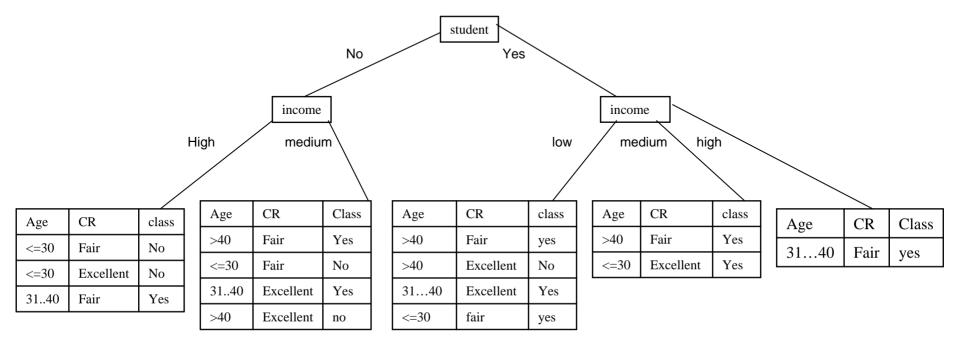
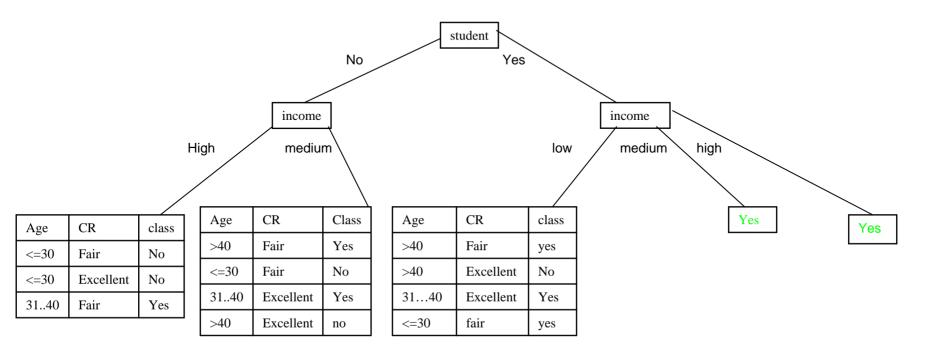
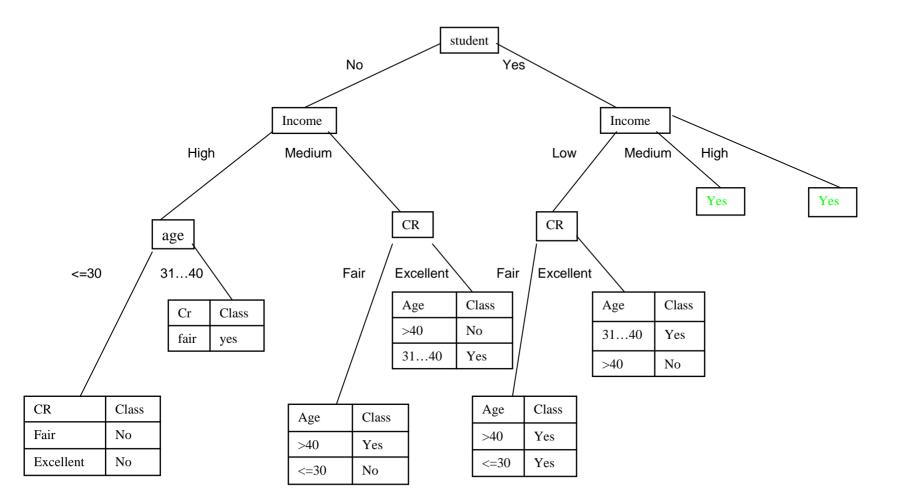
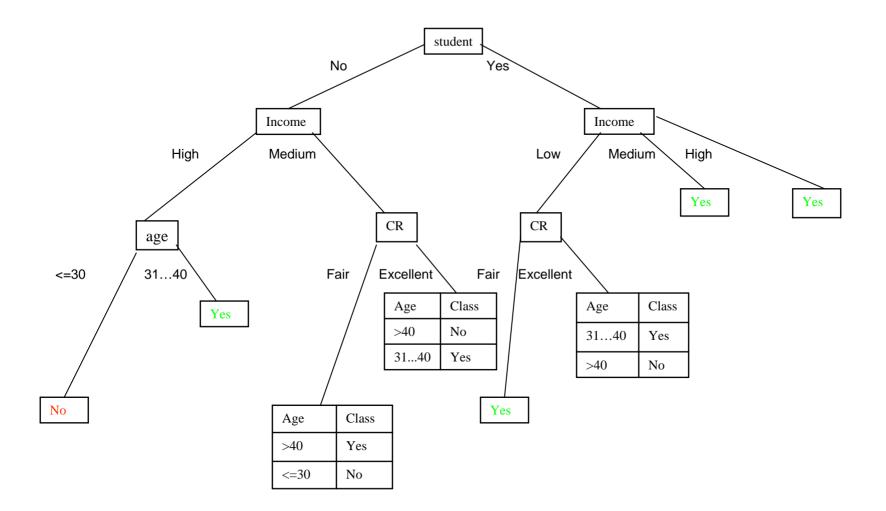
Decision Tree Examples

Professor Anita Wasilewska Computer Science Department Stony Brook University, NY

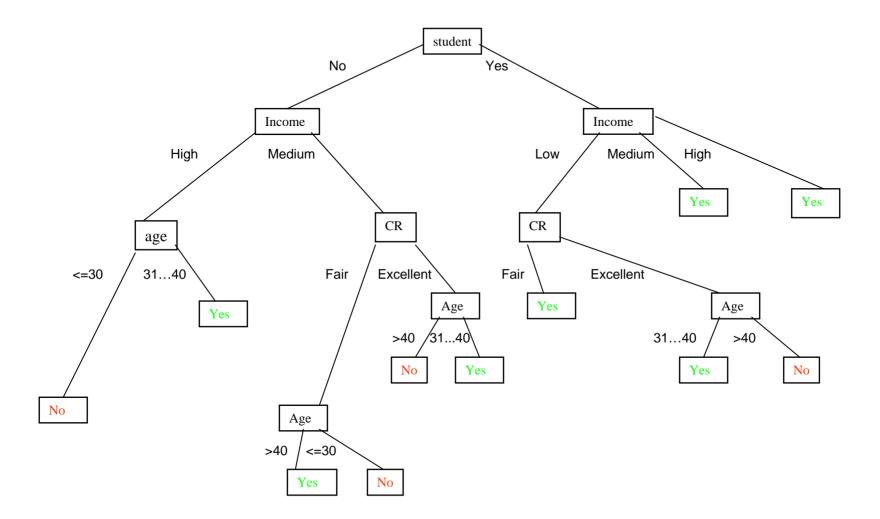

Training data


rec	Age	Income	Student	Credit_rating	Buys_computer
r1	<=30	High	No	Fair	No
r2	<=30	High	No	Excellent	No
r3	3140	High	No	Fair	Yes
r4	>40	Medium	No	Fair	Yes
r5	>40	Low	Yes	Fair	Yes
r6	>40	Low	Yes	Excellent	No
r7	3140	Low	Yes	Excellent	Yes
r8	<=30	Medium	No	Fair	No
r9	<=30	Low	Yes	Fair	Yes
r10	>40	Medium	Yes	Fair	Yes
r11	<-=30	Medium	Yes	Excellent	Yes
r12	3140	Medium	No	Excellent	Yes
r13	3140	High	Yes	Fair	Yes
r14	>40	Medium	No	Excellent	No

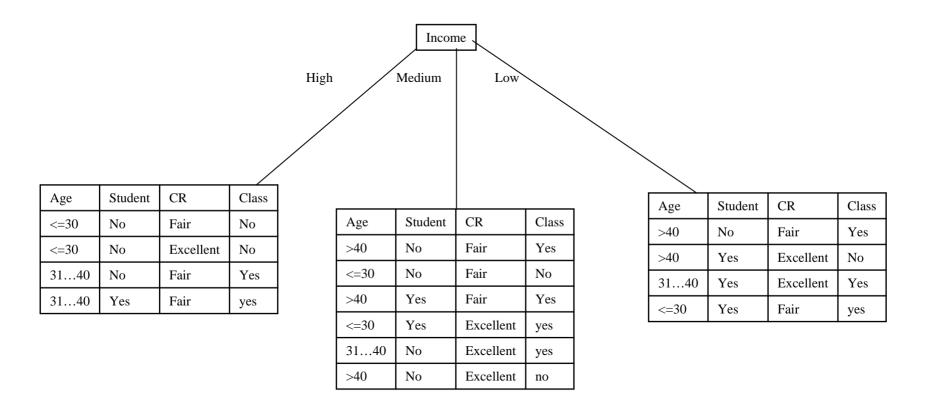

Decision Tree 1, Root: student

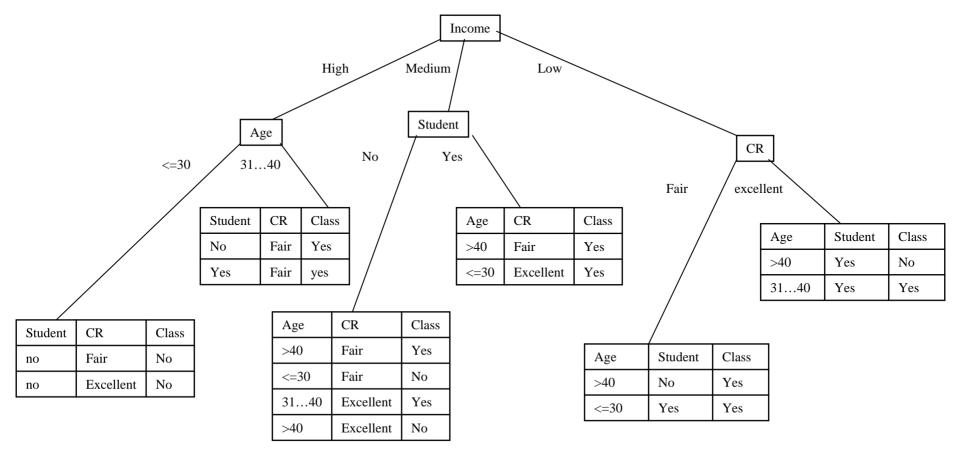

			N	student	Yes			
						<u>}</u>	1	I
Age	income	CR	Class		Age	income	CR	Class
<=30	High	Fair	No		>40	Low	Fair	Yes
<=30	High	Excellent	No		>40	Low	excellent	No
3040	High	Fair	Yes		3140	Low	Excellent	Yes
>40	Medium	Fair	Yes		<=30	Low	Fair	Yes
<=30	Medium	Fair	No		>40	Medium	Fair	Yes
3140	Medium	Excellent	Yes		<=30	Medium	Excellent	Yes
>40	Medium	Excellent	no		3140	high	fair	yes

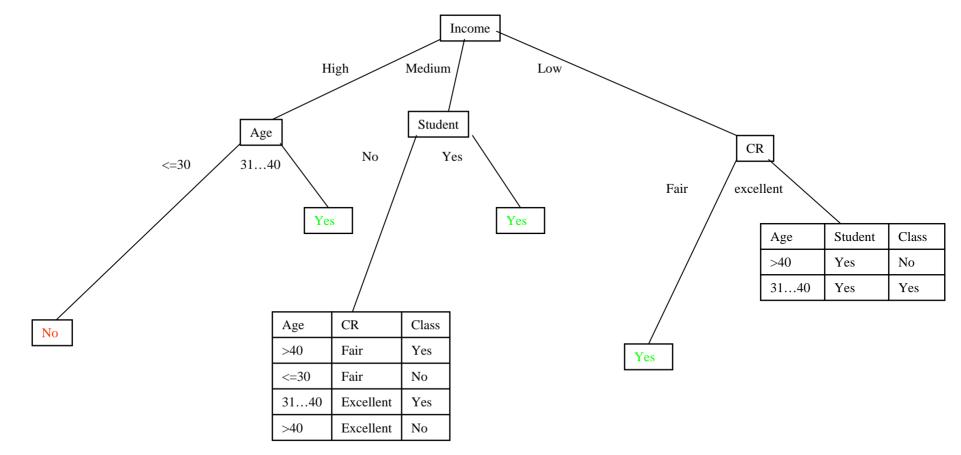
Decision Tree 1: income (L) and income (R)

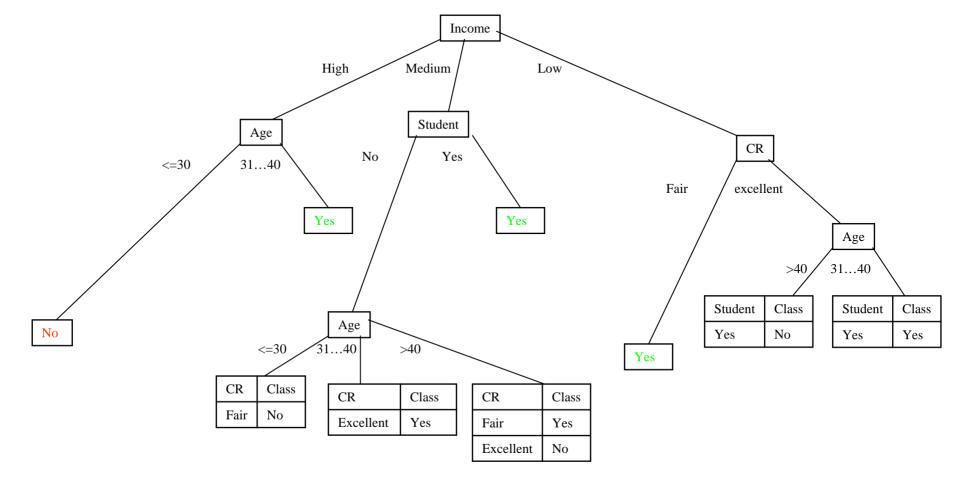


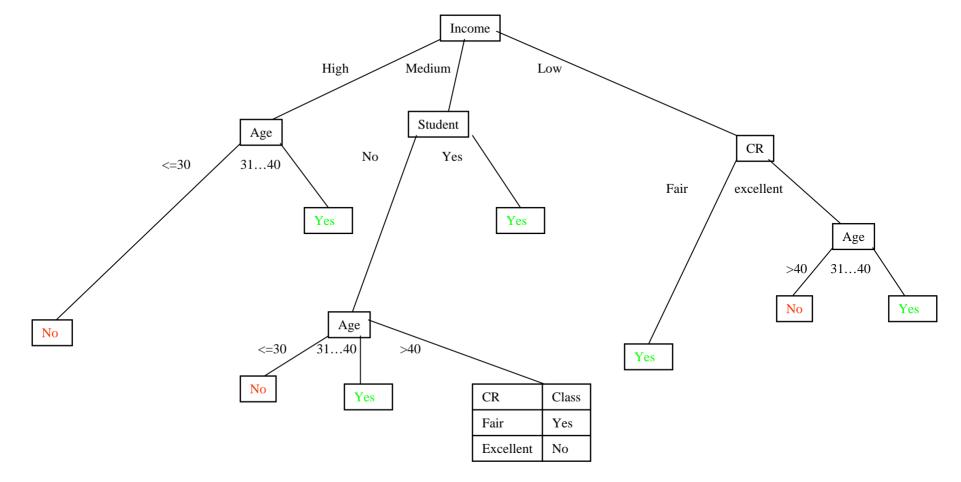
Decision Tree 1 : last step

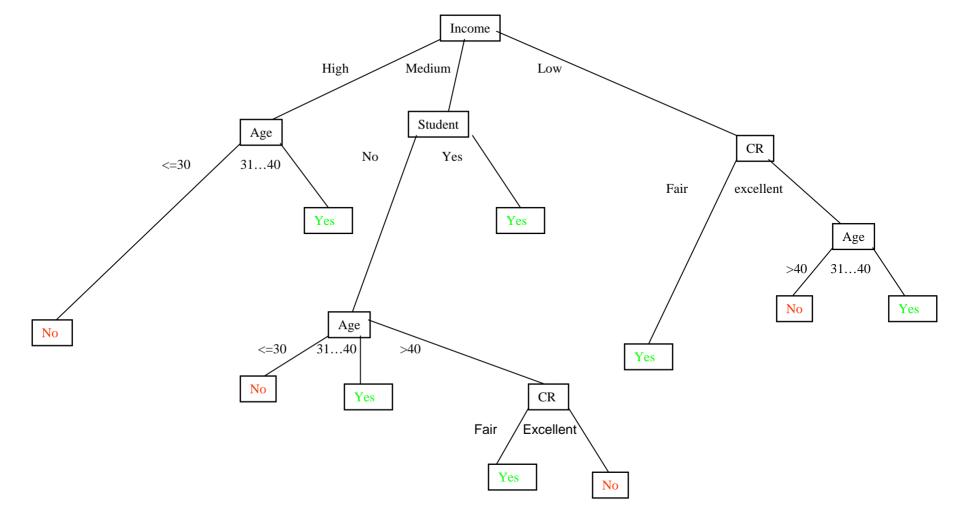



Tree 1 Classifcation rules


(Predicate form for testing)


- 1. student(x,no)^income(x,high)^age(x,<=30) => buys_computer(x,no)
- 2. student(x,no)^income(x,high)^age(x,31...40) => buys_computer(x,yes)
- 3. student(x,no)^income(medium)^CRx,fair)^age(x,>40) => buys_computer(x,yes)
- 4. student(x,no)^income(x,medium)^CR(x,fair)^age(x,b<=30) => buys_computer(x,no)
- 5. student(x,no)^income(x,medium)^CRx,(excellent)^age(x,>40) => buys_computer(x,no)
- 6. student(x,no)^income(x,medium)^CR(x,excellent)^age(x,31..40) => buys_computer(x,yes)
- 7. student(x,yes)^income(low)^CR(x,fair) => buys_computer(x,yes)
- 8. student(x,yes)^income(x,low)^CR(x,excellent)^age(x,b31..40) => buys_computer(x,yes)
- 9. student(x,yes)^income(x,low)^CR(x,excellent)^age(x,>40) => buys_computer(x,no)
- 10. student(x,yes)^income(x,medium)=> buys_computer(x,yes)
- 11. student(x,yes)^income(x,high)=> buys_computer(x,yes)


Decision Tree 2: Root Income



Decision Tree 2 : last step

Tree 2 Classifcation rules

(Predicate form for testing)

- 1. income(x,high)^agex,(<=30) => buys_computer(x,no)
- 2. income(x,high)^age(x,31...40) => buys_computer(x,yes)
- 3. income(x,medium)^student(x,no)^age(x,<=30) => buys_computer(x,no)
- 4. income(x,medium)^student(x,no)^age(x,31...40) => buys_computer(x,yes)
- 5. income(x,medium)^student(x,no)^age(x,>40)^CR(x,fair) => buys_computer(x,yes)
- 6. income(x,medium)^student(x,no)^age(x,>40)^CR(x,excellent) => buys_computer(x,no)
- 7. income(x,medium)^student(x,yes)=> buys_computer(x,yes)
- 8. income(x,medium)^CR(x,fair)=> buys_computer(x,yes)
- 9. income(x,medium)^ CR(x,excellent)^age(x,>40)=> buys_computer(x,no)
- 10. income(x,medium)^ CR(x,excellent)^age(x,31...40)=> buys_computer(x,yes)

Formulas for information gain

$$I(p,n) = -\frac{p}{p+n}\log_2\frac{p}{p+n} - \frac{n}{p+n}\log_2\frac{n}{p+n}$$

$$E(A) = \sum_{i=1}^{\nu} \frac{p_i + n_i}{p + n} I(p_i, n_i)$$

$$Gain(A) = I(p, n) - E(A)$$

Calculations of **information gain** for Tree 1, Root: Student

- $I(P,N) = -(9/(9+5))Logsub2^*(9/(9+5))-(5/(9+5))logsub2^*(5/(9+5))$
 - = -.643(-0.64)+(-.357)(-1.49) = .944
- $I(Psub1,Nsub1) = -(6/(6+1)Logsub2^*(6/(6+1)-(1/(6+1))logsub2^*(1/(6+1)))$ = -.857(-.22)+(-.143)(-2.81) = .591
- $I(Psub2,Nsub2) = -(3/(3+4)Logsub2^*(3/(3+4)-(4/(3+4))logsub2^*(4/(3+4)))$ = -.423(-1.24)+(-.571)(-0.81) = .987

Student	Р	N	I(Psubi,Nsubi)
Yes	6	1	.591
No	3	4	.987

• E(Student) = (((6+1)/14) * .591) = .296 + ((3+4)/14) * .987 = .493 = .789

Gain(Student) = .944 - .789 = .155

Calculations of **information gain** for Tree 1, Income(Left) node

- $I(P,N) = -(3/(3+4)Logsub2^*(3/(3+4)-(4/(3+4)))logsub2^*(4/(3+4)))$ = -.423(-1.24)+(-.571)(-0.81) = .987
- $I(Psub1,Nsub1) = -(1/(1+2)Logsub2^*(1/(1+2)-(2/(1+2))logsub2^*(2/(1+2)))$ = -.333(-1.59)+(-.667)(-0.58) = .916
- I(Psub2,Nsub2) = -(2/(2+2)Logsub2*(2/(2+2)-(2/(2+2))logsub2*(2/(2+4)))
 = -.5(-1)+(-.5)(-1) = 1

Income	Ρ	Ν	I(Pi,Ni)
High	1	2	.916
Medium	2	2	1

• E(Income(L)) = (((1+2)/7) * .916) = .393 + ((2+2)/7) * 1 = .57 = .963

Gain(Income(L)) = .987 - .963 = .024

Calculations of **information gain** for Tree 1, Income(Right) node

• $I(P,N) = -(6/(6+1)Logsub2^*(6/(6+1)-(1/(6+1))logsub2^*(1/(6+1)))$

= -.857(-.22)+(-2.81)(-.143) = .591

- $I(Psub1,Nsub1) = -(3/(3+1)Logsub2^*(3/(3+1)-(1/(3+1))logsub2^*(1/(3+1)))$ = -.75(-0.42)+(-.25)(-2) = .815
- I(Psub2,Nsub2) = -(2/(2+0)Logsub2*(2/(2+0)-(0/(2+0))logsub2*(0/(2+0)))
 = -1(0)-(0)(infinity) = 0
- I(Psub3,Nsub3) = -(1/(1+0)Logsub2*(1/(1+0)-(0/(1+0))logsub2*(0/(1+0)))
 = -1(0)-(0)(infinity) = 0

Income	Ρ	Ν	l(Pi,Ni)
Low	3	1	.815
Medium	2	0	0
High	1	0	0

• E(Income(R)) = (((3+1)/7) * .815) = .465 + ((2+0)/7) * 0 = 0 + ((1+0)/7) * 0 = 0= .465

Gain(Income(R) = .987 - .465 = .522)

Calculations of **information gain** for Tree 1, age(1) node

• $I(P,N) = -(1/(1+2)Logsub2^{*}(1/(1+2)-(2/(1+2))logsub2^{*}(2/(1+2)))$ = -.333(-1.59)+(-.667)(-0.58) = .916

age	Ρ	Ν	l(Psubi,Nsubi)
<=30	0	2	0
3140	1	0	0

• E(Age(1)) = (((0+2)/3) * 0) = 0 + ((1+0)/3) * 0) = 0 = 0

Gain(Age(1)) = .916 - 0 = .916

Calculations of **information gain** for Tree 1, CR(Left) node

• $I(P,N) = -(2/(2+2)Logsub2^{*}(2/(2+2)-(2/(2+2))logsub2^{*}(2/(2+2)))$ = -.5(-1)+(-.5)(-1) = 1

CR	Ρ	Ν	l(Psubi,Nsubi)
Fair	1	1	1
Excellent	1	1	1

•
$$E(CR(R)) = (((1+1)/4) * 1) = .5 + ((1+1)/4) * 1) = .5 = 1$$

Gain(CR(R)) = 1 - 1 = 0

Calculations of **information gain** for Tree 1, CR(right) node

I(P,N) = -(3/(3+1)Logsub2*(3/(3+1)-(1/(3+1))logsub2*(1/(3+1)))
 = -.75(-0.42)+(-.25)(-2) = .815

CR	Ρ	Ν	I(Psubi,Nsubi)
Fair	2	0	0
Excellent	1	1	1

• E(CR(R)) = (((2+0)/4) * 0) = 0 + ((1+1)/4) * 1) = .5 = .5

Gain(CR(R)) = .815 - .5 = .315

Calculations of **information gain** for Tree 1, age(2) node

• $I(P,N) = -(1/(1+1)Logsub2^*(1/(1+1)-(1/(1+1))logsub2^*(1/(1+1)))$ = -.5(-1)+(-.5)(-1) = 1

Income	Ρ	Ν	l(Psubi,Nsubi)
>40	1	0	0
<=30	0	1	0

• E(Age(2)) = (((1+0)/2) * 0) = 0 + ((0+1)/2) * 0) = 0 = 0

Gain(Age(2)) = 1 - 0 = 1

Calculations of **information gain** for Tree 1, age(3) node

• $I(P,N) = -(1/(1+1)Logsub2^*(1/(1+1)-(1/(1+1))logsub2^*(1/(1+1)))$ = -.5(-1)+(-.5)(-1) = 1

Income	Ρ	Ν	l(Psubi,Nsubi)
>40	0	1	0
<=30	1	0	0

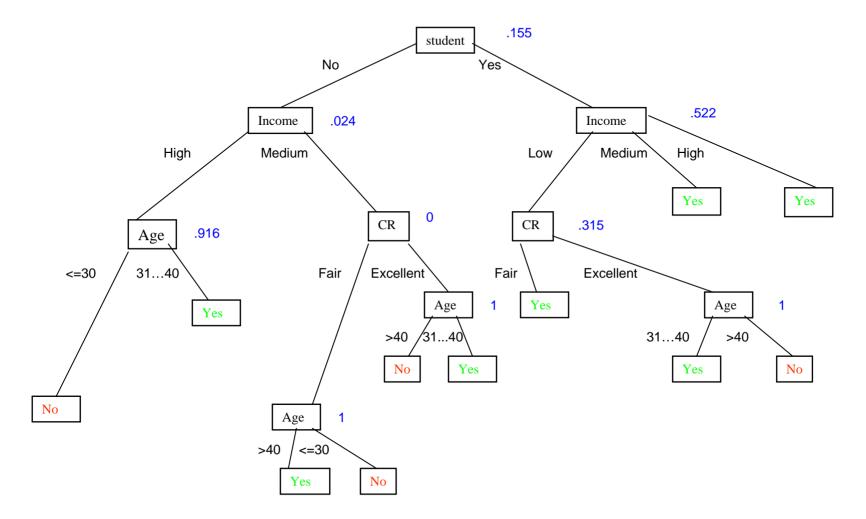
• E(Age(3)) = (((0+1)/2) * 0) = 0 + ((1+0)/2) * 0) = 0 = 0

Gain(Age(3)) = 1 - 0 = 1

Calculations of **information gain** for Tree 1, age(4) node

• $I(P,N) = -(1/(1+1)Logsub2^*(1/(1+1)-(1/(1+1))logsub2^*(1/(1+1)))$ = -.5(-1)+(-.5)(-1) = 1

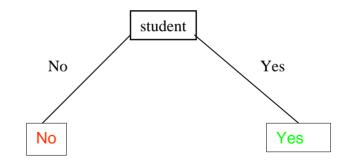
age	Ρ	Ν	l(Psubi,Nsubi)
3140	1	0	0
>40	0	1	0


• E(Age(4)) = (((1+0)/2) * 0) = 0 + ((0+1)/2) * 0) = 0 = 0

Gain(Age(4)) = 1 - 0 = 1

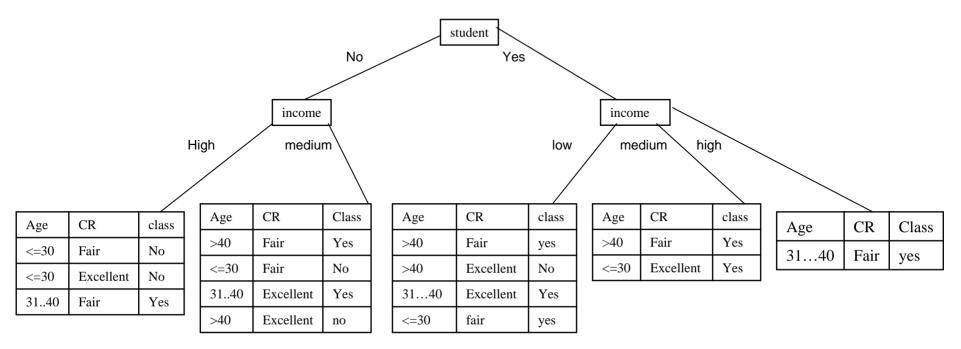
Information gain measure

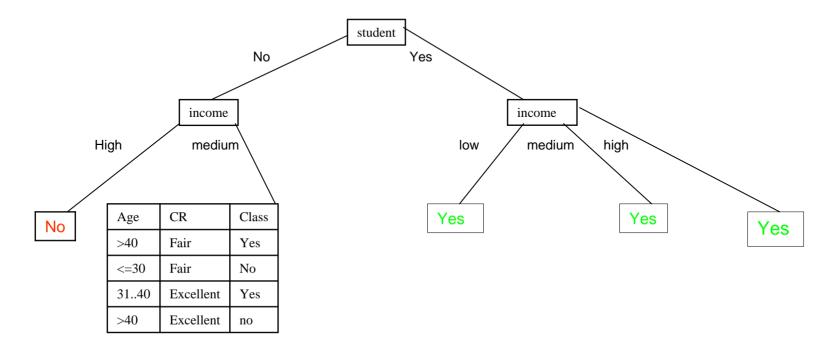
Gain(student) = .155Gain(income(L)) = .024Gain(income(R)) = .522Gain(age(1)) = .916Gain(CR(L)) = 0Gain(CR(R)) = .315Gain(age(2)) = 1Gain(age(3)) = 1Gain(age(4)) = 1


Information Gain for each node

Tree 3: root student plus majority voting at any node

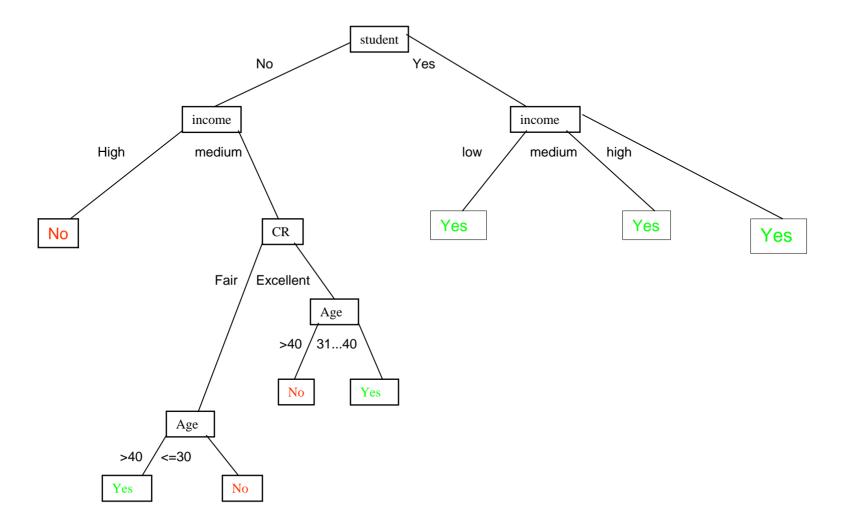
				student				
			Ν	lo	Yes			
				1		}		
Age	income	CR	Class		Age	income	CR	Class
<=30	High	Fair	No		>40	Low	Fair	Yes
<=30	High	Excellent	No		>40	Low	excellent	No
3040	High	Fair	Yes		3140	Low	Excellent	Yes
>40	Medium	Fair	Yes		<=30	Low	Fair	Yes
<=30	Medium	Fair	No		>40	Medium	Fair	Yes
3140	Medium	Excellent	Yes		<=30	Medium	Excellent	Yes
>40	Medium	Excellent	no		3140	high	fair	yes


Tree 3: Student root plus majority voting


Tree 3 (majority voting) rules and their accuracy (Predicate form for testing)

- RULES:
- Student(x,no) => buys_computer(x,no)
- Student(x,yes) => buys_ computer(x,yes)
- Since 10 out of 14 records match the rules
- **Rules accuracy:** 10/14 = 0.714 = 71.4%
- Error Rate: 4/14= 0.28.6 = 28.6%

Tree 4: root student with majority voting on branch income-high Heuristics: use majority voting at any chosen NODE of the tree


Tree 4: root student with majority voting

Tree 4: root student with majority voting

Tree 4: root student with majority voting

Tree 4: Classifcation rules and their accuracy

(Predicate form for testing)

- Student(x,no)^income(x,high) => buys_computer(x,no)
- Student(x,no)^income(x,medium)^CR(x,fair)^age(x,>40) => buys_computer(x,yes)
- Student(x,no)^income(x,medium)^CR(x,fair)^age(x,<=30) => buys_computer(x,no)
- Student(x,no)^income(x,medium)^CR(x,excellent)^age(x,>40) => buys_computer(x,no)
- Student(x,no)^income(x,medium)^CR(x,fair)^age(x,31...40) => buys_computer(x,yes)
- Student(x,yes)^income(x,low) => buys_computer(x,yes)
- Student(x,yes)^income(x,medium) => buys_computer(x,yes)
- Student(x,yes)^income(x,high) => buys_computer(x,yes)
- Since 11 out of 14 records match the rules the accuracy of the rules = 11/14 = 0.786 = 78.6%

Training data plus (red) test data

REC	Age	Income	Student	Credit_rating	Buys_computer
r1	<=30	High	No	Fair	No
r2	<=30	High	No	Excellent	No
r3	3140	High	No	Fair	Yes
r4	>40	Medium	No	Fair	Yes
r5	>40	Low	Yes	Fair	Yes
r6	>40	Low	Yes	Excellent	No
r7	3140	Low	Yes	Excellent	Yes
r8	<=30	Medium	No	Fair	No
r9	<=30	Low	Yes	Fair	Yes
r10	>40	Medium	Yes	Fair	Yes
r11	<-=30	Medium	Yes	Excellent	Yes
r12	3140	Medium	No	Excellent	Yes
r13	3140	High	Yes	Fair	Yes
r14	>40	Medium	No	Excellent	No
r15	<=30	Medium	No	Excellent	No
r16	<=30	Low	No	Fair	No
r17	<=30	Low	No	Excellent	No
r18	3140	Low	Yes	Fair	Yes
r19	>40	Medium	Yes	Excellent	Yes
r20	3140	High	No	Excellent	Yes

Tree1 classifcation rules

(Predicate form for testing)

- 1. student(x,no)^income(x,high)^agex,<=30) => buys_computer(x,no)
- 2. student(x,no)^income(x,high)^age(x,31...40) => buys_computer(x,yes)
- 3. student(x,no)^income(x,medium)^CR(x,fair)^age(x,>40) => buys_computer(x,yes)
- 4. student(x,no)^income(x,medium)^CR(x,fair)^agex,(<=30) => buys_computer(x,no)
- 5. student(x,no)^income(x,medium)^CR(x,excellent)^age(x,>40) => buys_computer(x,no)
- 6. student(x,no)^income(x,medium)^CR(x,excellent)^age(x,31..40) => buys_computer(x,yes)
- 7. student(x,yes)^income(x,low)^CR(x,fair) => buys_computer(x,yes)
- 8. student(x,yes)^income(x,low)^CR(x,excellent)^age(x,31..40) => buys_computer(x,yes)
- 9. student(x,yes)^income(x,low)^CR(x,excellent)^age(x,>40) => buys_computer(x,no)
- 10. student(x,yes)^income(x,medium)=> buys_computer(x,yes)
- 11. student(x,yes)^income(x,high)=> buys_computer(x,yes)

Book classification rules

- Age(x,<=30)^student(x,no)=> buys_computer(x,no)
- Age(x,<=30)^student(x,yes)=> buys_computer(x,yes)
- Age(x,31...40)=> buys_computer(x,yes)
- Age(x,>40)^credit_rating(x,excellent)=> buys_computer(x,no)
- Age(x,<=30)^credit_rating(x,fair)=> buys_computer(x,yes)

Book Rules accuracy

 For book rules 14 of 14 records from the training data match, so the accuracy of the rules is 14/14= 100% accurate

Tree 2 Classifcation rules

(Predicate form for testing)

- 1. income(x,high)^age(x,<=30) => buys_computer(x,no)
- 2. income(x,high)^age(x,31...40) => buys_computer(x,yes)
- 3. income(x,medium)^student(x,no)^age(x,b<=30) => buys_computer(x,no)
- 4. income(x,medium)^student(x,no)^age(x,31...40) => buys_computer(x,yes)
- 5. income(x,medium)^student(x,no)^age(x,>40)^CR(x,fair) => buys_computer(x,yes)
- 6. income(x,medium)^student(x,no)^age(x,>40)^CR(x,excellent) => buys_computer(x,no)
- 7. income(x,medium)^student(x,yes)=> buys_computer(x,yes)
- 8. income(x,medium)^CR(x,fair)=> buys_computer(x,yes)
- 9. income(x,medium)^ CR(x,excellent)^age(x,>40)=> buys_computer(x,no)
- 10. income(x,medium)^ CR(x,excellent)^age(x,31...40)=> buys_computer(x,yes)

Predictive accuracy for (red) test data

 For the book rules: 5 of 6 records from the red test data match, so the predictive accuracy of the book rules is 5/6= 83.33%

 For the tree 2 rules: 2 out of 6 records from the test data match, so the predictive accuracy of the rules 2 is 2/6 = 33.33%

Tree 3 (majority voting) rules and their accuracy

- RULES:
- Student(x,no) => buys_computer(x,no)
- Student(x,yes) => buys_ computer(x,yes)
- **Rules accuracy:** 10/14 = 0.714 = 71.4%
- **Predictive accuracy** (with respect to red test data):
- 5/6= <mark>83.33%</mark>
- Observe that the 100% accurate book rules had also predictive accuracy 83.33%