APRIORI Algorithm

Professor Anita Wasilewska

Book slides
The Apriori Algorithm is an influential algorithm for mining frequent itemsets for boolean association rules.

Key Concepts:
• **Frequent Itemsets**: The sets of item which has minimum support (denoted by L_i for i^{th}-Itemset).
• **Apriori Property**: Any subset of frequent itemset must be frequent.
• **Join Operation**: To find L_k, a set of candidate k-itemsets is generated by joining L_{k-1} with itself.
The Apriori Algorithm in a Nutshell

• Find the *frequent itemsets*: the sets of items that have minimum support
 – A subset of a frequent itemset must also be a frequent itemset
 • i.e., if \(\{AB\}\) is a frequent itemset, both \(\{A\}\) and \(\{B\}\) should be a frequent itemset
 – Iteratively find frequent itemsets with cardinality from 1 to \(k\) (\(k\)-itemset)
• Use the frequent itemsets to generate association rules.
The Apriori Algorithm : Pseudo code

- **Join Step**: \(C_k \) is generated by joining \(L_{k-1} \) with itself
- **Prune Step**: Any \((k-1)\)-itemset that is not frequent cannot be a subset of a frequent \(k \)-itemset
- **Pseudo-code**:
 \(C_k \): Candidate itemset of size \(k \)
 \(L_k \) : frequent itemset of size \(k \)

\[
L_1 = \{\text{frequent items}\};
\]

\[
\text{for } (k = 1; L_k \neq \emptyset; k++) \text{ do begin}
\]
 \(C_{k+1} \) = candidates generated from \(L_k \);
 \text{for each transaction } t \text{ in database do}
 \text{increment the count of all candidates in } C_{k+1}
 \text{that are contained in } t
 \]
 \(L_{k+1} \) = candidates in \(C_{k+1} \) with min_support
\]
\text{end}

\text{return } \bigcup_k L_k;
The Apriori Algorithm: Example

- Consider a database, D, consisting of 9 transactions.
- Suppose min. support count required is 2 (i.e. \(\text{min}_{-}\text{sup} = \frac{2}{9} = 22\% \))
- Let minimum confidence required is 70%.
- We have to first find out the frequent itemset using Apriori algorithm.
- Then, Association rules will be generated using min. support & min. confidence.
Step 1: Generating 1-itemset Frequent Pattern

- The set of frequent 1-itemsets, L_1, consists of the candidate 1-itemsets satisfying minimum support.
- In the first iteration of the algorithm, each item is a member of the set of candidate.

<table>
<thead>
<tr>
<th>Itemset</th>
<th>Sup. Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>{I1}</td>
<td>6</td>
</tr>
<tr>
<td>{I2}</td>
<td>7</td>
</tr>
<tr>
<td>{I3}</td>
<td>6</td>
</tr>
<tr>
<td>{I4}</td>
<td>2</td>
</tr>
<tr>
<td>{I5}</td>
<td>2</td>
</tr>
</tbody>
</table>

C_1 and L_1 relationship diagram:

- Scan D for count of each candidate
- Compare candidate support count with minimum support count

<table>
<thead>
<tr>
<th>Itemset</th>
<th>Sup. Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>{I1}</td>
<td>6</td>
</tr>
<tr>
<td>{I2}</td>
<td>7</td>
</tr>
<tr>
<td>{I3}</td>
<td>6</td>
</tr>
<tr>
<td>{I4}</td>
<td>2</td>
</tr>
<tr>
<td>{I5}</td>
<td>2</td>
</tr>
</tbody>
</table>
Step 2: Generating 2-itemset Frequent Pattern

- To discover the set of frequent 2-itemsets, \(L_2 \), the algorithm uses \(L_1 \) Join \(L_1 \) to generate a candidate set of 2-itemsets, \(C_2 \).
- Next, the transactions in \(D \) are scanned and the support count for each candidate itemset in \(C_2 \) is accumulated (as shown in the middle table).
- The set of frequent 2-itemsets, \(L_2 \), is then determined, consisting of those candidate 2-itemsets in \(C_2 \) having minimum support.
- **Note:** We haven’t used Apriori Property yet.
Step 2: Generating 2-itemset Frequent Pattern

- Generate C_2 candidates from L_1

<table>
<thead>
<tr>
<th>Itemset</th>
<th>Sup. Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>{I1, I2}</td>
<td>4</td>
</tr>
<tr>
<td>{I1, I3}</td>
<td>4</td>
</tr>
<tr>
<td>{I1, I4}</td>
<td>1</td>
</tr>
<tr>
<td>{I1, I5}</td>
<td>2</td>
</tr>
<tr>
<td>{I2, I3}</td>
<td>4</td>
</tr>
<tr>
<td>{I2, I4}</td>
<td>2</td>
</tr>
<tr>
<td>{I2, I5}</td>
<td>2</td>
</tr>
<tr>
<td>{I3, I4}</td>
<td>0</td>
</tr>
<tr>
<td>{I3, I5}</td>
<td>1</td>
</tr>
<tr>
<td>{I4, I5}</td>
<td>0</td>
</tr>
</tbody>
</table>

- Scan D for count of each candidate

- Compare candidate support count with minimum support count

- L_2
Step 3: Generating 3-itemset Frequent Pattern

- The generation of the set of candidate 3-itemsets, C_3, involves use of the Apriori Property.
- In order to find C_3, we compute $L_2 \ Join \ L_2$.
- $C_3 = L_2 \ Join \ L_2 = \{\{I_1, I_2, I_3\}, \{I_1, I_2, I_5\}, \{I_1, I_3, I_5\}, \{I_2, I_3, I_4\}, \{I_2, I_3, I_5\}, \{I_2, I_4, I_5\}\}$.
- Now, Join step is complete and Prune step will be used to reduce the size of C_3. Prune step helps to avoid heavy computation due to large C_k.

![Diagram showing the process of generating 3-itemset frequent pattern]
Step 3: Generating 3-itemset Frequent Pattern

- Based on the Apriori property that all subsets of a frequent itemset must also be frequent, we can determine that four latter candidates cannot possibly be frequent. How?
- For example, let's take \(\{I_1, I_2, I_3\}\). The 2-item subsets of it are \(\{I_1, I_2\}\), \(\{I_1, I_3\}\) & \(\{I_2, I_3\}\). Since all 2-item subsets of \(\{I_1, I_2, I_3\}\) are members of \(L_2\), We will keep \(\{I_1, I_2, I_3\}\) in \(C_3\).
- Let's take another example of \(\{I_2, I_3, I_5\}\) which shows how the pruning is performed. The 2-item subsets are \(\{I_2, I_3\}\), \(\{I_2, I_5\}\) & \(\{I_3, I_5\}\).
- BUT, \(\{I_3, I_5\}\) is not a member of \(L_2\) and hence it is not frequent violating Apriori Property. Thus We will have to remove \(\{I_2, I_3, I_5\}\) from \(C_3\).
- Therefore, \(C_3 = \{\{I_1, I_2, I_3\}, \{I_1, I_2, I_5\}\}\) after checking for all members of result of Join operation for Pruning.
- Now, the transactions in D are scanned in order to determine \(L_3\), consisting of those candidates 3-itemsets in \(C_3\) having minimum support.
Step 4: Generating 4-itemset Frequent Pattern

- The algorithm uses $L_3 \Join L_3$ to generate a candidate set of 4-itemsets, C_4. Although the join results in $\{\{I_1, I_2, I_3, I_5\}\}$, this itemset is pruned since its subset $\{\{I_2, I_3, I_5\}\}$ is not frequent.

- Thus, $C_4 = \emptyset$, and algorithm terminates, having found all of the frequent items. This completes our Apriori Algorithm.

- What’s Next?
 These frequent itemsets will be used to generate strong association rules (where strong association rules satisfy both minimum support & minimum confidence).
Step 5: Generating Association Rules from Frequent Itemsets

• Procedure:
 • For each frequent itemset “l”, generate all nonempty subsets of l.
 • For every nonempty subset s of l, output the rule “s → (l-s)” if
 \[\frac{\text{support}_\text{count}(l)}{\text{support}_\text{count}(s)} \geq \text{min}_\text{conf} \]
 where min_conf is minimum confidence threshold.

• Back To Example:
 We had L = \{\{l_1\}, \{l_2\}, \{l_3\}, \{l_4\}, \{l_5\}, \{l_1,l_2\}, \{l_1,l_3\}, \{l_1,l_5\}, \{l_2,l_3\},
 \{l_2,l_4\}, \{l_2,l_5\}, \{l_1,l_2,l_3\}, \{l_1,l_2,l_5\}\}.
 – Let's take \(l = \{l_1,l_2,l_5\} \).
 – Its all nonempty subsets are \{l_1,l_2\}, \{l_1,l_5\}, \{l_2,l_5\}, \{l_1\}, \{l_2\}, \{l_5\}.
Step 5: Generating Association Rules from Frequent Itemsets

- Let **minimum confidence threshold is**, say 70%.
- The resulting association rules are shown below, each listed with its confidence.
 - R1: \(I_1 \land I_2 \rightarrow I_5 \)
 - Confidence = \(\frac{sc\{I_1,I_2,I_5\}}{sc\{I_1,I_2\}} = \frac{2}{4} = 50\% \)
 - R1 is Rejected.
 - R2: \(I_1 \land I_5 \rightarrow I_2 \)
 - Confidence = \(\frac{sc\{I_1,I_2,I_5\}}{sc\{I_1,I_5\}} = \frac{2}{2} = 100\% \)
 - R2 is Selected.
 - R3: \(I_2 \land I_5 \rightarrow I_1 \)
 - Confidence = \(\frac{sc\{I_1,I_2,I_5\}}{sc\{I_2,I_5\}} = \frac{2}{2} = 100\% \)
 - R3 is Selected.
Step 5: Generating Association Rules from Frequent Itemsets

- R4: $I_1 \rightarrow I_2 \land I_5$
 - Confidence = $\frac{sc\{I_1,I_2,I_5\}}{sc\{I_1\}} = \frac{2}{6} = 33\%$
 - R4 is Rejected.
- R5: $I_2 \rightarrow I_1 \land I_5$
 - Confidence = $\frac{sc\{I_1,I_2,I_5\}}{\{I_2\}} = \frac{2}{7} = 29\%$
 - R5 is Rejected.
- R6: $I_5 \rightarrow I_1 \land I_2$
 - Confidence = $\frac{sc\{I_1,I_2,I_5\}}{\{I_5\}} = \frac{2}{2} = 100\%$
 - R6 is Selected.

In this way, We have found three strong association rules.
Methods to Improve Apriori’s Efficiency

- **Hash-based itemset counting**: A k-itemset whose corresponding hashing bucket count is below the threshold cannot be frequent.
- **Transaction reduction**: A transaction that does not contain any frequent k-itemset is useless in subsequent scans.
- **Partitioning**: Any itemset that is potentially frequent in DB must be frequent in at least one of the partitions of DB.
- **Sampling**: mining on a subset of given data, lower support threshold + a method to determine the completeness.
- **Dynamic itemset counting**: add new candidate itemsets only when all of their subsets are estimated to be frequent.
Mining Frequent Patterns Without Candidate Generation

- Compress a large database into a compact, Frequent-Pattern tree (FP-tree) structure
 - highly condensed, but complete for frequent pattern mining
 - avoid costly database scans
- Develop an efficient, FP-tree-based frequent pattern mining method
 - A divide-and-conquer methodology: decompose mining tasks into smaller ones
 - Avoid candidate generation: sub-database test only!
FP-Growth Method : An Example

<table>
<thead>
<tr>
<th>TID</th>
<th>List of Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>T100</td>
<td>I1, I2, I5</td>
</tr>
<tr>
<td>T100</td>
<td>I2, I4</td>
</tr>
<tr>
<td>T100</td>
<td>I2, I3</td>
</tr>
<tr>
<td>T100</td>
<td>I1, I2, I4</td>
</tr>
<tr>
<td>T100</td>
<td>I1, I3</td>
</tr>
<tr>
<td>T100</td>
<td>I2, I3</td>
</tr>
<tr>
<td>T100</td>
<td>I1, I3</td>
</tr>
<tr>
<td>T100</td>
<td>I1, I2, I3, I5</td>
</tr>
<tr>
<td>T100</td>
<td>I1, I2, I3</td>
</tr>
</tbody>
</table>

- Consider the same previous example of a database, D, consisting of 9 transactions.
- Suppose min. support count required is 2 (i.e. \(\text{min_sup} = \frac{2}{9} = 22\% \))
- The first scan of database is same as Apriori, which derives the set of 1-itemsets & their support counts.
- The set of frequent items is sorted in the order of descending support count.
- The resulting set is denoted as \(L = \{I2:7, I1:6, I3:6, I4:2, I5:2\} \)
FP-Growth Method: Construction of FP-Tree

- First, create the root of the tree, labeled with “null”.
- Scan the database D a second time. (First time we scanned it to create 1-itemset and then L).
- The items in each transaction are processed in L order (i.e. sorted order).
- A branch is created for each transaction with items having their support count separated by colon.
- Whenever the same node is encountered in another transaction, we just increment the support count of the common node or Prefix.
- To facilitate tree traversal, an item header table is built so that each item points to its occurrences in the tree via a chain of node-links.
- Now, The problem of mining frequent patterns in database is transformed to that of mining the FP-Tree.
FP-Growth Method: Construction of FP-Tree

An FP-Tree that registers compressed, frequent pattern information
Mining the FP-Tree by Creating Conditional (sub) pattern bases

Steps:
1. Start from each frequent length-1 pattern (as an initial suffix pattern).
2. Construct its conditional pattern base which consists of the set of prefix paths in the FP-Tree co-occurring with suffix pattern.
3. Then, Construct its conditional FP-Tree & perform mining on such a tree.
4. The pattern growth is achieved by concatenation of the suffix pattern with the frequent patterns generated from a conditional FP-Tree.
5. The union of all frequent patterns (generated by step 4) gives the required frequent itemset.
Now, Following the above mentioned steps:

- Lets start from I5. The I5 is involved in 2 branches namely \{I2 I1 I5: 1\} and \{I2 I1 I3 I5: 1\}.
- Therefore considering I5 as suffix, its 2 corresponding prefix paths would be \{I2 I1: 1\} and \{I2 I1 I3: 1\}, which forms its conditional pattern base.
• Out of these, Only I1 & I2 is selected in the conditional FP-Tree because I3 is not satisfying the minimum support count.
 For I1 , support count in conditional pattern base = 1 + 1 = 2
 For I2 , support count in conditional pattern base = 1 + 1 = 2
 For I3, support count in conditional pattern base = 1
 Thus support count for I3 is less than required min_sup which is 2 here.
• Now , We have conditional FP-Tree with us.
• All frequent pattern corresponding to suffix I5 are generated by considering all possible combinations of I5 and conditional FP-Tree.
• The same procedure is applied to suffixes I4, I3 and I1.
• Note: I2 is not taken into consideration for suffix because it doesn’t have any prefix at all.
Why Frequent Pattern Growth fast?

- Performance study shows
 - FP-growth is an order of magnitude faster than Apriori, and is also faster than tree-projection

- Reasoning
 - No candidate generation, no candidate test
 - Use compact data structure
 - Eliminate repeated database scan
 - Basic operation is counting and FP-tree building