Data Mining: Concepts and Techniques

— Chapter 7 —

Jiawei Han Department of Computer Science University of Illinois at Urbana-Champaign www.cs.uiuc.edu/~hanj

©2006 Jiawei Han and Micheline Kamber, All rights reserved

January 20, 2018

Data Mining: Concepts and Techniques

Chapter 7. Cluster Analysis

1. What is Cluster Analysis?

- 2. Types of Data in Cluster Analysis
- 3. A Categorization of Major Clustering Methods
- 4. Partitioning Methods
- 5. Hierarchical Methods
- 6. Density-Based Methods
- 7. Grid-Based Methods
- 8. Model-Based Methods
- 9. Clustering High-Dimensional Data
- 10. Constraint-Based Clustering
- 11. Outlier Analysis

12. Summary

What is Cluster Analysis?

- Cluster: a collection of data objects
 - Similar to one another within the same cluster
 - Dissimilar to the objects in other clusters
- Cluster analysis
 - Finding similarities between data according to the characteristics found in the data and grouping similar data objects into clusters
- Unsupervised learning: no predefined classes
- Typical applications
 - As a stand-alone tool to get insight into data distribution
 - As a preprocessing step for other algorithms

Clustering: Rich Applications and Multidisciplinary Efforts

- Pattern Recognition
- Spatial Data Analysis
 - Create thematic maps in GIS by clustering feature spaces
 - Detect spatial clusters or for other spatial mining tasks
- Image Processing
- Economic Science (especially market research)
- WWW
 - Document classification
 - Cluster Weblog data to discover groups of similar access patterns

Examples of Clustering Applications

- <u>Marketing</u>: Help marketers discover distinct groups in their customer bases, and then use this knowledge to develop targeted marketing programs
- Land use: Identification of areas of similar land use in an earth observation database
- <u>Insurance</u>: Identifying groups of motor insurance policy holders with a high average claim cost
- <u>City-planning</u>: Identifying groups of houses according to their house type, value, and geographical location
- <u>Earth-quake studies</u>: Observed earth quake epicenters should be clustered along continent faults

January 20, 2018

Data Mining: Concepts and Techniques

Quality: What Is Good Clustering?

- A <u>good clustering</u> method will produce high quality clusters with
 - high <u>intra-class</u> similarity
 - Iow <u>inter-class</u> similarity
- The <u>quality</u> of a clustering result depends on both the similarity measure used by the method and its implementation
- The <u>quality</u> of a clustering method is also measured by its ability to discover some or all of the <u>hidden</u> patterns

Measure the Quality of Clustering

- Dissimilarity/Similarity metric: Similarity is expressed in terms of a distance function, typically metric: d(i, j)
- There is a separate "quality" function that measures the "goodness" of a cluster.
- The definitions of distance functions are usually very different for interval-scaled, boolean, categorical, ordinal ratio, and vector variables.
- Weights should be associated with different variables based on applications and data semantics.
- It is hard to define "similar enough" or "good enough"
 - the answer is typically highly subjective.

Requirements of Clustering in Data Mining

- Scalability
- Ability to deal with different types of attributes
- Ability to handle dynamic data
- Discovery of clusters with arbitrary shape
- Minimal requirements for domain knowledge to determine input parameters
- Able to deal with noise and outliers
- Insensitive to order of input records
- High dimensionality
- Incorporation of user-specified constraints
- Interpretability and usability

Chapter 7. Cluster Analysis

1. What is Cluster Analysis?

- 2. Types of Data in Cluster Analysis
- 3. A Categorization of Major Clustering Methods
- 4. Partitioning Methods
- 5. Hierarchical Methods
- 6. Density-Based Methods
- 7. Grid-Based Methods
- 8. Model-Based Methods
- 9. Clustering High-Dimensional Data
- 10. Constraint-Based Clustering
- 11. Outlier Analysis

12. Summary

Data Structures

Data matrix(two modes)

$$\begin{bmatrix} x_{11} & \cdots & x_{1f} & \cdots & x_{1p} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ x_{i1} & \cdots & x_{if} & \cdots & x_{ip} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ x_{n1} & \cdots & x_{nf} & \cdots & x_{np} \end{bmatrix}$$

Dissimilarity matrix(one mode)

$$\begin{bmatrix} 0 & & & \\ d(2,1) & 0 & & \\ d(3,1) & d(3,2) & 0 & \\ \vdots & \vdots & \vdots & \\ d(n,1) & d(n,2) & \dots & 0 \end{bmatrix}$$

Type of data in clustering analysis

- Interval-scaled variables
- Binary variables
- Nominal, ordinal, and ratio variables
- Variables of mixed types

Interval-valued variables

- Standardize data
 - Calculate the mean absolute deviation: $s_f = \frac{1}{n}(|x_{1f} - m_f| + |x_{2f} - m_f| + ... + |x_{nf} - m_f|)$

where
$$m_f = \frac{1}{n}(x_{1f} + x_{2f} + ... + x_{nf})$$

Calculate the standardized measurement (*z-score*)

$$z_{if} = \frac{x_{if} - m_f}{s_f}$$

Using mean absolute deviation is more robust than using standard deviation

Similarity and Dissimilarity Between Objects

- <u>Distances</u> are normally used to measure the <u>similarity</u> or <u>dissimilarity</u> between two data objects
- Some popular ones include: *Minkowski distance*:

 $d(i,j) = \sqrt[q]{(|x_{i_1} - x_{j_1}|^q + |x_{i_2} - x_{j_2}|^q + ... + |x_{i_p} - x_{j_p}|^q)}$ where $i = (x_{i_1}, x_{i_2}, ..., x_{i_p})$ and $j = (x_{j_1}, x_{j_2}, ..., x_{j_p})$ are two *p*-dimensional data objects, and *q* is a positive integer

• If q = 1, d is Manhattan distance

$$d(i,j) = |x_{i_1} - x_{j_1}| + |x_{i_2} - x_{j_2}| + \dots + |x_{i_p} - x_{j_p}|$$

Similarity and Dissimilarity Between Objects (Cont.)

• If q = 2, d is Euclidean distance:

$$d(i,j) = \sqrt{(|x_{i_1} - x_{j_1}|^2 + |x_{i_2} - x_{j_2}|^2 + \dots + |x_{i_p} - x_{j_p}|^2)}$$

- Properties
 - *d(i,j)* ≥ 0

$$\bullet d(i,i) = 0$$

$$\bullet d(i,j) = d(j,i)$$

- $d(i,j) \le d(i,k) + d(k,j)$
- Also, one can use weighted distance, parametric Pearson product moment correlation, or other disimilarity measures

Binary Variables

 A contingency table for binary data

- Distance measure for symmetric binary variables:
- Distance measure for asymmetric binary variables:
- Jaccard coefficient (*similarity* measure for *asymmetric* binary variables):

bject i
bject i

$$a = a = b = a + b$$

 $a = c = b + d = b$
 $d(i, j) = \frac{b + c}{a + b + c + d}$

Object *j*

1

()

1

SUM

. . 1

$$d(i,j) = \frac{b+c}{a+b+c}$$

$$sim_{Jaccard}(i,j) = \frac{a}{a+b+c}$$

Dissimilarity between Binary Variables

• Example

Name	Gender	Fever	Cough	Test-1	Test-2	Test-3	Test-4
Jack	M	Y	N	Р	N	N	N
Mary	F	Y	Ν	P	N	Р	Ν
Jim	M	Y	Р	N	N	N	N

- gender is a symmetric attribute
- the remaining attributes are asymmetric binary
- Iet the values Y and P be set to 1, and the value N be set to 0

$$d(jack, mary) = \frac{0+1}{2+0+1} = 0.33$$
$$d(jack, jim) = \frac{1+1}{1+1+1} = 0.67$$
$$d(jim, mary) = \frac{1+2}{1+1+2} = 0.75$$

January 20, 2018

Data Mining: Concepts and Techniques

- A generalization of the binary variable in that it can take more than 2 states, e.g., red, yellow, blue, green
- Method 1: Simple matching
 - *m*: # of matches, *p*: total # of variables

$$d(i,j) = \frac{p-m}{p}$$

- Method 2: use a large number of binary variables
 - creating a new binary variable for each of the M nominal states

Ordinal Variables

- An ordinal variable can be discrete or continuous
- Order is important, e.g., rank
- Can be treated like interval-scaled
 - replace x_{if} by their rank

$$r_{if} \in \{1, \dots, M_f\}$$

 map the range of each variable onto [0, 1] by replacing *i*-th object in the *f*-th variable by

$$z_{if} = \frac{r_{if} - 1}{M_f - 1}$$

 compute the dissimilarity using methods for intervalscaled variables

Ratio-Scaled Variables

- <u>Ratio-scaled variable</u>: a positive measurement on a nonlinear scale, approximately at exponential scale, such as Ae^{Bt} or Ae^{-Bt}
- Methods:
 - treat them like interval-scaled variables—not a good choice! (why?—the scale can be distorted)
 - apply logarithmic transformation

$$y_{if} = log(x_{if})$$

 treat them as continuous ordinal data treat their rank as interval-scaled

Variables of Mixed Types

- A database may contain all the six types of variables
 - symmetric binary, asymmetric binary, nominal, ordinal, interval and ratio
- One may use a weighted formula to combine their effects $d(i,j) = \frac{\sum_{f=1}^{p} \delta_{ij}^{(f)} d_{ij}^{(f)}}{\sum_{f=1}^{p} \delta_{ij}^{(f)}}$

• *f* is binary or nominal:

 $d_{ii}^{(f)} = 0$ if $x_{if} = x_{if}$, or $d_{ii}^{(f)} = 1$ otherwise

- f is interval-based: use the normalized distance
- f is ordinal or ratio-scaled
 - compute ranks r_{if} and
 - and treat z_{if} as interval-scaled

$$Z_{if} = \frac{V_{if} - 1}{M_f - 1}$$

Vector Objects

- Vector objects: keywords in documents, gene features in micro-arrays, etc.
- Broad applications: information retrieval, biologic taxonomy, etc.
- Cosine measure $s(\vec{X}, \vec{Y}) = \frac{\vec{X}^t \cdot \vec{Y}}{|\vec{X}||\vec{Y}|},$

 $\vec{X^t}$ is a transposition of vector \vec{X} , $|\vec{X}|$ is the Euclidean normal of vector \vec{X} ,

• A variant: Tanimoto coefficient $s(\vec{X}, \vec{Y}) = \frac{\vec{X}^t \cdot \vec{Y}}{\vec{X}^t \cdot \vec{X} + \vec{Y}^t \cdot \vec{Y} - \vec{X}^t \cdot \vec{Y}},$

Chapter 7. Cluster Analysis

- 1. What is Cluster Analysis?
- 2. Types of Data in Cluster Analysis
- 3. A Categorization of Major Clustering Methods
- 4. Partitioning Methods
- 5. Hierarchical Methods
- 6. Density-Based Methods
- 7. Grid-Based Methods
- 8. Model-Based Methods
- 9. Clustering High-Dimensional Data
- 10. Constraint-Based Clustering
- 11. Outlier Analysis

12. Summary

Major Clustering Approaches (I)

- Partitioning approach:
 - Construct various partitions and then evaluate them by some criterion,
 e.g., minimizing the sum of square errors
 - Typical methods: k-means, k-medoids, CLARANS
- Hierarchical approach:
 - Create a hierarchical decomposition of the set of data (or objects) using some criterion
 - Typical methods: Diana, Agnes, BIRCH, ROCK, CAMELEON
- Density-based approach:
 - Based on connectivity and density functions
 - Typical methods: DBSACN, OPTICS, DenClue

Major Clustering Approaches (II)

- <u>Grid-based approach</u>:
 - based on a multiple-level granularity structure
 - Typical methods: STING, WaveCluster, CLIQUE
- Model-based:
 - A model is hypothesized for each of the clusters and tries to find the best fit of that model to each other
 - Typical methods: EM, SOM, COBWEB
- Frequent pattern-based:
 - Based on the analysis of frequent patterns
 - Typical methods: pCluster
- User-guided or constraint-based:
 - Clustering by considering user-specified or application-specific constraints
- Typical methods: COD (obstacles), constrained clustering
 Data Mining: Concepts and Techniques

24

Typical Alternatives to Calculate the Distance between Clusters

- Single link: smallest distance between an element in one cluster and an element in the other, i.e., dis(K_i, K_j) = min(t_{ip}, t_{jq})
- Complete link: largest distance between an element in one cluster and an element in the other, i.e., dis(K_i, K_j) = max(t_{ip}, t_{jq})
- Average: avg distance between an element in one cluster and an element in the other, i.e., dis(K_i, K_j) = avg(t_{ip}, t_{jq})
- Centroid: distance between the centroids of two clusters, i.e., dis(K_i, K_j) = dis(C_i, C_j)
- Medoid: distance between the medoids of two clusters, i.e., dis(K_i, K_j) = dis(M_i, M_j)
 - Medoid: one chosen, centrally located object in the cluster

January 20, 2018

Data Mining: Concepts and Techniques

Centroid, Radius and Diameter of a Cluster (for numerical data sets)

Centroid: the "middle" of a cluster

$$C_m = \frac{\sum_{i=1}^N (t_{ip})}{N}$$

Radius: square root of average distance from any point of the cluster to its centroid

$$R_m = \sqrt{\frac{\sum_{i=1}^{N} (t_{ip} - c_m)^2}{N}}$$

 Diameter: square root of average mean squared distance between all pairs of points in the cluster

$$D_m = \sqrt{\frac{\sum_{i=1}^{N} \sum_{i=1}^{N} (t_{ip} - t_{iq})^2}{N(N-1)}}$$

Chapter 7. Cluster Analysis

- 1. What is Cluster Analysis?
- 2. Types of Data in Cluster Analysis
- 3. A Categorization of Major Clustering Methods
- 4. Partitioning Methods
- 5. Hierarchical Methods
- 6. Density-Based Methods
- 7. Grid-Based Methods
- 8. Model-Based Methods
- 9. Clustering High-Dimensional Data
- 10. Constraint-Based Clustering
- 11. Outlier Analysis

12. Summary

Partitioning Algorithms: Basic Concept

 <u>Partitioning method</u>: Construct a partition of a database *D* of *n* objects into a set of *k* clusters, s.t., min sum of squared distance

$$\sum_{m=1}^{k} \sum_{t_{mi} \in Km} (C_m - t_{mi})^2$$

- Given a k, find a partition of k clusters that optimizes the chosen partitioning criterion
 - Global optimal: exhaustively enumerate all partitions
 - Heuristic methods: *k-means* and *k-medoids* algorithms
 - <u>k-means</u> (MacQueen' 67): Each cluster is represented by the center of the cluster
 - <u>k-medoids</u> or PAM (Partition around medoids) (Kaufman & Rousseeuw' 87): Each cluster is represented by one of the objects in the cluster

The K-Means Clustering Method

- Given k, the k-means algorithm is implemented in four steps:
 - Partition objects into k nonempty subsets
 - Compute seed points as the centroids of the clusters of the current partition (the centroid is the center, i.e., *mean point*, of the cluster)
 - Assign each object to the cluster with the nearest seed point
 - Go back to Step 2, stop when no more new assignment

The K-Means Clustering Method

Example

Comments on the *K-Means* Method

Strength: Relatively efficient: O(tkn), where n is # objects, k is # clusters, and t is # iterations. Normally, k, t << n.</p>

Comparing: PAM: O(k(n-k)²), CLARA: O(ks² + k(n-k))

- <u>Comment</u>: Often terminates at a *local optimum*. The *global optimum* may be found using techniques such as: *deterministic annealing* and *genetic algorithms*
- Weakness
 - Applicable only when *mean* is defined, then what about categorical data?
 - Need to specify *k*, the *number* of clusters, in advance
 - Unable to handle noisy data and *outliers*
 - Not suitable to discover clusters with *non-convex shapes*

January 20, 2018

Data Mining: Concepts and Techniques

Variations of the K-Means Method

- A few variants of the *k-means* which differ in
 - Selection of the initial k means
 - Dissimilarity calculations
 - Strategies to calculate cluster means
- Handling categorical data: *k-modes* (Huang' 98)
 - Replacing means of clusters with <u>modes</u>
 - Using new dissimilarity measures to deal with categorical objects
 - Using a <u>frequency</u>-based method to update modes of clusters
 - A mixture of categorical and numerical data: *k-prototype* method

What Is the Problem of the K-Means Method?

- The k-means algorithm is sensitive to outliers !
 - Since an object with an extremely large value may substantially distort the distribution of the data.
- K-Medoids: Instead of taking the mean value of the object in a cluster as a reference point, medoids can be used, which is the most centrally located object in a cluster.

The K-Medoids Clustering Method

- Find *representative* objects, called <u>medoids</u>, in clusters
- *PAM* (Partitioning Around Medoids, 1987)
 - starts from an initial set of medoids and iteratively replaces one of the medoids by one of the non-medoids if it improves the total distance of the resulting clustering
 - PAM works effectively for small data sets, but does not scale well for large data sets
- CLARA (Kaufmann & Rousseeuw, 1990)
- *CLARANS* (Ng & Han, 1994): Randomized sampling
- Focusing + spatial data structure (Ester et al., 1995)

A Typical K-Medoids Algorithm (PAM)

Total Cost = 20

PAM (Partitioning Around Medoids) (1987)

- PAM (Kaufman and Rousseeuw, 1987), built in Splus
- Use real object to represent the cluster
 - Select k representative objects arbitrarily
 - For each pair of non-selected object *h* and selected object *i*, calculate the total swapping cost *TC_{ih}*
 - For each pair of *i* and *h*,
 - If *TC_{ih}* < 0, *i* is replaced by *h*
 - Then assign each non-selected object to the most similar representative object
 - repeat steps 2-3 until there is no change
PAM Clustering: Total swapping cost $TC_{ih} = \sum_{j} C_{jih}$

January 20, 20 $G_{jih} = d(j, t) - d(j, i)$ Data Mining: Concepts angite chaid d(j, h) - d(j, t)

What Is the Problem with PAM?

- Pam is more robust than k-means in the presence of noise and outliers because a medoid is less influenced by outliers or other extreme values than a mean
- Pam works efficiently for small data sets but does not scale well for large data sets.
 - O(k(n-k)²) for each iteration

where n is # of data,k is # of clusters

→ Sampling based method,

CLARA(Clustering LARge Applications)

CLARA (Clustering Large Applications) (1990)

- CLARA (Kaufmann and Rousseeuw in 1990)
 - Built in statistical analysis packages, such as S+
- It draws *multiple samples* of the data set, applies *PAM* on each sample, and gives the best clustering as the output
- <u>Strength</u>: deals with larger data sets than *PAM*
- Weakness:
 - Efficiency depends on the sample size
 - A good clustering based on samples will not necessarily represent a good clustering of the whole data set if the sample is biased

January 20, 2018

CLARANS ("Randomized" CLARA) (1994)

- CLARANS (A Clustering Algorithm based on Randomized Search) (Ng and Han' 94)
- CLARANS draws sample of neighbors dynamically
- The clustering process can be presented as searching a graph where every node is a potential solution, that is, a set of k medoids
- If the local optimum is found, CLARANS starts with new randomly selected node in search for a new local optimum
- It is more efficient and scalable than both *PAM* and *CLARA*
- Focusing techniques and spatial access structures may further improve its performance (Ester et al.' 95)

Chapter 7. Cluster Analysis

- 1. What is Cluster Analysis?
- 2. Types of Data in Cluster Analysis
- 3. A Categorization of Major Clustering Methods
- 4. Partitioning Methods
- 5. Hierarchical Methods
- 6. Density-Based Methods
- 7. Grid-Based Methods
- 8. Model-Based Methods
- 9. Clustering High-Dimensional Data
- 10. Constraint-Based Clustering
- 11. Outlier Analysis

12. Summary

Hierarchical Clustering

 Use distance matrix as clustering criteria. This method does not require the number of clusters *k* as an input, but needs a termination condition

AGNES (Agglomerative Nesting)

- Introduced in Kaufmann and Rousseeuw (1990)
- Implemented in statistical analysis packages, e.g., Splus
- Use the Single-Link method and the dissimilarity matrix.
- Merge nodes that have the least dissimilarity
- Go on in a non-descending fashion
- Eventually all nodes belong to the same cluster

Dendrogram: Shows How the Clusters are Merged

DIANA (Divisive Analysis)

- Introduced in Kaufmann and Rousseeuw (1990)
- Implemented in statistical analysis packages, e.g., Splus
- Inverse order of AGNES
- Eventually each node forms a cluster on its own

January 20, 2018

Recent Hierarchical Clustering Methods

Major weakness of agglomerative clustering methods

- <u>do not scale</u> well: time complexity of at least O(n²), where n is the number of total objects
- can never undo what was done previously
- Integration of hierarchical with distance-based clustering
 - <u>BIRCH (1996)</u>: uses CF-tree and incrementally adjusts the quality of sub-clusters
 - <u>ROCK (1999</u>): clustering categorical data by neighbor and link analysis
 - <u>CHAMELEON (1999)</u>: hierarchical clustering using dynamic modeling

BIRCH (1996)

- Birch: Balanced Iterative Reducing and Clustering using Hierarchies (Zhang, Ramakrishnan & Livny, SIGMOD'96)
- Incrementally construct a CF (Clustering Feature) tree, a hierarchical data structure for multiphase clustering
 - Phase 1: scan DB to build an initial in-memory CF tree (a multi-level compression of the data that tries to preserve the inherent clustering structure of the data)
 - Phase 2: use an arbitrary clustering algorithm to cluster the leaf nodes of the CF-tree
- Scales linearly: finds a good clustering with a single scan and improves the quality with a few additional scans
- Weakness: handles only numeric data, and sensitive to the order of the data record.

January 20, 2018

Clustering Feature Vector in BIRCH

Clustering Feature: $CF = (N, \overrightarrow{LS}, SS)$

N: Number of data points

- Clustering feature:
 - summary of the statistics for a given subcluster: the 0-th, 1st and 2nd moments of the subcluster from the statistical point of view.
 - registers crucial measurements for computing cluster and utilizes storage efficiently
- A CF tree is a height-balanced tree that stores the clustering features for a hierarchical clustering
 - A nonleaf node in a tree has descendants or "children"
 - The nonleaf nodes store sums of the CFs of their children
- A CF tree has two parameters
 - Branching factor: specify the maximum number of children.
 - threshold: max diameter of sub-clusters stored at the leaf nodes

Clustering Categorical Data: The ROCK Algorithm

- ROCK: RObust Clustering using linKs
 - S. Guha, R. Rastogi & K. Shim, ICDE' 99
- Major ideas
 - Use links to measure similarity/proximity
 - Not distance-based
 - Computational complexity: $O(n^2 + nm_m m_a + n^2 \log n)$
- Algorithm: sampling-based clustering
 - Draw random sample
 - Cluster with links
 - Label data in disk
- Experiments
 - Congressional voting, mushroom data

Similarity Measure in ROCK

- Traditional measures for categorical data may not work well, e.g., Jaccard coefficient
- Example: Two groups (clusters) of transactions
 - C₁. <a, b, c, d, e>: {a, b, c}, {a, b, d}, {a, b, e}, {a, c, d}, {a, c, e}, {a, c, d}, {a, c, e}, {a, d, e}, {b, c, d}, {b, c, e}, {b, d, e}, {c, d, e}

- Jaccard co-efficient may lead to wrong clustering result
 - C₁: 0.2 ({a, b, c}, {b, d, e}} to 0.5 ({a, b, c}, {a, b, d})
 - $C_1 \& C_2$: could be as high as 0.5 ({a, b, c}, {a, b, f})
- Jaccard co-efficient-based similarity function:

$$Sim(T_1, T_2) = \frac{|T_1 \cap T_2|}{|T_1 \cup T_2|}$$

Ex. Let
$$T_1 = \{a, b, c\}, T_2 = \{c, d, e\}$$

$$Sim(T_1, T_2) = \frac{|\{c\}|}{|\{a, b, c, d, e\}|} = \frac{1}{5} = 0.2$$

Link Measure in ROCK

- Links: # of common neighbors
 - C₁ <a, b, c, d, e>: <u>{a, b, c}</u>, {a, b, d}, {a, b, e}, {a, c, d}, {a, c, e}, {a, d, e}, {b, c, d}, {b, c, e}, {b, d, e}, <u>{c, d, e}</u>
 - C₂ <a, b, f, g>: <u>{a, b, f}</u>, {a, b, g}, {a, f, g}, {b, f, g}
- Let $T_1 = \{a, b, c\}, T_2 = \{c, d, e\}, T_3 = \{a, b, f\}$
 - $link(T_1, T_2) = 4$, since they have 4 common neighbors
 - {a, c, d}, {a, c, e}, {b, c, d}, {b, c, e}
 - $link(T_{1}, T_{3}) = 3$, since they have 3 common neighbors
 - {a, b, d}, {a, b, e}, {a, b, g}
- Thus link is a better measure than Jaccard coefficient

CHAMELEON: Hierarchical Clustering Using Dynamic Modeling (1999)

- CHAMELEON: by G. Karypis, E.H. Han, and V. Kumar'99
- Measures the similarity based on a dynamic model
 - Two clusters are merged only if the *interconnectivity* and *closeness* (*proximity*) between two clusters are high *relative to* the internal interconnectivity of the clusters and closeness of items within the clusters
 - Cure ignores information about interconnectivity of the objects,
 Rock ignores information about the closeness of two clusters
- A two-phase algorithm
 - 1. Use a graph partitioning algorithm: cluster objects into a large number of relatively small sub-clusters
 - 2. Use an agglomerative hierarchical clustering algorithm: find the genuine clusters by repeatedly combining these sub-clusters

Overall Framework of CHAMELEON

CHAMELEON (Clustering Complex Objects)

Chapter 7. Cluster Analysis

- 1. What is Cluster Analysis?
- 2. Types of Data in Cluster Analysis
- 3. A Categorization of Major Clustering Methods
- 4. Partitioning Methods
- 5. Hierarchical Methods
- 6. Density-Based Methods
- 7. Grid-Based Methods
- 8. Model-Based Methods
- 9. Clustering High-Dimensional Data
- 10. Constraint-Based Clustering
- 11. Outlier Analysis

12. Summary

Density-Based Clustering Methods

- Clustering based on density (local cluster criterion), such as density-connected points
- Major features:
 - Discover clusters of arbitrary shape
 - Handle noise
 - One scan
 - Need density parameters as termination condition
- Several interesting studies:
 - DBSCAN: Ester, et al. (KDD'96)
 - <u>OPTICS</u>: Ankerst, et al (SIGMOD'99).
 - DENCLUE: Hinneburg & D. Keim (KDD'98)
 - <u>CLIQUE</u>: Agrawal, et al. (SIGMOD'98) (more gridbased)

Density-Based Clustering: Basic Concepts

- Two parameters:
 - *Eps*: Maximum radius of the neighbourhood
 - MinPts: Minimum number of points in an Epsneighbourhood of that point
- $N_{Eps}(p)$: {q belongs to D | dist(p,q) <= Eps}
- Directly density-reachable: A point p is directly densityreachable from a point q w.r.t. Eps, MinPts if
 - p belongs to $N_{Eps}(q)$
 - core point condition:

$$|N_{Eps}(q)| >= MinPts$$

MinPts = 5

$$Eps = 1 cm$$

Density-Reachable and Density-Connected

Density-reachable:

A point *p* is density-reachable from a point *q* w.r.t. *Eps, MinPts* if there is a chain of points *p*₁, ..., *p*_n, *p*₁ = *q*, *p*_n = *p* such that *p*_{i+1} is directly density-reachable from *p*_i

- Density-connected
 - A point *p* is density-connected to a point *q* w.r.t. *Eps, MinPts* if there is a point *o* such that both, *p* and *q* are density-reachable from *o* w.r.t. *Eps* and *MinPts*

DBSCAN: Density Based Spatial Clustering of Applications with Noise

- Relies on a *density-based* notion of cluster: A *cluster* is defined as a maximal set of density-connected points
- Discovers clusters of arbitrary shape in spatial databases with noise

DBSCAN: The Algorithm

- Arbitrary select a point p
- Retrieve all points density-reachable from *p* w.r.t. *Eps* and *MinPts*.
- If p is a core point, a cluster is formed.
- If p is a border point, no points are density-reachable from p and DBSCAN visits the next point of the database.
- Continue the process until all of the points have been processed.

DBSCAN: Sensitive to Parameters

Figure 8. DBScan results for DS1 with MinPts at 4 and Eps at (a) 0.5 and (b) 0.4.

Figure 9. DBScan results for DS2 with MinPts at 4 and Eps at (a) 5.0, (b) 3.5, and (c) 3.0.

January 20, 2018

CHAMELEON (Clustering Complex Objects)

OPTICS: A Cluster-Ordering Method (1999)

- OPTICS: Ordering Points To Identify the Clustering Structure
 - Ankerst, Breunig, Kriegel, and Sander (SIGMOD'99)
 - Produces a special order of the database wrt its density-based clustering structure
 - This cluster-ordering contains info equiv to the densitybased clusterings corresponding to a broad range of parameter settings
 - Good for both automatic and interactive cluster analysis, including finding intrinsic clustering structure
 - Can be represented graphically or using visualization techniques

OPTICS: Some Extension from DBSCAN

Cluster-order of the objects

Density-Based Clustering: OPTICS & Its Applications

DENCLUE: Using Statistical Density **Functions**

- DENsity-based CLUstEring by Hinneburg & Keim (KDD'98) $f_{Gaussian}(x, y) = e^{-\frac{d(x, y)^2}{2\sigma^2}}$
- Using statistical density functions:

$$f_{Gaussian}^{D}(x) = \sum_{i=1}^{N} e^{-\frac{d(x,x_{i})^{2}}{2\sigma^{2}}}$$

$$\nabla f_{Gaussian}^{D}(x,x_{i}) = \sum_{i=1}^{N} (x_{i}-x) \cdot e^{-\frac{a(x,x_{i})}{2\sigma^{2}}}$$

- Major features
 - Solid mathematical foundation
 - Good for data sets with large amounts of noise
 - Allows a compact mathematical description of arbitrarily shaped clusters in high-dimensional data sets
 - Significant faster than existing algorithm (e.g., DBSCAN)
 - But needs a large number of parameters

January 20, 2018

Denclue: Technical Essence

- Uses grid cells but only keeps information about grid cells that do actually contain data points and manages these cells in a tree-based access structure
- Influence function: describes the impact of a data point within its neighborhood
- Overall density of the data space can be calculated as the sum of the influence function of all data points
- Clusters can be determined mathematically by identifying density attractors
- Density attractors are local maximal of the overall density function

Density Attractor

(a) Data Set

Center-Defined and Arbitrary

Chapter 7. Cluster Analysis

- 1. What is Cluster Analysis?
- 2. Types of Data in Cluster Analysis
- 3. A Categorization of Major Clustering Methods
- 4. Partitioning Methods
- 5. Hierarchical Methods
- 6. Density-Based Methods
- 7. Grid-Based Methods
- 8. Model-Based Methods
- 9. Clustering High-Dimensional Data
- 10. Constraint-Based Clustering
- 11. Outlier Analysis

12. Summary

Grid-Based Clustering Method

- Using multi-resolution grid data structure
- Several interesting methods
 - STING (a STatistical INformation Grid approach) by Wang, Yang and Muntz (1997)
 - WaveCluster by Sheikholeslami, Chatterjee, and Zhang (VLDB' 98)
 - A multi-resolution clustering approach using wavelet method
 - CLIQUE: Agrawal, et al. (SIGMOD'98)
 - On high-dimensional data (thus put in the section of clustering high-dimensional data

STING: A Statistical Information Grid Approach

- Wang, Yang and Muntz (VLDB' 97)
- The spatial area area is divided into rectangular cells
- There are several levels of cells corresponding to different levels of resolution

The STING Clustering Method

- Each cell at a high level is partitioned into a number of smaller cells in the next lower level
- Statistical info of each cell is calculated and stored beforehand and is used to answer queries
- Parameters of higher level cells can be easily calculated from parameters of lower level cell
 - count, mean, s, min, max
 - type of distribution—normal, uniform, etc.
- Use a top-down approach to answer spatial data queries
- Start from a pre-selected layer—typically with a small number of cells
- For each cell in the current level compute the confidence interval

Comments on STING

- Remove the irrelevant cells from further consideration
- When finish examining the current layer, proceed to the next lower level
- Repeat this process until the bottom layer is reached
- Advantages:
 - Query-independent, easy to parallelize, incremental update
 - O(K), where K is the number of grid cells at the lowest level
- Disadvantages:
 - All the cluster boundaries are either horizontal or vertical, and no diagonal boundary is detected

WaveCluster: Clustering by Wavelet Analysis (1998)

- Sheikholeslami, Chatterjee, and Zhang (VLDB' 98)
- A multi-resolution clustering approach which applies wavelet transform to the feature space
- How to apply wavelet transform to find clusters
 - Summarizes the data by imposing a multidimensional grid structure onto data space
 - These multidimensional spatial data objects are represented in a n-dimensional feature space
 - Apply wavelet transform on feature space to find the dense regions in the feature space
 - Apply wavelet transform multiple times which result in clusters at different scales from fine to coarse

January 20, 2018

Data Mining: Concepts and Techniques

Wavelet Transform

- Wavelet transform: A signal processing technique that decomposes a signal into different frequency sub-band (can be applied to n-dimensional signals)
- Data are transformed to preserve relative distance between objects at different levels of resolution
- Allows natural clusters to become more distinguishable

79

The WaveCluster Algorithm

- Input parameters
 - # of grid cells for each dimension
 - the wavelet, and the # of applications of wavelet transform
- Why is wavelet transformation useful for clustering?
 - Use hat-shape filters to emphasize region where points cluster, but simultaneously suppress weaker information in their boundary
 - Effective removal of outliers, multi-resolution, cost effective
- Major features:
 - Complexity O(N)
 - Detect arbitrary shaped clusters at different scales
 - Not sensitive to noise, not sensitive to input order
 - Only applicable to low dimensional data
- Both grid-based and density-based

Quantization & Transformation

- First, quantize data into m-D gric structure, then wavelet transform
 - a) scale 1: high resolution
 - b) scale 2: medium resolutior
 - c) scale 3: low resolution

a)

ь

-c)

Chapter 7. Cluster Analysis

- 1. What is Cluster Analysis?
- 2. Types of Data in Cluster Analysis
- 3. A Categorization of Major Clustering Methods
- 4. Partitioning Methods
- 5. Hierarchical Methods
- 6. Density-Based Methods
- 7. Grid-Based Methods
- 8. Model-Based Methods
- 9. Clustering High-Dimensional Data
- 10. Constraint-Based Clustering
- 11. Outlier Analysis

12. Summary

Model-Based Clustering

What is model-based clustering?

- Attempt to optimize the fit between the given data and some mathematical model
- Based on the assumption: Data are generated by a mixture of underlying probability distribution
- Typical methods
 - Statistical approach
 - EM (Expectation maximization), AutoClass
 - Machine learning approach
 - COBWEB, CLASSIT
 - Neural network approach
 - SOM (Self-Organizing Feature Map)

EM — Expectation Maximization

- EM A popular iterative refinement algorithm
- An extension to k-means
 - Assign each object to a cluster according to a weight (prob. distribution)
 - New means are computed based on weighted measures
- General idea
 - Starts with an initial estimate of the parameter vector
 - Iteratively rescores the patterns against the mixture density produced by the parameter vector
 - The rescored patterns are used to update the parameter updates
 - Patterns belonging to the same cluster, if they are placed by their scores in a particular component
- Algorithm converges fast but may not be in global optima

The EM (Expectation Maximization) Algorithm

- Initially, randomly assign k cluster centers
- Iteratively refine the clusters based on two steps
 - Expectation step: assign each data point X_i to cluster C_i with the following probability

$$P(X_i \in C_k) = p(C_k|X_i) = \frac{p(C_k)p(X_i|C_k)}{p(X_i)},$$

- Maximization step:
 - Estimation of model parameters

$$m_k = \frac{1}{N} \sum_{i=1}^{N} \frac{X_i P(X_i \in C_k)}{\sum_j P(X_i \in C_j)}.$$

Conceptual Clustering

- Conceptual clustering
 - A form of clustering in machine learning
 - Produces a classification scheme for a set of unlabeled objects
 - Finds characteristic description for each concept (class)
- COBWEB (Fisher' 87)
 - A popular a simple method of incremental conceptual learning
 - Creates a hierarchical clustering in the form of a classification tree
 - Each node refers to a concept and contains a probabilistic description of that concept

COBWEB Clustering Method

Data Mining: Concepts and Techniques

More on Conceptual Clustering

- Limitations of COBWEB
 - The assumption that the attributes are independent of each other is often too strong because correlation may exist
 - Not suitable for clustering large database data skewed tree and expensive probability distributions
- CLASSIT
 - an extension of COBWEB for incremental clustering of continuous data
 - suffers similar problems as COBWEB
- AutoClass (Cheeseman and Stutz, 1996)
 - Uses Bayesian statistical analysis to estimate the number of clusters
 - Popular in industry

Neural Network Approach

Neural network approaches

- Represent each cluster as an exemplar, acting as a "prototype" of the cluster
- New objects are distributed to the cluster whose exemplar is the most similar according to some distance measure
- Typical methods
 - SOM (Soft-Organizing feature Map)
 - Competitive learning
 - Involves a hierarchical architecture of several units (neurons)
 - Neurons compete in a "winner-takes-all" fashion for the object currently being presented

Self-Organizing Feature Map (SOM)

- SOMs, also called topological ordered maps, or Kohonen Self-Organizing Feature Map (KSOMs)
- It maps all the points in a high-dimensional source space into a 2 to 3-d target space, s.t., the distance and proximity relationship (i.e., topology) are preserved as much as possible
- Similar to k-means: cluster centers tend to lie in a low-dimensional manifold in the feature space
- Clustering is performed by having several units competing for the current object
 - The unit whose weight vector is closest to the current object wins
 - The winner and its neighbors learn by having their weights adjusted
- SOMs are believed to resemble processing that can occur in the brain
- Useful for visualizing high-dimensional data in 2- or 3-D space

Web Document Clusterina Usina SOM

- The result of SOM clustering of 12088 Web articles
- The picture on the right: drilling down on the keyword "mining"
- Based on websom.hut.fi Web page

uII		Clust		IY U	51	IIY			• I		
warren ne	uron	ed univer costa po signal me	rsities stdoctora	al aisb							
100	connect o	engi	ines	genesis					- 2		
extrapo	lation P	rogranner		bootstrap	nteract	ions			packag	es	packa
eightle	ss curves		*	atree							
		pdp neu	iroconput	.ing	• mi	ssing					
aradign	elhan ai	personnel		judgenent	•		explorat	ion •			
gall (r		principle	con ji	ugate	nture				ining		
rain	intelligence	trading		- I di ci di	•		minin	9 •		satur	ation
conscio	usness	alanos	toolb levenbe	ox erg-narquardt			an	alysts			
eurotra	nsmitters rbf backpropag	schedul ator's	robot Ling Pi	apers			anneal i	ng •			
. sign		tools		snns	akizing		• ann	ealing			
olse	variable		nining	tdl -							
lecay	encoding	bayes		unsupervised	•						
idden	neurofuzzy	benc	hnark	popular							
	signoid	validation	rate								
	Data Mi	ning: Concepts	s and Te	chniques							91

Chapter 6. Cluster Analysis

- 1. What is Cluster Analysis?
- 2. Types of Data in Cluster Analysis
- 3. A Categorization of Major Clustering Methods
- 4. Partitioning Methods
- 5. Hierarchical Methods
- 6. Density-Based Methods
- 7. Grid-Based Methods
- 8. Model-Based Methods
- 9. Clustering High-Dimensional Data
- 10. Constraint-Based Clustering
- 11. Outlier Analysis

12. Summary

Clustering High-Dimensional Data

- Clustering high-dimensional data
 - Many applications: text documents, DNA micro-array data
 - Major challenges:
 - Many irrelevant dimensions may mask clusters
 - Distance measure becomes meaningless—due to equi-distance
 - Clusters may exist only in some subspaces
- Methods
 - Feature transformation: only effective if most dimensions are relevant
 - PCA & SVD useful only when features are highly correlated/redundant
 - Feature selection: wrapper or filter approaches
 - useful to find a subspace where the data have nice clusters
 - Subspace-clustering: find clusters in all the possible subspaces
 - CLIQUE, ProClus, and frequent pattern-based clustering

The Curse of Dimensionality

(graphs adapted from Parsons et al. KDD Explorations 2004)

- Data in only one dimension is relatively packed
- Adding a dimension "stretch" the points across that dimension, making them further apart
- Adding more dimensions will make the points further apart—high dimensional data is extremely sparse
- Distance measure becomes meaningless—due to equi-distance

(b) 6 Objects in One Unit Bin

⁽c) 4 Objects in One Unit Bin

Why Subspace Clustering?

(adapted from Parsons et al. SIGKDD Explorations 2004)

- Clusters may exist only in some subspaces
- Subspace-clustering: find clusters in all the subspaces

CLIQUE (Clustering In QUEst)

- Agrawal, Gehrke, Gunopulos, Raghavan (SIGMOD' 98)
- Automatically identifying subspaces of a high dimensional data space that allow better clustering than original space
- CLIQUE can be considered as both density-based and grid-based
 - It partitions each dimension into the same number of equal length interval
 - It partitions an m-dimensional data space into non-overlapping rectangular units
 - A unit is dense if the fraction of total data points contained in the unit exceeds the input model parameter
 - A cluster is a maximal set of connected dense units within a subspace

January 20, 2018

Data Mining: Concepts and Techniques

CLIQUE: The Major Steps

- Partition the data space and find the number of points that lie inside each cell of the partition.
- Identify the subspaces that contain clusters using the Apriori principle
- Identify clusters
 - Determine dense units in all subspaces of interests
 - Determine connected dense units in all subspaces of interests.
- Generate minimal description for the clusters
 - Determine maximal regions that cover a cluster of connected dense units for each cluster
 - Determination of minimal cover for each cluster

Strength and Weakness of CLIQUE

- Strength
 - <u>automatically</u> finds subspaces of the highest dimensionality such that high density clusters exist in those subspaces
 - insensitive to the order of records in input and does not presume some canonical data distribution
 - scales *linearly* with the size of input and has good scalability as the number of dimensions in the data increases
- Weakness
 - The accuracy of the clustering result may be degraded at the expense of simplicity of the method

Frequent Pattern-Based Approach

- Clustering high-dimensional space (e.g., clustering text documents, microarray data)
 - Projected subspace-clustering: which dimensions to be projected on?
 - CLIQUE, ProClus
 - Feature extraction: costly and may not be effective?
 - Using frequent patterns as "features"
 - "Frequent" are inherent features
 - Mining freq. patterns may not be so expensive
- Typical methods
 - Frequent-term-based document clustering
 - Clustering by pattern similarity in micro-array data (pClustering)

Clustering by Pattern Similarity (*p*-Clustering)

Object 1 - -

Object 2 -

Object 3 -O-

- Right: The micro-array "raw" data shows 3 genes and their values in a multi-dimensional space
 - Difficult to find their patterns
- Bottom: Some subsets of dimensions form nice shift and scaling patterns

80

70

60

50

40

30

20

10

Why *p*-Clustering?

- Microarray data analysis may need to
 - Clustering on thousands of dimensions (attributes)
 - Discovery of both shift and scaling patterns
- Clustering with Euclidean distance measure? cannot find shift patterns
- Clustering on derived attribute $A_{ij} = a_i a_j$? introduces N(N-1) dimensions
- Bi-cluster using transformed mean-squared residue score matrix (I, J)

$$H(IJ) = \frac{1}{|I||J|} \sum_{i \in I, j \in J} (d_{ij} - d_{iJ} - d_{Ij} + d_{IJ})^2$$

- Where $d_{ij} = \frac{1}{|J|} \sum_{j \in J} d_{ij}$ $d_{Ij} = \frac{1}{|I|} \sum_{i \in I} d_{ij}$ $d_{IJ} = \frac{1}{|I||J|} \sum_{i \in I, j \in J} d_{ij}$
 - A submatrix is a δ -cluster if H(I, J) $\leq \delta$ for some $\delta > 0$
- Problems with bi-cluster
 - No downward closure property,
 - Due to averaging, it may contain outliers but still within δ -threshold

January 20, 2018

Data Mining: Concepts and Techniques

p-Clustering: Clustering by Pattern Similarity

- Given object x, y in O and features a, b in T, pCluster is a 2 by 2 matrix $pScore(\begin{bmatrix} d_{xa} d_{xb} \\ d_{ya} d_{yb} \end{bmatrix}) = |(d_{xa} - d_{xb}) - (d_{ya} - d_{yb})|$
- A pair (O, T) is in δ -pCluster if for any 2 by 2 matrix X in (O, T), pScore(X) $\leq \delta$ for some $\delta > 0$
- Properties of δ-pCluster
 - Downward closure
 - Clusters are more homogeneous than bi-cluster (thus the name: pair-wise Cluster)
- Pattern-growth algorithm has been developed for efficient mining
- For scaling patterns, one can observe, taking logarithmic on $\frac{d_{xa} / d_{ya}}{d_{xb} / d_{yb}} < \delta$ will lead to the pScore form

Chapter 6. Cluster Analysis

- 1. What is Cluster Analysis?
- 2. Types of Data in Cluster Analysis
- 3. A Categorization of Major Clustering Methods
- 4. Partitioning Methods
- 5. Hierarchical Methods
- 6. Density-Based Methods
- 7. Grid-Based Methods
- 8. Model-Based Methods
- 9. Clustering High-Dimensional Data
- 10. Constraint-Based Clustering
- 11. Outlier Analysis
- 12. Summary

Why Constraint-Based Cluster Analysis?

 Need user feedback: Users know their applications the best
Less parameters but more user-desired constraints, e.g., an ATM allocation problem: obstacle & desired clusters

A Classification of Constraints in Cluster Analysis

- Clustering in applications: desirable to have user-guided (i.e., constrained) cluster analysis
- Different constraints in cluster analysis:
 - Constraints on individual objects (do selection first)
 - Cluster on houses worth over \$300K
 - Constraints on distance or similarity functions
 - Weighted functions, obstacles (e.g., rivers, lakes)
 - Constraints on the selection of clustering parameters
 - # of clusters, MinPts, etc.
 - User-specified constraints
 - Contain at least 500 valued customers and 5000 ordinary ones
 - Semi-supervised: giving small training sets as "constraints" or hints

January 20, 2018

Data Mining: Concepts and Techniques

Clustering With Obstacle Objects

- K-medoids is more preferable since k-means may locate the ATM center in the middle of a lake
- Visibility graph and shortest path
- Triangulation and micro-clustering
- Two kinds of join indices (shortestpaths) worth pre-computation
 - VV index: indices for any pair of obstacle vertices
 - MV index: indices for any pair of micro-cluster and obstacle indices

An Example: Clustering With Obstacle Objects

Not Taking obstacles into account

Taking obstacles into account

January 20, 2018

Data Mining: Concepts and Techniques
Clustering with User-Specified Constraints

- Example: Locating k delivery centers, each serving at least m valued customers and n ordinary ones
- Proposed approach
 - Find an initial "solution" by partitioning the data set into k groups and satisfying user-constraints
 - Iteratively refine the solution by micro-clustering relocation (e.g., moving δ μ-clusters from cluster C_i to C_j) and "deadlock" handling (break the microclusters when necessary)
 - Efficiency is improved by micro-clustering
- How to handle more complicated constraints?
 - E.g., having approximately same number of valued customers in each cluster?! Can you solve it?

Chapter 7. Cluster Analysis

- 1. What is Cluster Analysis?
- 2. Types of Data in Cluster Analysis
- 3. A Categorization of Major Clustering Methods
- 4. Partitioning Methods
- 5. Hierarchical Methods
- 6. Density-Based Methods
- 7. Grid-Based Methods
- 8. Model-Based Methods
- 9. Clustering High-Dimensional Data
- 10. Constraint-Based Clustering
- 11. Outlier Analysis

12. Summary

What Is Outlier Discovery?

- What are outliers?
 - The set of objects are considerably dissimilar from the remainder of the data
 - Example: Sports: Michael Jordon, Wayne Gretzky, ...
- Problem: Define and find outliers in large data sets
- Applications:
 - Credit card fraud detection
 - Telecom fraud detection
 - Customer segmentation
 - Medical analysis

Outlier Discovery: Statistical Approaches Statistical Approaches University of Area 2.5% Data Values

- Assume a model underlying distribution that generates data set (e.g. normal distribution)
- Use discordancy tests depending on
 - data distribution
 - distribution parameter (e.g., mean, variance)
 - number of expected outliers
- Drawbacks
 - most tests are for single attribute
 - In many cases, data distribution may not be known

Outlier Discovery: Distance-Based Approach

- Introduced to counter the main limitations imposed by statistical methods
 - We need multi-dimensional analysis without knowing data distribution
- Distance-based outlier: A DB(p, D)-outlier is an object O in a dataset T such that at least a fraction p of the objects in T lies at a distance greater than D from O
- Algorithms for mining distance-based outliers
 - Index-based algorithm
 - Nested-loop algorithm
 - Cell-based algorithm

Density-Based Local Outlier Detection

- Distance-based outlier detection is based on global distance distribution
- It encounters difficulties to identify outliers if data is not uniformly distributed
- Ex. C₁ contains 400 loosely distributed points, C₂ has 100 tightly condensed points, 2 outlier points o₁, o₂
- Distance-based method cannot identify o₂ as an outlier
- Need the concept of local outlier

- Local outlier factor (LOF)
 - Assume outlier is not crisp
 - Each point has a LOF

Outlier Discovery: Deviation-Based Approach

- Identifies outliers by examining the main characteristics of objects in a group
- Objects that "deviate" from this description are considered outliers
- Sequential exception technique
 - simulates the way in which humans can distinguish unusual objects from among a series of supposedly like objects
- OLAP data cube technique
 - uses data cubes to identify regions of anomalies in large multidimensional data

Chapter 7. Cluster Analysis

- 1. What is Cluster Analysis?
- 2. Types of Data in Cluster Analysis
- 3. A Categorization of Major Clustering Methods
- 4. Partitioning Methods
- 5. Hierarchical Methods
- 6. Density-Based Methods
- 7. Grid-Based Methods
- 8. Model-Based Methods
- 9. Clustering High-Dimensional Data
- 10. Constraint-Based Clustering
- 11. Outlier Analysis

Summary

- Cluster analysis groups objects based on their similarity and has wide applications
- Measure of similarity can be computed for various types of data
- Clustering algorithms can be categorized into partitioning methods, hierarchical methods, density-based methods, grid-based methods, and model-based methods
- Outlier detection and analysis are very useful for fraud detection, etc. and can be performed by statistical, distance-based or deviation-based approaches
- There are still lots of research issues on cluster analysis

Problems and Challenges

- Considerable progress has been made in scalable clustering methods
 - Partitioning: k-means, k-medoids, CLARANS
 - Hierarchical: BIRCH, ROCK, CHAMELEON
 - Density-based: DBSCAN, OPTICS, DenClue
 - Grid-based: STING, WaveCluster, CLIQUE
 - Model-based: EM, Cobweb, SOM
 - Frequent pattern-based: pCluster
 - Constraint-based: COD, constrained-clustering
- Current clustering techniques do not <u>address</u> all the requirements adequately, still an active area of research

References (1)

- R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic subspace clustering of high dimensional data for data mining applications. SIGMOD'98
- M. R. Anderberg. Cluster Analysis for Applications. Academic Press, 1973.
- M. Ankerst, M. Breunig, H.-P. Kriegel, and J. Sander. Optics: Ordering points to identify the clustering structure, SIGMOD' 99.
- P. Arabie, L. J. Hubert, and G. De Soete. Clustering and Classification. World Scientific, 1996
- Beil F., Ester M., Xu X.: "<u>Frequent Term-Based Text Clustering</u>", KDD'02
- M. M. Breunig, H.-P. Kriegel, R. Ng, J. Sander. LOF: Identifying Density-Based Local Outliers. SIGMOD 2000.
- M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for discovering clusters in large spatial databases. KDD'96.
- M. Ester, H.-P. Kriegel, and X. Xu. Knowledge discovery in large spatial databases: Focusing techniques for efficient class identification. SSD'95.
- D. Fisher. Knowledge acquisition via incremental conceptual clustering. Machine Learning, 2:139-172, 1987.
- D. Gibson, J. Kleinberg, and P. Raghavan. Clustering categorical data: An approach based on dynamic systems. VLDB' 98.

January 20, 2018

Data Mining: Concepts and Techniques

References (2)

- V. Ganti, J. Gehrke, R. Ramakrishan. CACTUS Clustering Categorical Data Using Summaries. *KDD'99*.
- D. Gibson, J. Kleinberg, and P. Raghavan. Clustering categorical data: An approach based on dynamic systems. In Proc. VLDB' 98.
- S. Guha, R. Rastogi, and K. Shim. Cure: An efficient clustering algorithm for large databases. SIGMOD'98.
- S. Guha, R. Rastogi, and K. Shim. <u>ROCK: A robust clustering algorithm for categorical attributes</u>. In *ICDE'99*, pp. 512-521, Sydney, Australia, March 1999.
- A. Hinneburg, D.I A. Keim: An Efficient Approach to Clustering in Large Multimedia Databases with Noise. KDD' 98.
- A. K. Jain and R. C. Dubes. Algorithms for Clustering Data. Printice Hall, 1988.
- G. Karypis, E.-H. Han, and V. Kumar. <u>CHAMELEON: A Hierarchical Clustering Algorithm Using Dynamic Modeling.</u> COMPUTER, 32(8): 68-75, 1999.
- L. Kaufman and P. J. Rousseeuw. Finding Groups in Data: an Introduction to Cluster Analysis. John Wiley & Sons, 1990.
- E. Knorr and R. Ng. Algorithms for mining distance-based outliers in large datasets. VLDB' 98.
- G. J. McLachlan and K.E. Bkasford. Mixture Models: Inference and Applications to Clustering. John Wiley and Sons, 1988.
- P. Michaud. Clustering techniques. Future Generation Computer systems, 13, 1997.
- R. Ng and J. Han. Efficient and effective clustering method for spatial data mining. VLDB'94.

January 20, 2018

Data Mining: Concepts and Techniques

References (3)

- L. Parsons, E. Haque and H. Liu, Subspace Clustering for High Dimensional Data: A Review, SIGKDD Explorations, 6(1), June 2004
- E. Schikuta. Grid clustering: An efficient hierarchical clustering method for very large data sets. Proc. 1996 Int. Conf. on Pattern Recognition,.
- G. Sheikholeslami, S. Chatterjee, and A. Zhang. WaveCluster: A multi-resolution clustering approach for very large spatial databases. VLDB' 98.
- A. K. H. Tung, J. Han, L. V. S. Lakshmanan, and R. T. Ng. <u>*Constraint-Based Clustering in Large Databases*</u>, *ICDT'01*.
- A. K. H. Tung, J. Hou, and J. Han. <u>Spatial Clustering in the Presence of Obstacles</u>, ICDE'01
- H. Wang, W. Wang, J. Yang, and P.S. Yu. <u>Clustering by pattern similarity in large data sets</u>, SIGMOD' 02.
- W. Wang, Yang, R. Muntz, STING: A Statistical Information grid Approach to Spatial Data Mining, VLDB' 97.
- T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH : an efficient data clustering method for very large databases. SIGMOD'96.

