
Mobile Phone Programming

Introduction

Dr. Christelle Scharff

Pace University, USA

http://atlantis.seidenberg.pace.edu/wiki/mobile2008

Objectives

 Getting an overall view of the mobile phone market, its

possibilities and weaknesses

 Providing an overview of the J2ME architecture and

define the buzzwords that accompanies it

Why mobile phones?

 Nowadays mobile phones outnumber desktop

computers for Internet connections in the

developer world

 A convenient and simpler alternative to the

desktop/laptop for all (developed and developing

countries)

 Mobile phones are computers!

 Some numbers and important facts:

• Target of 10 million iphones sales by the end

of 2008 (just one year after being launched)

• Google phone to be launched in 2008

• 70% of the world’s mobile subscriptions are in

developing countries, NY Times April 13, 2008

Global Handset Sales by Device
Type

http://linuxdevices.com/files/misc/StrategyAnalytics-
mobilephone-segments.jpg

Devices

 A wide variety of devices by the main vendors:

• E.g, Nokia, Motoral, Sony Ericson

 A wide variety of operating systems

• E.g., Blackberry, Palm OS, Windows CE/Mobile,

Symbian, motomagx, linux

 A wide variety of development environments

• E.g., Java ME, Qualcomm’s BREW, Google’

Android, Google App Engine (GAE) for mobile

web applications, JavaFX

 Programming languages:

• Java, Python, Flast-lith, Objective C

Operating Systems

http://mobiledevices.kom.aau.dk

Mobile Web

 Access to wireless data services using a mobile device

 cHTML (Compact HTML) is a subset of HTML that excludes

JPEG images, tables, image maps, multiple character fonts

and styles, background color and image, frames and style

sheets

• http://www.w3.org/TR/1998/NOTE-compactHTML-

19980209/

 WML (Wireless Markup Language) is a standard for content

delivered to mobile devices

• http://openmobilealliance.org

 dotMobi is a top-level domain dedicated to delivering the

Internet to mobile devices

• http://mtld.mobi/

http://www.w3.org/TR/1998/NOTE-compactHTML-19980209/
http://www.w3.org/TR/1998/NOTE-compactHTML-19980209/
http://www.w3.org/TR/1998/NOTE-compactHTML-19980209/
http://www.w3.org/TR/1998/NOTE-compactHTML-19980209/
http://www.w3.org/TR/1998/NOTE-compactHTML-19980209/
http://openmobilealliance.org/
http://mtld.mobi/

Why Java?

 The Java platform is

• Safe – the code executes within the JVM

• Robustness – automated garbage collection

prevents memory management

• Portability – a single executable can run on

several devices

• Rich set of APIs

 Market trends

• 80% of the mobile devices are Java compliant

• Lots of Java applications on the market

• Operators are developing Java services

Java 2 Platform

 Composed of 3 elements:

• Java programming language specification

• Virtual machine

• APIs (Application Programming Interfaces)

 Supports a wide range of hardware:

• J2SE (Java Standard Edition)

• J2EE (Java Enterprise Edition)

• J2ME (Java Micro Edition)

• Java Card

J2ME

 J2ME is not a piece of software like J2SE

 J2ME is a platform, a collection of technologies

and specifications for small devices

 J2ME is divided into 3 components:

• Configurations

• Profiles

• Optional packages

JCP

 Java Community Process

 http://jcp.org/

 JCP is a consortium of experts (companies and

individuals) who develop and evolve Java

technology specifications

 A specification is based on the description of the

language, virtual machine, platform editions,

profiles, and application programming interfaces

 JCP stages: New Java Specification Request

(JSR) review, Early draft review, Public review,

Proposed final draft, Maintenance review,

Rejected, Removed

http://jcp.org/

JSR

 Java Specification Request

 List of all the JSR: http://jcp.org/en/jsr/all

 JSRs are descriptions of proposed and final

specifications for the Java technology

 Examples:

• JSR 82 – Bluetooth

• JSR 120 – SMS Messaging

• JSR 184 – 3D Graphics

http://jcp.org/en/jsr/all

Configuration
 A configuration is a specification that defines the

minimum virtual machine and base set of APIs to

develop applications for a family of devices

• The target may be devices with intermittent

access to the Internet, small memory size and

processing capabilities

 Examples:

• CLDC 1.0 / 1.1 – Connected Limited Device

Configuration – JSR 30 / 139 – KVM – small

memory and intermittent access to Internet

 CLDC 1.1 supports floating-point math capabilities

• CDC / CDC 1.1 – Connected Device Configuration

– JSR 36 / 218 – CVM – larger memory and

always on network connection

CLDC 1.0 APIs

 List of packages:

• java.lang – data types, basic system and

threads (Boolean, Byte, Character, Integer,

Long, Short, String, StringBuffer, Math,

Object, Runtime, System, Thread, Throwable)

• java.io – to manage I/O data streams

• java.util – utility classes (Calendar, Date,

Hastable, Random, Stack, Timer, TimerTask,

Vector)

• javax.microedition.io – for generic connections

 Library specification library

• http://java.sun.com/javame/reference/apis.jsp

http://java.sun.com/javame/reference/apis.jsp

Profile

 A profile extends a specification and add more

specific APIs to provide a more complete

environment to develop applications

 Profiles can include APIs for user interface and

persistence storage

 Examples:

• MIDP 1.0 / 2.0 – Mobile Information Device

Profile – JSR 37 / 138

 MIDP 2.0 offers advanced networking,

security, gaming, and media features

• Foundation Profile – JSR 46

Optional Packages

 An optional package provides functionalities that

may not be associated with a particular

configuration and profile

 Examples:

• JSR 82 - Bluetooth API

• JSR 120 - Wireless messaging API WMA

• JSR 172 - J2ME web services

Stack

 A device implements a complete software stack

that consists of a configuration, a profile and

optional packages to make it clear to the

developer on what to expect from the device

 Example: JSR 185 Stack - JTWI (Java Technology

for the Wireless Industry)

Fragmentation

 Fragmentation is the inability to "write once and

run anywhere” due to the multitude of vendor-

specific and optional APIs

 Developing an application targeting n different

devices required it to be tested on the n devices

 JTWI JSR 185 is one step to provide a

comprehensive set of functionalities in a standard

application development by clarifying and

combining vendor-specific and

optional APIs

MSA

 Mobile Service Architecture JSR 248

 MSA is a specification built on CLDC 1.1, MIDP 2.0

and JTWI to incorporate new technology and

services

 MSA is the new wireless industry-defined standard

 MSA is divided in 2 branches: MSA and MSA subset

 MSA contains a set of mandatory and conditionally

mandatory APIs

• A conditionally mandatory API is an API that is

not present on all devices (e.g., JSR 179

Location API)

 Advanced Mobile Service Architecture JSR 249 is

next!

MSA

Development Environments

 Sun Java Wireless Toolkit for CLDC

• http://java.sun.com/products/sjwtoolkit/

 EclipseME plugin

• http://wlcipseme.org

 NetBeans Mobility Pack

• http://www.netbeans.org/products/mobility

 Vendor-specific development environments of:

• Motorola http://developer.motorola.com/

• Nokia http://forum.nokia.com

• Sony Ericson

http://developer.sonyericsson.com

• Sprint http://developer.spring.com

http://java.sun.com/products/sjwtoolkit/
http://wlcipseme.org/
http://www.netbeans.org/products/mobility
http://developer.motorola.com/
http://forum.nokia.com/
http://developer.sonyericsson.com/
http://developer.spring.com/

MIDlet

 A MIDlet is an application that can run on MIDP devices

 A MIDlet is a class that inherits from

javax.microedition.midlet.MIDlet

 A MIDlet has three methods:

• startApp() – to initialize the MIDlet or resume a paused

MIDlet

• pauseApp() – to pause the application

• destroyApp() – to clean up the application and release

all resources

 These methods are callback – the Application Management

Software (AMS) calls them whenever necessary

 These methods can also be called in the MIDlet code

MIDlet Application Lifecycle

MIDlet Suites

 One or more MIDlets are packaged together into

a MIDlet suite composed of:

• A Java Archive (JAR) file – containing the user-

defined classes, images and sounds that make

up the application and the JAR file manifest

that describes the attributes of the MIDlet

• A Java Descriptor (JAD) file – containing the

description of the MIDlet suite

 It permits a device to examine the

descriptor before downloading the whole

MIDlet suite

Skeleton of a MIDlet

import javax.microedition.lcdui.Command;

import javax.microedition.lcdui.CommandListener;

import javax.microedition.lcdui.Displayable;

import javax.microedition.midlet.MIDlet;

import javax.microedition.midlet.MIDletStateChangeException;

public class SkeletonMIDlet extends MIDlet implements CommandListener {

public SkeletonMIDlet() {}

protected void destroyApp(boolean arg0) throws MIDletStateChangeException {}

protected void pauseApp() {}

protected void startApp() throws MIDletStateChangeException {}

public void commandAction(Command arg0, Displayable arg1) {}

}

References

 Introduction to Java Mobility Technology

• http://developers.sun.com/mobility/getstart/

 Java Community Process

• http://jcp.org

 Glossary

• http://developers.sun.com/mobility/glossary/

http://developers.sun.com/mobility/getstart/
http://jcp.org/
http://developers.sun.com/mobility/glossary/

