respectively).

Figure 10 shows the summary of execution (elapsed)
time of wrappers. It is comforting that form-oriented
pages (NOAA and Stockmaster.com) take roughly the
same time (standard deviation at about 10% of total
elapsed time) to process. This is the case for both a
high selectivity site such as NOAA and a low selectiv-
ity site such as Stockmaster.com. For variable-sized
pages in Buy.com and CIA Fact Book, we calculated
the correlation between the input document size and
total elapsed processing time: 0.66 for Buy.com and
0.93 for CIA Fact Book. The higher correlation of CIA
Fact Book is attributed to its high selectivity (same in-
put and output size), and lower correlation of Buy.com
to its lower selectivity (input almost 10 times the out-
put size). This shows the consistent performance of
wrappers in elapsed time.

Figure 10 also shows that most of the execution time
(more than 90%) is spent in four components of the
wrapper: Fetch, Expand, Extract, and Generate. The

first component, Fetch, includes the network access to
bring the raw data and the initial parsing. Since we
have no control over the network access time, the fetch
time has high variance. This is confirmed by the lowest
variance of the smallest documents (CTA Fact Book)
and highest variance of largest documents (Buy.com).

The second component, Expand, consumes the largest
portion of execution time. It is a utility routine that
invokes Swing to expand a tree data structure for ex-
traction. This appears to be the current bottleneck due
to the visualization oriented implementation of Swing,
and it is a candidate for optimization.

The third component, Extract, also uses the Swing
data structure to do the Information Extraction phase
(Section). This phase does more useful work than Ex-
pand, but it is also a candidate for performance tuning
when we start the optimization of the Expand compo-
nent.

The fourth component, Generate, produces the out-
put XML file. It is clearly correlated to the size of the
output XML file. Except for the extremely short re-
sults from Stockmaster.com (consistently at about 370
bytes), the execution time of Generate for the other
three sources is between 5 and 6 bytes of XML gener-
ated per 1 ms.

5. Conclusion

We have presented the XWRAP approach to semi-
automatically generating wrappers for Web informa-
tion sources and reported our initial experiments on
performance of the XWRAP code generation system
and the wrapper programs generated by XWRAP. Our
wrapper generation framework has three distinct fea-
tures. First, it explicitly separates tasks of building
wrappers that are specific to a Web source from the
tasks that are repetitive for any source, and uses a
component library to provide basic building blocks for

wrapper programs. Second, it provides a user-friendly
interface program to allow wrapper developers to gen-
erate their wrapper code with a few mouse clicks.
Third and most importantly, we introduce and de-
velop a two-phase code generation framework. The
first phase utilizes an interactive interface facility to
encode the source-specific metadata knowledge iden-
tified by individual wrapper developers as declarative
information extraction rules. The second phase com-
bines the information extraction rules generated at
the first phase with the XWRAP component library
to construct an executable wrapper program for the
given web source.

Our work continues along three dimensions. The first
aspect focuses on providing better tools to incorpo-
rate various machine learning algorithms to enhance
the robustness of information extraction rules. The
second aspect is to enrich the XWRAP information
extraction rule language and the component library
with enhanced pattern discovery capability and vari-
ous optimization considerations. The third aspect con-
cerns the incorporation of Microsoft repository tech-
nology [4, 5, 6] to handle and manage the versioning
issue and the metadata of the XWRAP wrappers. Fur-
thermore, we are interested in investigating issues such
as whether the ability of following hyperlinks should
be a wrapper functionality at the level of information
extraction or a mediator functionality at the level of
information integration.

A cknowledgement. This research is partially sup-
ported by DARPA grant MDA972-97-1-0016 and a
grant from Intel. We thank both past and present
members of the XWRAP team, especially David But-
tler for his contribution to the XWRAP toolkit,
and Wei Tang for his integration with the Continual
Queries project.

References

[1] B. Adelberg. Nodose - a tool for semi-automatically
extracting structured and semi-structured data from

text documents. ACM SIGMOD, 1998.

[2] N. Ashish and C. A. Knoblock. Semi-automatic wrap-
per generation for internet information sources. In
Proceedings of Coopis Conference, 1997.

[3] P. Atzeni and G. Mecca. Cut and paste. Proceedings
of 16th ACM SIGMOD Symposion on Principles of
Database Systems, 1997.

[4] T. Bergstraesser, P. Bernstein, S. Pal, and D. Shutt.
Versions and workspaces in microsoft repositorys.
ACM SIGMOD, 1999.

[5] P. Bernstein. Microsoft repository. VLDB’97 Tutorial
and ACM SIGMOD’96 Tutorial, 1997.

[6] P. Bernstein, T. Bergstraesser, J. Carlson, S. Pal,
P. Sanders, and D. Shutt. Microsoft repository ver-

sion 2 and the open information model. Information
Systems 24(2), 1999.

[7] H. Garcia-Molina and et al. The TSIMMIS approach
to mediation: data models and languages (extended

abstract). In NGITS, 1995.

[8] J. Hammer, M. Brennig, H. Garcia-Molina, S. Nes-
terov, V. Vassalos, and R. Yerneni. Template-based
wrappers in the tsimmis system. In Proceedings of

ACM SIGMOD Conference, 1997.
[9] J. Hammer, H. Garcia-Molina, J. Cho, R. Aranha,

and A. Crespo. Extracting semi-structured data from
the web. Proceedings of Workshop on Management of
Semi-structured Data, pages 18-25, 1997.

[10] C. A. Knoblock, S. Minton, J. L. Ambite, N. Ashish,
P. J. Modi, I. Muslea, A. Philpot, and S. Tejada. Mod-
eling web sources for information integration. In Pro-
ceedings of AAAI Conference, 1998.

[11] N. Kushmerick. Wrapper induction for information
extraction. In Ph.D. Dissertation, Dept. of Computer
Science, U. of Washington, TR UW-CSE-97-11-04,
1997.

[12] N. Kushmerick, D. Weil, and R. Doorenbos. Wrapper
induction for information extraction. In Proceedings
of Int. Joint Conference on Artifical Intelligence (1J-
CAI), 1997.

[13] L. Liu, C. Pu, and W. Tang. Continual queries
for internet-scale event-driven information delivery.
IFEFE Knowledge and Data Engineering, 1999. Special
[ssue on Web Technology.

[14] L. Liu, C. Pu, W. Tang, J. Biggs, D. Buttler, W. Han,
P. Benninghoff, and Fenghua. CQ: A Personalized
Update Monitoring Toolkit. In Proceedings of ACM
SIGMOD Conference, 1998.

[15] D. Raggett. Clean Up Your Web Pahes with HTML
TIDY. hitp://www.w3.0org/People/Raggett/tidy/,
1999.

[16] A. Sahuguet and F. Azavant. WysiWyg Web Wrapper
Factory (W4F). Proceedings of WWW Conference,
1999.

[17] S. Soderland. Learning to extract text-based informa-
tion from the world wide web. Proceedings of Knowl-
edge Discovery and Data Mining, 1997.

[18] W3C. Reformulating HTML
in XML. hitp://www.w3.org/TR/WD-html-in-zml/,
1999.

