
Mobile Phone Programming

Introduction

Dr. Christelle Scharff

Pace University, USA

http://atlantis.seidenberg.pace.edu/wiki/mobile2008

Objectives

 Getting an overall view of the mobile phone market, its

possibilities and weaknesses

 Providing an overview of the J2ME architecture and

define the buzzwords that accompanies it

Why mobile phones?

 Nowadays mobile phones outnumber desktop

computers for Internet connections in the

developer world

 A convenient and simpler alternative to the

desktop/laptop for all (developed and developing

countries)

 Mobile phones are computers!

 Some numbers and important facts:

• Target of 10 million iphones sales by the end

of 2008 (just one year after being launched)

• Google phone to be launched in 2008

• 70% of the world’s mobile subscriptions are in

developing countries, NY Times April 13, 2008

Global Handset Sales by Device
Type

http://linuxdevices.com/files/misc/StrategyAnalytics-
mobilephone-segments.jpg

Devices

 A wide variety of devices by the main vendors:

• E.g, Nokia, Motoral, Sony Ericson

 A wide variety of operating systems

• E.g., Blackberry, Palm OS, Windows CE/Mobile,

Symbian, motomagx, linux

 A wide variety of development environments

• E.g., Java ME, Qualcomm’s BREW, Google’

Android, Google App Engine (GAE) for mobile

web applications, JavaFX

 Programming languages:

• Java, Python, Flast-lith, Objective C

Operating Systems

http://mobiledevices.kom.aau.dk

Mobile Web

 Access to wireless data services using a mobile device

 cHTML (Compact HTML) is a subset of HTML that excludes

JPEG images, tables, image maps, multiple character fonts

and styles, background color and image, frames and style

sheets

• http://www.w3.org/TR/1998/NOTE-compactHTML-

19980209/

 WML (Wireless Markup Language) is a standard for content

delivered to mobile devices

• http://openmobilealliance.org

 dotMobi is a top-level domain dedicated to delivering the

Internet to mobile devices

• http://mtld.mobi/

http://www.w3.org/TR/1998/NOTE-compactHTML-19980209/
http://www.w3.org/TR/1998/NOTE-compactHTML-19980209/
http://www.w3.org/TR/1998/NOTE-compactHTML-19980209/
http://www.w3.org/TR/1998/NOTE-compactHTML-19980209/
http://www.w3.org/TR/1998/NOTE-compactHTML-19980209/
http://openmobilealliance.org/
http://mtld.mobi/

Why Java?

 The Java platform is

• Safe – the code executes within the JVM

• Robustness – automated garbage collection

prevents memory management

• Portability – a single executable can run on

several devices

• Rich set of APIs

 Market trends

• 80% of the mobile devices are Java compliant

• Lots of Java applications on the market

• Operators are developing Java services

Java 2 Platform

 Composed of 3 elements:

• Java programming language specification

• Virtual machine

• APIs (Application Programming Interfaces)

 Supports a wide range of hardware:

• J2SE (Java Standard Edition)

• J2EE (Java Enterprise Edition)

• J2ME (Java Micro Edition)

• Java Card

J2ME

 J2ME is not a piece of software like J2SE

 J2ME is a platform, a collection of technologies

and specifications for small devices

 J2ME is divided into 3 components:

• Configurations

• Profiles

• Optional packages

JCP

 Java Community Process

 http://jcp.org/

 JCP is a consortium of experts (companies and

individuals) who develop and evolve Java

technology specifications

 A specification is based on the description of the

language, virtual machine, platform editions,

profiles, and application programming interfaces

 JCP stages: New Java Specification Request

(JSR) review, Early draft review, Public review,

Proposed final draft, Maintenance review,

Rejected, Removed

http://jcp.org/

JSR

 Java Specification Request

 List of all the JSR: http://jcp.org/en/jsr/all

 JSRs are descriptions of proposed and final

specifications for the Java technology

 Examples:

• JSR 82 – Bluetooth

• JSR 120 – SMS Messaging

• JSR 184 – 3D Graphics

http://jcp.org/en/jsr/all

Configuration
 A configuration is a specification that defines the

minimum virtual machine and base set of APIs to

develop applications for a family of devices

• The target may be devices with intermittent

access to the Internet, small memory size and

processing capabilities

 Examples:

• CLDC 1.0 / 1.1 – Connected Limited Device

Configuration – JSR 30 / 139 – KVM – small

memory and intermittent access to Internet

 CLDC 1.1 supports floating-point math capabilities

• CDC / CDC 1.1 – Connected Device Configuration

– JSR 36 / 218 – CVM – larger memory and

always on network connection

CLDC 1.0 APIs

 List of packages:

• java.lang – data types, basic system and

threads (Boolean, Byte, Character, Integer,

Long, Short, String, StringBuffer, Math,

Object, Runtime, System, Thread, Throwable)

• java.io – to manage I/O data streams

• java.util – utility classes (Calendar, Date,

Hastable, Random, Stack, Timer, TimerTask,

Vector)

• javax.microedition.io – for generic connections

 Library specification library

• http://java.sun.com/javame/reference/apis.jsp

http://java.sun.com/javame/reference/apis.jsp

Profile

 A profile extends a specification and add more

specific APIs to provide a more complete

environment to develop applications

 Profiles can include APIs for user interface and

persistence storage

 Examples:

• MIDP 1.0 / 2.0 – Mobile Information Device

Profile – JSR 37 / 138

 MIDP 2.0 offers advanced networking,

security, gaming, and media features

• Foundation Profile – JSR 46

Optional Packages

 An optional package provides functionalities that

may not be associated with a particular

configuration and profile

 Examples:

• JSR 82 - Bluetooth API

• JSR 120 - Wireless messaging API WMA

• JSR 172 - J2ME web services

Stack

 A device implements a complete software stack

that consists of a configuration, a profile and

optional packages to make it clear to the

developer on what to expect from the device

 Example: JSR 185 Stack - JTWI (Java Technology

for the Wireless Industry)

Fragmentation

 Fragmentation is the inability to "write once and

run anywhere” due to the multitude of vendor-

specific and optional APIs

 Developing an application targeting n different

devices required it to be tested on the n devices

 JTWI JSR 185 is one step to provide a

comprehensive set of functionalities in a standard

application development by clarifying and

combining vendor-specific and

optional APIs

MSA

 Mobile Service Architecture JSR 248

 MSA is a specification built on CLDC 1.1, MIDP 2.0

and JTWI to incorporate new technology and

services

 MSA is the new wireless industry-defined standard

 MSA is divided in 2 branches: MSA and MSA subset

 MSA contains a set of mandatory and conditionally

mandatory APIs

• A conditionally mandatory API is an API that is

not present on all devices (e.g., JSR 179

Location API)

 Advanced Mobile Service Architecture JSR 249 is

next!

MSA

Development Environments

 Sun Java Wireless Toolkit for CLDC

• http://java.sun.com/products/sjwtoolkit/

 EclipseME plugin

• http://wlcipseme.org

 NetBeans Mobility Pack

• http://www.netbeans.org/products/mobility

 Vendor-specific development environments of:

• Motorola http://developer.motorola.com/

• Nokia http://forum.nokia.com

• Sony Ericson

http://developer.sonyericsson.com

• Sprint http://developer.spring.com

http://java.sun.com/products/sjwtoolkit/
http://wlcipseme.org/
http://www.netbeans.org/products/mobility
http://developer.motorola.com/
http://forum.nokia.com/
http://developer.sonyericsson.com/
http://developer.spring.com/

MIDlet

 A MIDlet is an application that can run on MIDP devices

 A MIDlet is a class that inherits from

javax.microedition.midlet.MIDlet

 A MIDlet has three methods:

• startApp() – to initialize the MIDlet or resume a paused

MIDlet

• pauseApp() – to pause the application

• destroyApp() – to clean up the application and release

all resources

 These methods are callback – the Application Management

Software (AMS) calls them whenever necessary

 These methods can also be called in the MIDlet code

MIDlet Application Lifecycle

MIDlet Suites

 One or more MIDlets are packaged together into

a MIDlet suite composed of:

• A Java Archive (JAR) file – containing the user-

defined classes, images and sounds that make

up the application and the JAR file manifest

that describes the attributes of the MIDlet

• A Java Descriptor (JAD) file – containing the

description of the MIDlet suite

 It permits a device to examine the

descriptor before downloading the whole

MIDlet suite

Skeleton of a MIDlet

import javax.microedition.lcdui.Command;

import javax.microedition.lcdui.CommandListener;

import javax.microedition.lcdui.Displayable;

import javax.microedition.midlet.MIDlet;

import javax.microedition.midlet.MIDletStateChangeException;

public class SkeletonMIDlet extends MIDlet implements CommandListener {

public SkeletonMIDlet() {}

protected void destroyApp(boolean arg0) throws MIDletStateChangeException {}

protected void pauseApp() {}

protected void startApp() throws MIDletStateChangeException {}

public void commandAction(Command arg0, Displayable arg1) {}

}

References

 Introduction to Java Mobility Technology

• http://developers.sun.com/mobility/getstart/

 Java Community Process

• http://jcp.org

 Glossary

• http://developers.sun.com/mobility/glossary/

http://developers.sun.com/mobility/getstart/
http://jcp.org/
http://developers.sun.com/mobility/glossary/

