
DATA WAREHOUSE
AND OLAP TECHNOLOGY

PART - 1

By: Group No: 3

Rohan Sharma - 105370637
Kalpit Shah - 105370637
Yeshesvini Shirahatti - 105526740
Smruti Patel - 105390817

TOPICS
• Introducing the concept of a warehouse,

modeling of data and schemas used.
- Rohan Sharma

• OLAP operations and Warehouse Architecture
- Kalpit Shah

• Research Paper on Distributed Warehouses
-Yeshesvini Shirahatti

• Application of Warehousing in Microsoft
Terradata
- Smruti Patel

• What is a Data Warehouse??
• What is OLAP??
• Why do we need a separate
Data Warehouse??
• How do we model a
Warehouse??

References:
Data Mining: Concepts and
Techniques
- Jiawei Han , Micheline
Kamber

Covered by:

Rohan Sharma

• They consist of Tables having attributes and
are populated by tuples.

• They generally use the E-R data model.
• It is used to store transactional data.
• The information content is generally recent.
• These are thus called as OLTP systems.
• Their goals are data accuracy & consistency ,

Concurrency , Recoverability, Reliability (ACID
Properties).

• Formal Definition: “ A data warehouse is a subject-oriented, integrated, time-
variant and non-volatile collection of data in support of management decision
making process.”

WHAT????
• It means:

• Subject-Oriented: Stored data targets specific subjects.
Example: It may store data regarding total Sales, Number of Customers, etc. and not

general data on everyday operations.
• Integrated: Data may be distributed across heterogeneous sources which have to

be integrated.
Example: Sales data may be on RDB, Customer information on Flat files, etc.
• Time Variant: Data stored may not be current but varies with time and data have

an element of time.
Example: Data of sales in last 5 years, etc.
• Non-Volatile: It is separate from the Enterprise Operational Database and hence

is not subject to frequent modification. It generally has only 2 operations performed
on it: Loading of data and Access of data.

Features of a Warehouse:

• It is separate from Operational Database.
• Integrates data from heterogeneous systems.
• Stores HUGE amount of data, more historical than current data.
• Does not require data to be highly accurate.
• Queries are generally complex.
• Goal is to execute statistical queries and provide results which can

influence decision making in favor of the Enterprise.
• These systems are thus called Online Analytical Processing Systems

(OLAP).

• Data Contents:
Operational DB Systems: Current and detailed data and is subject to modifications.
Data Warehouse: Historical data, course granularity, generally not modified.

• Users:
Operational DB Systems: Customer – Oriented, thus used by customers/clerks/IT

professionals.
Data Warehouse: Market – Oriented, thus used by Managers/Executives/Analysts.

• Database Design:
Operational DB Systems: Usually E-R model.
Data Warehouse: Usually Multidimensional model. (Star, Snowflake…)

• Nature of Queries:
Operational DB Systems: Short, atomic queries desiring high performance

(less latency) and accuracy.
Data Warehouse: Mostly read only queries, operate on HUGE volumes of data,

queries are quite complex.

3 Main reasons:
1. OLTP systems require high concurrency, reliability, locking which provide

good performance for short and simple OLTP queries. An OLAP query is
very complex and does not require these properties. Use of OLAP query
on OLTP system degrades its performance.

2. An OLAP query reads HUGE amount of data and generates the required
result. The query is very complex too. Thus special primitives have to
provided to support this kind of data access.

3. OLAP systems access historical data and not current volatile data while
OLTP systems access current up-to-date data and do not need historical
data.

Thus,
Solution is to have a separate database system which supports primitives and

structures suitable to store, access and process OLAP specific data …
in short…have a data warehouse.

• In simple words: Subject(s) per Dimension
Example: If our subject/measure is ‘quantity sold’
and if the dimensions are : Item Type, Location
and Period then,
Data warehouse stores the items sold per type,
per geographical location during the particular
period.

How do we represent this data???

• This multi-dimensional data can be represented using a data
cube as shown below.

This figure shows a 3-Dimensional data
Model.
X – Dimension : Item type
Y – Dimension : Time/Period
Z – Dimension : Location

Each cell represents the items sold of
type ‘x’, in location ‘z’ during the quarter
‘y’.

This is easily visualized as Dimensions
are 3.

• What if we want to represent the store where it was sold too?
• We can add more dimensions. This makes representation complex.
• Data cube is thus a n - dimensional data model

Figure 2.1
From DataMining:
Concepts and tech.
- Han, Kamber

The well known schemas are:

1. Star Schema: Single Fact table with n – Dimension tables linked to
it.

2. Snowflake Schema: Single Fact table with n-Dimension tables
organized as a hierarchy.

3. Fact Constellation Schema: Multiple Facts table sharing
dimension tables.

• Each Schema has a Fact table that stores all the facts about the
subject/measure.

• Each fact is associated with multiple dimension keys that are linked
to Dimension Tables.

• There is a central large Fact table with no redundancy
• Each tuple in the fact table has a foreign key to a dimension table
which descibes the details of that dimension

Problem: Redundancy

• Values of city, province_or_state
and country would be repeated for
two streets in the same city.

Thus we can normalize
the table by splitting location into
sub tables. (Snowflake Schema)

Advantage: Performance
As less number of joins required

Figure 2.4
From DataMining:
Concepts and tech.
- Han, Kamber

Some of the dimension tables are normalized thus splitting data into
additional tables.

Problem: Performance

• Too many joins
required to form the
result.

Thus Snowflake schema
is not as popular as the
Star schema.

Figure 2.5
From DataMining:
Concepts and tech.
- Han, Kamber

Two or more fact tables share dimension tables.
In the figure below the ‘Sales’ fact table and ‘Shipping’ fact table
Share the dimension tables

As the multiple fact tables are
linked to each other by
dimension tables, its called
as fact Constellation SchemaFigure 2.6

From DataMining:
Concepts and tech.
- Han, Kamber

• Data Mining Query Language (DMQL) Syntax:
1. define cube <cube name>[<dimension list>]:<measure list>
2. define dimension <dimension name> as (<attribute list>)

• Star Schema Example:
Fact Table:
define cube sales_star [time,item,branch,location]:
dollars_sold=sum(sales_in_dollars),units_sold=count(*)

Dimensions:
define dimension time as (time_key,day,day_of_week,month,quarter,year)
define dimension item as (item_key,item_name,brand,type)
define dimension branch as (branch_key,branch_name,branch_type)
define dimension location as (location_key,street,city,province,country)

• Defining a hierarchy of dimension tables for
snowflake schema.
define dimension location as
(location_key,street,city(city_key,city,province,country))

• Defining a shared dimension table for Fact
Constellation Schema
define dimension time as (time_key,day,day_of_week,month,quarter,year)
define dimension time as time in cube sales

Concept Hierarchies

OLAP operations in Multidimensional Data Model

Query Model for Multidimensional Databases

- Kalpit Shah

It is a sequence of mappings from a set of low-level concepts to
higher-level, more general concepts

A Concept Hierarchy may also
be a total order or partial order
among attributes in a database
schema

It may also be defined by
discretizing or grouping values
for a given dimension or
attribute, resulting in a
set-grouping hierarchy

Concept Hierarchies may be
provided manually by

- System users
- Domain Experts
- Knowledge Engineers
- Automated Statistical Analysis

1. Roll-up
Performs aggregation on a data cube, either by climbing up a concept
hierarchy for a dimension or by dimension reduction

2. Drill-down
Can be realized by either stepping down a concept hierarchy for a
dimension or introducing additional dimensions

3. Slice and Dice
Slice performs a selection on one dimension of the given cube, resulting in
a sub cube
Dice defines a subcube by performing a selection on two or more
dimensions

4. Pivot (rotate)
It’s a visualization operation that rotates the data axes in view in order to
provide an alternative presentation of the data

1. Design and Construction

2. A Three - Tier Architecture

3. OLAP Servers

What does the data warehouse provide for BUSINESS ANALYSTS?

Presents relevant information useful for measuring performance
and evaluation issues

Enhances business productivity by quick and efficient gathering
of information

Facilitates customer relationship management by providing a
consistent view of customers across all lines of business, all
departments, and all markets

Brings cost reduction by tracking trends, patterns and
exceptions overlong periods of time in a consistent and reliable
manner

1. Top-Down View
Allows the selection of relevant information necessary
This information matches the current and coming business needs

2. Data Source View
Exposes the information being captured, stored and managed by
operational systems
This view is often modeled by traditional data modelling techniques such
as ER Model or CASE tools

3. Data Warehouse View
Includes fact tables and dimension tables
Represents precalculated totals and counts
Provides historical context

4. Business Query View
It’s the perspective of a data in the warehouse from the viewpoint of the
end user

1. Top-Down Approach

Starts with overall design and planning
Useful where the technology is mature and well known
Useful where the business problems to be solved are clear and well
understood

2. Bottom-Up Approach

Starts with experiment and prototypes
Allows an organization to move forward at considerably less expense
Allows to evaluate the benefits of the technology before making
significant commitments

3. Combined Approach

Exploits the planned and strategic nature of the top-down approach
Retains the rapid implementation and opportunistic application of the
bottom-up approach

It involves the following steps :

Planning
Requirements Study
Problem Analysis
Warehouse Design
Data Integration and Testing
Deployment of Warehouse

Development Model

Waterfall Model
Performs a systematic and structured analysis at each step before proceeding
to the next

Spiral Model
Involves rapid generation of increasingly functional systems, with short
intervals between successive releases

1. Choose a business process to model, for example, orders, invoices,
shipments, inventory, account administration, sales, and the general
ledger.

2. Choose the grain of the business process. The grain is the
fundamental, atomic level of data to be represented in the fact table for
this process, for example, individual transactions, individual daily
snapshots, and so on.

3. Choose the dimensions that will apply to each fact table record. Typical
dimensions are time, item, customer, supplier, warehouse, transaction
type and status.

4. Choose the measures that will populate each fact table record. Typical
measures are numeric additive quantities like dollars_sold and
units_sold.

Enterprise Warehouse

Contains information spanning entire organization

Provides corporate-wide data integration, usually from operational systems or
external information providers

Contains detailed as well as summarized data

Size ranges from a few hundred GB to hundreds of GB, TB and beyond

Implemented on Traditional Mainframes, UNIX Superservers and Parallel
Architecture Platforms

Requires extensive business modeling and may take years to design and build

Contains a subset of corporate-wide data that is of value to a specific group of
users. Scope is confined to specific selected subjects

Implemented on low-cost departmental servers that are UNIX or Windows NT
based. Implementation cycle is measured in weeks rather than months or
years

They are further classified as:

Independent
• Sourced from data captured from one or more operational systems or

external information providers
• Sourced from data generated locally within a particular department or

geographic area

Dependent
• Sourced directly from enterprise data warehouses

Data Mart

Virtual Warehouse

It is a Set of Views over operational databases

For efficient query processing, only some of the
possible summary views may be materialized

It is easy to build but requires excess capacity on
operational database servers

1. Relational OLAP (ROLAP) servers

They stand between relational back-end server and client front-end tools
Use relational or extended-relational DBMS to store and manage
warehouse. Also contain optimization for each DBMS back end
ROLAP technology tends to have greater scalability than MOLAP
technology

Eg:- DSS Server of Microstrategy, Metacube of Informix

2. Multidimensional OLAP (MOLAP) servers

Support multidimensional views of data through array-based
multidimensional storage engines
They map multidimensional views directly to data cube array structures
Data Cube allows faster Indexing to precomputed summarized data
Many MOLAP servers adopt a two-level storage representation

Eg:- Essbase of Arbor

3. Hybrid OLAP (HOLAP) servers

Combine ROLAP and MOLAP technology
Benefits from greater scalability of ROLAP
Benefits from faster computation of MOLAP
HOLAP servers may allow large volumes of detail data to be stored in a
relational database, while aggregations are kept in a separate MOLAP store

Eg:- The Microsoft SQL Server 7.0 OLAP Services

4. Specialized SQL Servers

Provide advanced query language and query processing support for SQL
queries over star and snowflake schemas in a read-only environment

Eg:- Redbrick of Informix

DISTRIBUTED DATA WAREHOUSES:
The role of adaptive information agents

Nathan T. Clapham, David G. Green &
Michael Kirley

Proceedings of the
The 2000 Third Asian Pacific Conference on Simulated Evolution and Learning
(SEAL-2000). pp 2792-2797. IEEE Press.

-Yeshesvini Shirahatti

INTRODUCTION

• Discovery of relevant information, is one of the major
challenges faced in the Information Age

• AIM: To propose a scalable, model for online distributed
data warehouses.

• ABOUT THE MODEL: It is a population of adaptive
agents,1 per data warehouse.

WHAT IS AN AGENT?

• According to the Macquarie dictionary
(1997) a software agent is “a piece of
software that performs automatic
operations on a network.”

• In our case, an agent is a piece of
software that basically retrieves
specific information to us, on being
called.

• An ideal or “smart” agent should be:
– Intelligent
– Autonomous
– Co-operative

EXISTING SEARCH METHODS

• AltaVista and Excite: Common focus on indexing information
• They return thousands of items for each query
• Eg: A simple search for “virus” gives links to computer viruses first,

and then about the biological viruses!

• Main problems with the existing search approaches:
- High ratio of “false hits” (irrelevant information)
- Users themselves have to locate and extract the

information, from the search results

• What a user wants: A report consisting of all relevant
elements drawn from different data sources

• Example query: “Eucalyptus Trees in Tasmania”

EUCALYPTUS TREES IN TASMANIA

Taxonomic information
From national herbarium

Images from
Botanic Gardens

Maps from
Environment Australia

This information or final report is what the user is actually interested in , and NOT
the list of resources, that would be retrieved by the search agents

WHY USE AGENTS IN A DISTRIBUTED
DATA WAREHOUSE ENVIRONMENT?

• In a distributed environment, a problem arises of
separating the processing from the data

• It is inefficient to draw data from disparate sources, and
then process the data (longer time, and a frustrated user!)

• Efficient alternative: Process the data at the source, and
then transmit only the results to the user.

…. The agent based model uses this alternative

THE AGENT BASED MODEL

DQA: Distributed Query Agent
DDW: Distributed Data Warehouse

Working of the Agent Model

• The DDW (Distributed Data Warehouse) model is built
around DQA (Distributed Query Agents)

• FRONT END: User interacting with an agent via a
website

• The user queries the agent, and based on the query,
the agent might:
A. Process the request itself
B. Send the request to another agent

• Main Characteristics of the Model:

– Each DQA represents a Data Warehouse, each with a limited
domain of interest

– Collaboration between agents. This enables agents to learn
about new data sources, which helps them to process queries
extending beyond domain limitations (i.e its data warehouse)

– This facilitates a scalable architecture.

– The system can now grow, adapt and learn.

ADAPTIVE AGENTS

• How adaptive agents work:

Sleep/Dream Wake up

• Wake Cycle: Agent processes the user’s or another agent’s query.
Stores the query details in short term memory

• Sleep/Dream Cycle: Processes the contents of short term memory.

• Sleep/Dream cycle: The agent processes the query in
short term memory

• This involves comparing each query script with its existing
functions.

• Agent functions: Procedures for acquiring information from
a data source.

• Script elements identified as new are extracted to create
new functions.

IMPLEMENTATION

• Query: Eucalyptus regnans in Tasmania

• DQA: Implemented in JAVA, resides behind a WWW server Common
Gateway Interface(CGI)

• DQA’s communicate with CGI to satisfy queries.

• Queries: Expressed in XML markup, called as the Report Generation
Language (RGL)

• Objects are retrieved based on the query tags.

• In our example, a map object is used, retrieved from the SOURCE
http://life.csu.edu.au/cgi-bin/speciesDistDQA.cgi

• SOURCE: A species distribution agent

QUERY EXAMPLE
<OBJECT TYPE="map">
<QUERY SOURCE="http://life.csu.edu.au/cgi-bin/specDistDQA.cgi" THEME="plant">
<ATTRIB ID="GENUS"><VAR ID="1"/></ATTRIB>
<ATTRIB ID="SPECIES"><VAR ID="2"/></ATTRIB>
<ATTRIB ID="LOCATION"><VAR ID="3"/></ATTRIB>

</QUERY></OBJECT>
ABOVE QUERY MAPPED TO A FUNCTION BY AGENT IN THE SLEEP CYCLE
<FUNCTION TYPE="map" THEME="plant">
<QUERY SOURCE="http://http://life.csu.edu.au/cgi-bin/specDistDQA.cgi">
<ATTRIB ID="GENUS"><VAR THEME="plant/genus"/></ATTRIB>
<ATTRIB ID="SPECIES"><VAR THEME="plant/genus/species"/></ATTRIB>
<ATTRIB ID="LOCATION"><VAR THEME="geographic/country/state"/></ATTRIB></QUERY></FUNCTION>

The var tag was mapped to a function retrieving specific information, during the
sleep phase. The agent has “learnt” the function from the received query.

…AND FINALLY

• The user interface:

• The interface agent sends the query to a distributed query agent
(plantDQA)

• plantDQA has previously learnt from its previous queries, and uses the
necessary functions from its knowledge base to obtain the necessary
function

• The agents involved:

Distributed Agent

The output

• Fig 5: Final report
Fig 3: An example of RGL

Microsoft TerraServer- A Spatial
Data Warehouse

•Tom Barclay
•Jim Gray
•Don Slutz

Proceedings of the 2000 ACM SIGMOD Conference.

The Big Picture

• Input: Terabytes of “Internet unfriendly” geo-spatial
images

• Output: Hundreds of millions of scrubbed and cleaned,
“internet friendly” images loaded into a SQL database
for delivery via Internet to web browsers

Goal: To develop a scaleable wide-area, client/server
imagery Internet database application to handle
processing and delivery for heavy we traffic.

Why not a classic data warehouse?

TerraServer, a multi-media data warehouse :

• Accessed by millions of users
• Users extract relatively few records (thousands) in a particular

session
• Records relatively large (10 kilobytes).

Classic data warehouses:
• Accessed by a few hundred users via proprietary interfaces
• Queries examine millions of records, to discover trends or

anomalies,
• Records less than a kilobyte.

System Architecture

TerraServer - A “thin-client / fat-server” 3-tier architecture:

• Tier 1: The Client , a graphical web browser or other
hardware/software system supporting HTTP 1.1 protocols.

• Tier 2: The Application Logic, a web server application to
respond to HTTP requests submitted by clients by interacting
with Tier 3

• Tier 3: The Database System, a SQL Server 7.0 Relational
DBMS containing all image and meta-data required by Tier 2.

System Architecture (contd.)

Map UIMap UI
Web FormsWeb Forms

TerraServerTerraServer
Web ServiceWeb Service

DB ServerDB Server

668 m Rows668 m RowsMap ServerMap Server
Http HandlerHttp Handler

StandardStandard
BrowsersBrowsers

SmartSmart
ClientsClients

WindowsWindows
FormsForms

.NET.NET
FrameworkFramework ADO.NETADO.NET OLEDB SQL 2000SQL 2000

2.0 TB Db2.0 TB Db

SQL 2000SQL 2000
2.0 TB Db2.0 TB Db

SQL 2000SQL 2000
2.0 TB Db2.0 TB Db

HTMLHTML

Image/jpeg
Image/jpeg

Image/jpegImage/jpeg

XMLXML

src:http://research.microsoft.com/~gray/talks/FlashMobBigDataOnWeb.ppt

TerraServer Schema

• Data Storage
– TerraServer Grid System
– Imagery Database Schema
– Gazetteer Database Schema

• Data Load Process
– TerraCutter
– TerraScale

Data Storage:
TerraServer Grid System

• Based on Universal Transverse Mercator (UTM) coordinate system.

• 1 large mosaic of tiled images, each identified by its location within
a scene.

• Users interact with system using Geographic coordinates,
TerraServer search system performs conversion from geographic
coordinates to TerraServer (or UTM) coordinates.

• Data loaded into system, loading program then assigns six fields -
resolution, theme, scene ID, scale, X coordinate, and Y coordinate -
to every tile to create unique key to identify image

Data Storage:
Imagery Database Schema

• Each image source considered to be a theme and each theme has its own
source meta-data table.

• Image source data used as primary key and stored with all of the meta-data
in an SQL database.

• Each theme table has same five-part primary key:
– SceneID –individual scene identifier
– X – tile’s relative position on the X-axis
– Y – tile’s relative position on the Y-axis
– DisplayStatus – Controls display of an image tile
– OrigMetaTag – image the tile was extracted from

• 28 other fields to describe geo-spatial coordinates for image and other
properties. One field is a “blob type” that contains the compressed image.

Thus, actual image tile (approximately 10KB) is stored allowing fast
download times over standard modems

Data Storage:
Gazetteer Database Schema

• Allows users to find an image by a keyword search.

• Database schema essentially a snowflake design- formal
location name at center, altNames radiating from the center.

• altName tables contain synonyms and abbreviations for places.

• On search, a stored procedure performs a join, searches
appropriate field and alt name fields associated with it.

Gazetteer Database Schema (contd.)

• ImageSearch table: Allows association between name and
actual image, by identifying ‘Theme, SceneID, Scale, X, and Y’.

• Pyramid table: Consists of name, distance to location closest to
the center tile on an image.

src: www.davidmoretz.com/spatial/hw3/A5.doc

Data Load Process:
TerraCutter

C program that reformats imagery received from various data sources,
tiles it into acceptable formats for TerraServer web application & inserts tiles,

metadata into database.

src: www.davidmoretz.com/spatial/hw3/A5.doc

Data Load Process:
TerraScale

Resamples tiles created by TerraCutter to create lower resolution tiles
in the theme’s image pyramid

src: www.davidmoretz.com/spatial/hw3/A5.doc

Data Load Process

Internet Data Center

SQL
ServerStored
Procs

SQL
ServerStored
Procs

SQL
Server
Stored
Procs

2 TB
Database

2 TB
Database

2 TB
Database

Terra
Scale

Rea
d 4

 Im
ag

es

W
rit

e
1

Terra
Cutter

Read
Image
Files

Corporate
Network

Active Server Pages
Loading

Scheduling
System

Terminal
Server

Remote Management

6 TB
Staging

Area

Bricks

Fire Wire disks

src:http://research.microsoft.com/~gray/talks/FlashMobBigDataOnWeb.ppt

Moral of the Story?

User navigates an ‘almost seamless’ image of earth

Links to Print, Download and
view meta-data information

Links to switch between
Topo, Imagery, and Relief data

Buttons to pan
NW, N, NE, W, E, SW, S, SE

Click on image
to zoom in

src:http://research.microsoft.com/~gray/talks/FlashMobBigDataOnWeb.ppt

TerraServer Fast Facts

• Daily Usage:
– 75k – 120k visitors
– 1.5million to 2.2 million page views
– 10 to 20 million “tiles”
– 20 to 40 mega-bits per second peak network bandwidth

• Database Statistics:
– 5.3 TB of compressed (jpeg/gif) imagery
– 525 million image “tiles”
– 1 billion rows (Meta & Imagery)

src: www.nsgic.org/events/2005annual_presentation/tuesday/nsgic_partnerships.ppt

Major Contributions of TerraServer:

• Model for a scalable architecture to store & deliver terabytes of
data over the Internet

• Process to store and index geographic raster data based on a grid
X,Y coordinate system

• Method to store and present scalable raster data

Thus, disassemble & store large images and then reassemble
them on the fly to efficiently deliver over a low bandwidth
Internet.

src: www.davidmoretz.com/spatial/hw3/A5.doc

Thank you!!

