Association Analysis Chapter 5

cse634

Data Mining

Professor Anita Wasilewska
Computer Science Department
Stony Brook University

Association Rules Mining An Introduction

- This is an intuitive (more or less) introduction
- It contains explanation of the main ideas:
- Frequent item sets, association rules, how we construct the association rules
- How we judge the goodness of the rules
- Example of an intuitive "run" of the Appriori
 Algorithm and association rules generation
- Discussion of the relationship between the Association and Correlation analysis

What Is Association Mining?

Association rule mining:

Finding frequent patterns called associations, among sets of items or objects in transaction databases, relational databases, and other information repositories

Applications:

 Basket data analysis, cross-marketing, catalog design, loss-leader analysis, clustering, classification, etc.

Association Rules

Rule general form:

```
"Body → Head [support, confidence]"
Rule Predicate form:
buys(x, "diapers") \rightarrow buys(x, "beer")
[0.5\%, 60\%]
major(x, "CS") ^{\wedge} takes(x, "DB") \rightarrow grade(x,
 "A") [1%, 75%]
Rule Attribute form:
Diapers \rightarrow beer [1%, 75%]
```

Association Analysis: Basic Concepts

 Given: a database of transactions, where each transaction is a list of items

- Find: <u>all</u> rules that associate the presence of one set of items with that of another set of items
- Example

98% of people who purchase tires and auto accessories also get automotive services done

Association Model

- I ={i1, i2,, in} a set of items
- J = P(I) set of all subsets of the set of items, elements of J are called itemsets
- Transaction T: T is subset of set I of items
- Data Base: set of transactions
- An association rule is an implication of the form: X-> Y, where X, Y are disjoint subsets of items I (elements of J)
- Problem: Find rules that have support and confidence greater that user-specified minimum support and minimum confidence

Apriori Algorithm

- Apriori Algorithm:
- First Step: we find all frequent item-sets
- An item-set is frequent if it has a support greater or equal a fixed minimum support
- We fix minimum support usually low
- Rules generation from the frequent itemsets is a separate problem and we will cover it as a part of Association Process

Apriori Algorithm

- In order to calculate efficiently frequent itemsets:
- 1-item-sets (one element item-sets)
- 2-item-sets (two elements item-sets)
- 3-item-sets (three elements item-sets), etc...
- we use a principle, called an Apriori Principle (hence the name: Apriori Algorithm):
- Apriori Principle
- ANY SUBSET OF A FREQUENT ITEMSET IS A FREQUENT ITEMSET

The Apriori Algorithm (Han Book)

Pseudo-code:

```
L_1 = \{ frequent items \};
for (k = 1; L_k != \emptyset; k++) do begin
    C_{k+1} = candidates generated from L_k;
   for each transaction t in database do
        increment the count of all candidates in C_{k+1}
      that are contained in t
  L_{k+1} = candidates in C_{k+1} with min_support
   end
return \bigcup_k L_k;
```

C_k: Candidate itemset of size k

 L_k : frequent itemset of size k

Appriori Process: Rules Generation

- Appriori Algorithm stops after the First Step
- Second Step in the Appriori Proces (item-sets generation AND rules generation) is the rules generation:
- We calculate, from the frequent item-sets a set of the strong rules
- Strong rules: rules with at least minimum support (low) and minimum confidence (high)
- Apriori Process is then finished.

Apriori Process Rules Generation

- The Apriori Process problem is:
- How do we form the association rules
 (A =>B) from the frequent item sets?

 Remember: A, B are disjoint subsets of the set I of items in general, and of the set 2- frequent, 3-frequent item sets etc, ... as generated by the Apriori Algorithm

How we find the rules?

- 1-frequent item set: {i1}- no rule
- 2-frequent item set {i1, i2}: there are two rules:
- {i1} => {i2} and {i2} => {i2}
- We write them also as
- i1 => i2 and i2 => i2
- We decide which rule we accept by calculating its support (greater= minimum support) and confidence (greater= minimum confidence)

How we find the rules?

- 3-frequent item set: {i1, i2, i3}
- The rules, by definition are of the form (A =>B) where
 A and B are disjoint subsets of {i1, i2, i3}, i.e.
- we have to find all subsets A,B of {i1, i2, i3} such that $A \cup B = \{i1, i2, i3\}$ and $A \cap B = \Phi$
- For example,
- let A= {i1, i2} and B= {i3}
- The rule is
- $\{i1, i2\} => \{i3\}$
- and we write it in a form:

```
i1 ∩ i2 => i3 or milk ∩ bread => vodka
if item i1 is milk, item i2 is bread and item i3 is vodka
```

How we find the rules?

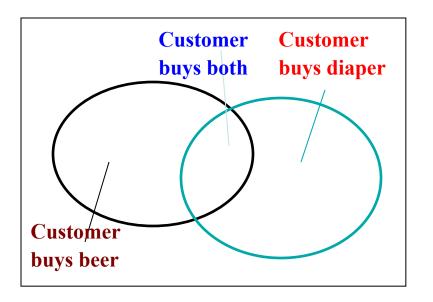
- Another choice for A and B is, for example:
- $A = \{i1\}$ and $B = \{12, i3\}$.
- The rule is
- {i1} => {i2, i3} and we write it in a form:
 i1 => i2 ∩ i3 or milk => bread ∩ vodka
 if item i1 is milk, item i2 is bread and item i3 is vodka
- REMEMBER:
- We have to cover all the choices for A and B!
- Which rule we accept is being decided by calculating its support (greater = minimum support) and confidence (greater = minimum confidence)

Rules Confidence and Support

- Confidence:
- the rule X->Y holds in the database D with confidence c if the c% of the transactions in D that contain X also contain Y

Support: The rule X->Y has support s
in D if s% of the transaction contain
XUY

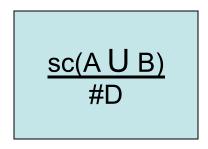
Support and Confidence



- Find all the rules X & Y ⇒ Z with minimum confidence and support
 - Support s: probability that a transaction contains {X, Y, Z}
 - confidence c: conditional probability that a transaction containing {X, Y} also contains Z

Support Definition

- Support of a rule A=>B in the database D of transactions is given by formula (where sc=support count)
- Support(A => B) = P(A U B) =



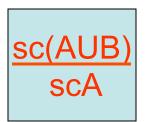
Frequent Item sets: sets of items with a support support >= MINIMAL support
We (user) fix MIN support usually low and
Min Confidence high

Confidence Definition

 Confidence of a rule A=>B in the database D of transactions is given by formula (where sc=support count)

• Conf(A => B) =
$$P(B|A) = \frac{P(A \cup B)}{P(A)}$$

=
$$\frac{\text{sc(AUB)}}{\text{#D}}$$
divided by $\frac{\text{scA}}{\text{#D}}$



Example

- Let consider a data base D ={ T1, T2, T9}, where
- T1={ 1,2,5} (we write k for item ik)
- T2= {2, 4}, T3={2, 3}, T4={1, 2, 4}, T5={1, 3}
- T6={2, 3}, T7={1, 3}, T8={1, 2, 3,5}, T9={1,2,3}
- To find association rules we follow the following steps
- STEP 1: Count occurrences of items in D
- STEP2: Fix Minimum support (usually low)
- STEP 3: Calculate frequent 1-item sets
- STEP 4: Calculate frequent 2-item sets
- STEP 5: Calculate frequent 3-item sets
- STOP when there is no more frequent item sets
- This is the end of Apriori Algorithm phase

Example

- How to generate all frequent 3-item sets (in Step 5)
- FIRST: use the frequent 2-item sets to generate all 3-item set candidates
- SECOND: use Apriori Principle to prune the candidates set
- THIRD: Evaluate the count of the pruned set
- FOUR: list the frequent 3-item sets
- STEP 6: repeat the procedure for 4-item sets etc (if any)

Example- Apriori Pocess

- Apriori Process Steps:
- STEP 7: Fix the minimum confidence (usually high)
- STEP 8: Generate strong rules (support >min support and confidence> min confidence)
- END of rules generation phase
- END of the Apriori Process

Example- Apriori Pocess

- Lets now calculate all steps of our Apriori
 Process for a data base
- **D** ={ T1, T2, T9}, where
- T1={ 1,2,5} (we write k for item ik)
- T2= {2, 4}, T3={2, 3}, T4={1, 2, 4}, T5={1, 3}
- T6={2, 3}, T7={1, 3}, T8={1, 2, 3,5}, T9={1,2,3}
- Here is our Step 1
- We represent our transactional data base as relational data base (a table) and put the occurrences of items as an extra row, on the bottom

STEP 1: items occurrences=sc

its	1	2	3	4	5
T1	+	+	0	0	+
T2	0	+	0	+	0
Т3	0	+	+	0	0
T4	+	+	0	+	0
T5	+	0	+	0	0
T6	0	+	+	0	0
T7	+	0	+	0	0
T8	+	+	+	0	+
Т9	+	+	+	0	0
SC	6	7	6	2	2

- STEP 2: Fix minimal support count, for example
- msc = 2
- Minimal support = msc/#D= 2/9=22%
- ms=22%

 Observe: minimal support of an item set is determined uniquely by the minimal support count (msc) and we are going to use only msc to choose our frequent k-itemsets

Example: steps 3, 4

- STEP 3: calculate frequent 1-item sets: look at the sc count – we get that all 1-item sets are frequent
- STEP 4: calculate frequent 2-item sets
- First we calculate 2-item sets candidates from frequent 1-item sets.
- As our all 1-item sets are frequent so all subsets of any 2-item set are frequent and we have to find counts of all 2-item sets

Observation

- If for example we set our msc=6, i.e we would have only {1}, {2} and {3} as frequent item sets
- Then by Apriori Principle:
- "if A is a frequent item set, then each of its subsets is a frequent item set"
- we would be examining only those 2-item sets that have {1}, {2}, {3} as subsets
- Apriori Principle reduces the complexity of the algorithm

- STEP 4: All 2-item sets = all 2-element subsets of {1,2,3,4,5} are candidates and we evaluate their sc=support counts (in red). They are called 2-item set candidates
- T1={ 1,2}, T2= {1, 3}, T3={1, 4}, T4={1, 5},
- T5={2, 3}, T6={2, 4}, T7={2, 5}, T8={3,4}, T9={3,5}, T10={4,5}
- {1,2,} (4), {1,3} (4), {1,4} (1), {1,5} (2),
- {2,3} (4), {2,4} (2), {2,5} (2),
- {3,4} **(0)**, {3,5} **(1)**,
- {4,5} **(0)**
- msc=2 and we choose candidates with sc >= 2 and get the following
- Frequent 2- item sets:
- {1,2}, {1,3}, {1,5}, {2,3}, {2,4}, {2,5}

- STEP 5 : generate all frequent 3-item sets
- We use frequent 2- item sets:
- {1,2}, {1,3}, {1,5}, {2,3}, {2,4}, {2,5}
- and proceed as follows
- FIRST: we calculate from the frequent 2- item sets a set of all 3-item set candidates:
- {1,2,3}, {1,2,4}, {1,2,5}, {1,3,4}, {1,3,5}, {2,3,4}, {2,3,5}, {2,4,5}
- Observe that the candidates
- {1,3,4}, {1,3,5}, {2,3,4}, {2,3,5}, {2,4,5}
- do not follow Apriori Principle:
- "if A is a frequent item set, then each of its subsets is a frequent item set"

- Frequent 2- item sets are:
- {1,2}, {1,3}, {1,5}, {2,3}, {2,4}, {2,5}
- We reject {1,3,4} as its subset {3,4} is not a frequent 2- item set We reject {1,3,5} as its subset {3,5} is not a frequent 2- item set We reject {2,3,4} as its subset {3,4} is not a frequent 2- item set We reject {2,3,5} as its subset {3,5} is not a frequent 2- item set We reject {2,4,5} as its subset {4,5} is not a frequent 2- item set

This **rejection process** is called **pruning**The following form of the Apriori Algorithm is called

 Prune Step: Any (k-1)-item set that is not frequent cannot be a subset of a frequent k-item set

- SECOND: we perform the Prune Step and write the pruned frequent 3-item set candidates
- {1,2,3}, {1,2,5}, {1,2,4}
- THIRD: we calculate the sc=support count for the pruned frequent 3-item candidates
- {1,2,3} (2), {1,2,5} (2), {1,2,4} (1)
- FOUR:
- msc=2 and we choose the 3-item candidates with sc >= 2 and get the following list of
- Frequent 3-item sets
- {1,2,3}, {1,2,5}

Example: Steps 6, 7

- STEP 6: there is no 4-item sets
- We STOP when there is no more frequent item sets
- This is the end of Apriori Algorithm phase
- STEP 7:
- We fix minimum confidence (usually high) as
- min conf = 70%
- We use the confidence to generate Apriori Rules

Example: Step 8 Association Rules Generation

- Step 8: Strong Rules Generation
- We will generate, as an example rules only from one frequent 2-item set: {1,2}
- Rule generation for other 2-item sets is similar
- Reminder: conf(A=>B) =

- We split {1,2} into disjoint subsets A and B as follows:
 A={1} and B={2} or A={2} and B={1} and get two
 possible rules:
- $\{1\}=>\{2\}$ or $\{2\}=>\{1\}$

Example: Association Rules Generation

• Conf(1=>2)=
$$\frac{sc\{1,2\}}{sc\{1\}}$$
 = 4/6 = 66%

The rule is **not accepted** (min conf= 70%)

• Conf(2=>1) =
$$\frac{\text{sc}\{1,2\}}{\text{sc}\{2\}} = 4/7 = 57\%$$

The rule is not accepted

- Now we use one frequent 3-item set
- {1,2,5} to show how to generate strong rules
- First we evaluate all possibilities how to split the set {1,2,5} into to disjoint subsets A,B to obtain all possible rules A=>B
- For each rule we evaluate its confidence and choose only those with conf ≥ 70% (our minimal confidence)
- The minimal support condition is fulfilled as we deal only with frequent items
- The rules such obtained are strong rules

Example: Association Rules Generation

- The rules for {1,2,5} are the following:
- R1: {1,2}=>{5}
- $conf(R1)=sc\{1,2,5\}/sc\{1,2\}=2/4=\frac{1}{2}=\frac{50}{8}$
- R1 is rejected
- **R2**: {1,5} => {2}
- $conf(R2)=sc\{1,2,5\}/sc\{1,5\}=2/2=100\%$
- R2 is a strong rule (keep)
- R3: $\{2,5\} => \{1\}$
- $conf(R3)=sc\{1,2,5\}/sc\{2,5\}=2/2=100\%$
- R3 is a strong rule (keep)
- **R4**: {1} => {2,5}
- $conf(R4)=sc\{1,2,5\}/sc\{1\}=2/6=33\%$
- R4 is rejected

Example: Association Rules Generation

- The next set of rules for {1,2,5} are the following:
- **R5**: {2}=>{1,5}
- $conf(R5)=sc{1,2,5}/sc{2}= 2/7 = 27\%$
- R5 is rejected
- R6: {5} => {1,2}
- $conf(R6)=sc{1,2,5}/sc{5}=2/2=100\%$
- R6 is a strong rule (keep)
- As the last step we evaluate the exact support for the strong rules
- We know already that it is greater or equal to minimum support, as rules were obtained from the frequent item sets

Example: Association Rules Generation

- Exact support for the strong rules is:
- $Sup(\{1,5\}=>\{2\})=sc\{1,2,5\}/\#D=2/9=22\%$
- We write:
- $1 \cap 5 \Rightarrow 2 \quad [22\%, 100\%]$
- $Sup({2,5}=>{1}) = sc{1,2,5}/\#D=2/9=22\%$
- We write:
- $2 \cap 5 \Rightarrow 1$ [22%, 100%]
- $Sup({5}=>{1,2}) = sc{1,2,5}/\#D=2/9=22\%$
- We write:
- $5 \Rightarrow 1 \cap 2$ [22%, 100%]
- THE END of Apriori Process

Association and Correlation

- As we can see the support-confidence framework can be misleading;
- it can identify a rule A=>B as interesting (strong)
 when, in fact the occurrence of A might not imply
 the occurrence of B
- Correlation Analysis provides an alternative framework for finding interesting relationships,
- or to improve understanding of meaning of some association rules (a lift of an association rule)

Correlation and Association

- Definition: Two item sets A and B are independent (the occurrence of A is independent of the occurrence of item set B) iff probability P fulfills the condition
- $P(A \cup B) = P(A) \cdot P(B)$
- Otherwise A and B are dependent or correlated
- The measure of correlation, or correlation between A and B is given by the formula:
- Corr(A,B)=

Correlation and Association

- corr(A,B) >1 means that A and B are positively correlated i.e. the occurrence of one implies the occurrence of the other
- corr(A,B) < 1 means that the occurrence of A is negatively correlated with B
- or discourages the occurrence of B
- corr(A,B) =1 means that A and B are independent

Correlation and Association

The correlation formula can be re-written as

• Corr(A,B) =
$$\frac{P(B|A)}{P(B)}$$

- Supp(A=>B)= P(AUB)
- Conf(A => B)= P(B|A), i.e.
- Conf(A=>B)= corr(A,B) P(B)
- So correlation, support and confidence are all different, but the correlation provides an extra information about the association rule (A=>B)
- We say that the correlation corr(A,B) provides the LIFT of the association rule (A=>B), i.e.
- A is said to increase or to LIFT the likelihood of B by the factor of the value returned by the formula for corr(A,B)

Correlation Rule (HAN Book)

- A correlation rule is a set of items
- {i1, i2,in}, where the items occurrences are correlated
- The correlation value is given by the correlation formula and we use X square test to determine if correlation is statistically significant
- The X square test can also determine the negative correlation
- We can also form minimal correlated item sets, etc...
- Limitations: X square test is less accurate on the data tables that are sparse and can be misleading for the contingency tables larger then 2x2

Criticism to Support and Confidence (Han book)

- Example 1: (Aggarwal & Yu, PODS98)
 - Among 5000 students
 - 3000 play basketball
 - 3750 eat cereal
 - 2000 both play basket ball and eat cereal

RULE: play basketball ⇒ eat cereal [40%, 66.7%] is misleading because the overall percentage of students eating cereal is 75% which is higher than 66.7%.

RULE: play basketball ⇒ not eat cereal [20%, 33.3%] is far more accurate, although with lower support and confidence

	basketball	not basketball	sum(row)
cereal	2000	1750	3750
not cereal	1000	250	1250
sum(col.)	3000	2000	5000

EXTRTA Slides

- ADDITIONAL MATERIAL
- Read, explore; much of it I already covered in our slides

Mining Association Rules in Large Databases Slightly modified HAN Book slides follow from now

Mining Association Rules in Large Databases

- Association rule mining
- Mining single-dimensional Boolean association rules from transactional databases
- Mining multilevel association rules from transactional databases
- Mining multidimensional association rules from transactional databases and data warehouse
- From association mining to correlation analysis
- Constraint-based association mining
- Summary

Association Rule Mining: A Road Map

Boolean (Qualitative) vs. quantitative
 associations (Based on the types of values handled)

```
buys(x, "SQLServer") ^ income(x, "DMBook") => buys(x, "DBMiner")
  [0.2%, 60%] (Boolean/Qualitative)

age(x, "30..39") ^ income(x, "42..48K") => buys(x, "PC") [1%, 75%]
  (quantitative)
```

 Single dimension (one predicate) vs. multiple dimensional associations (multiple predicates)

Association Rule Road Map (c.d)

- Single level vs. multiple-level analysis
 - What brands of beers are associated with what brands of diapers – single level
 - Various extensions
 - 1. Correlation analysis (just discussed)
 - 2. **Association does not necessarily imply correlation** or causality
 - 3. Constraints enforced

Example:

smallsales (sum < 100) implies bigbuys (sum >1,000)?

Chapter 5: Mining Association Rules

- Association rule mining
- Mining single-dimensional Boolean association rules from transactional databases
- Mining multilevel association rules from transactional databases
- Mining multidimensional association rules from transactional databases and data warehouse
- From association mining to correlation analysis
- Constraint-based association mining
- Summary

An Example

Transaction ID	Items Bought
2000	A,B,C
1000	A,C
4000	A,D
5000	B,E,F

Min. support 50%

Min. confidence 50%

Frequent Itemset	Support
{A}	75%
{B}	50%
{C}	50%
{A,C}	50%

For rule $A \Rightarrow C$:

support = support(
$$\{A, C\}$$
) = 50%
confidence = sc($\{A, C\}$)/sc($\{A\}$) = 66.6%

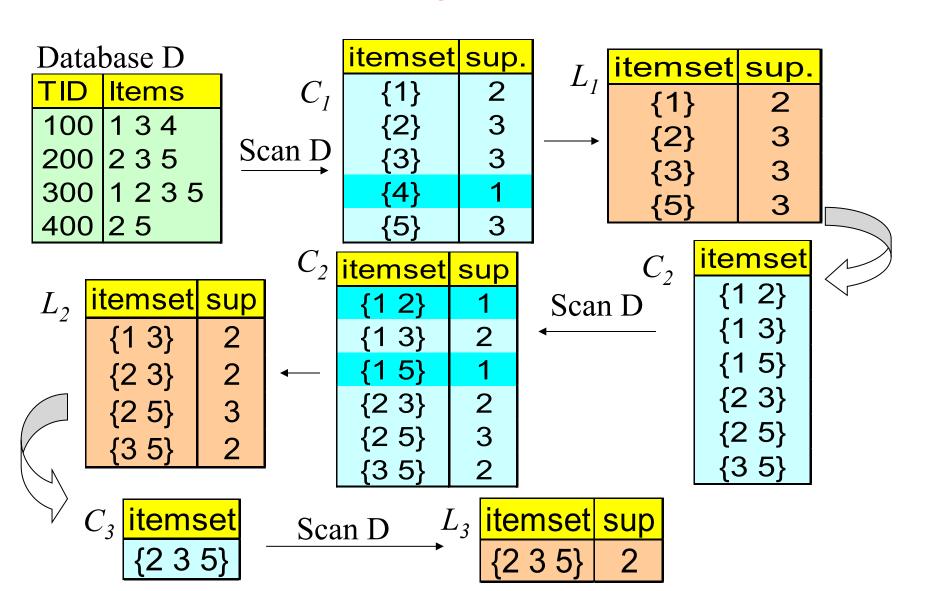
The Apriori principle:

Any subset of a frequent itemset must be frequent

Mining Frequent Itemsets: the Key Step

- Find the frequent item sets: the sets of items that have minimum support
 - A subset of a frequent item set must also be a frequent item set
 - i.e., if {A, B} is a frequent item set, both {A} and {B} should be a frequent item set
 - Iteratively find frequent item sets with cardinality from 1 to k (k-item set)
- Use the frequent item sets to generate association rules.

Apriori Algorithm — Book Example of frequents items sets generation



Generating Candidates: C_k

 Join Step: C_k is generated by joining L_k with itself

 Prune Step: Any (k-1)-item set that is not frequent cannot be a subset of a frequent k-item set

Example of Generating Candidates

- L₃={abc, abd, acd, ace, bcd}
- We write abc for {a,b,c}, etc...
- Self-joining: L_3*L_3
 - abcd from abc and abd
 - acde from acd and ace
- Pruning:
 - acde is removed because ade is not frequent: is not in L₃
- C₄={abcd}

Appriori Performance Bottlenecks

- The core of the Apriori algorithm:
 - Use frequent (k 1)-item sets to generate
 candidate frequent k-item sets
 - Use database scan and pattern matching to collect counts for the candidate item sets
- The bottleneck of Apriori: candidate generation
 - Huge candidate sets:
 - 10⁴ frequent 1-itemset will generate 10⁷ candidate 2-itemsets
 - To discover a frequent pattern of size 100, e.g.,
 - $\{a_1, a_2, ..., a_{100}\}$, one needs to generate $2^{100} \approx 10^{30}$ candidates
 - Multiple scans of database:
 - Needs (n + 1) scans, n is the length of the longest pattern

How to Count Supports of Candidates?

- Why counting supports of candidates is a problem?
 - The total number of candidates can be very huge
 - One transaction may contain many candidates

Method:

- Candidate itemsets are stored in a hash-tree
- Leaf node of hash-tree contains a list of itemsets and counts
- Interior node contains a hash table
- Subset function: finds all the candidates contained in a transaction

Methods to Improve Apriori's Efficiency

- Hash-based itemset counting: A k-itemset whose corresponding
 hashing bucket count is below the threshold cannot be frequent
- Transaction reduction: A transaction that does not contain any frequent k-itemset is useless in subsequent scans
- Partitioning: Any itemset that is potentially frequent in DB must be frequent in at least one of the partitions of DB
- Sampling: mining on a subset of given data, lower support threshold + a method to determine the completeness
- Dynamic itemset counting: add new candidate itemsets only when all of their subsets are estimated to be frequent

An Alternative: Mining Frequent Patterns Without Candidate Generation

- Compress a large database into a compact,
- Frequent-Pattern tree (FP-tree) structure
 - highly condensed, but complete for frequent pattern mining
 - avoid costly database scans
- Develop an efficient, FP-tree-based frequent pattern mining method
 - A divide-and-conquer methodology: decompose mining tasks into smaller ones
 - Avoid candidate generation: sub-database test only!

Why Is Frequent Pattern Growth Fast?

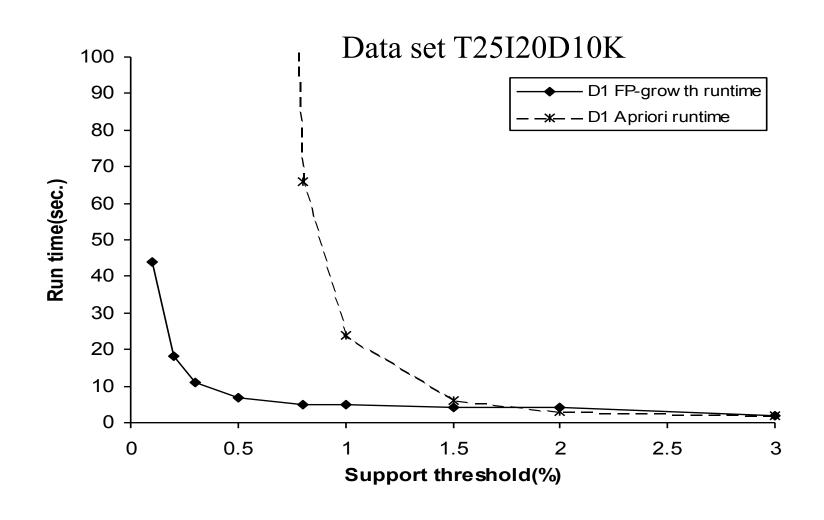
Performance study shows

FP-growth is an order of magnitude faster than
 Apriori, and is also faster than tree-projection

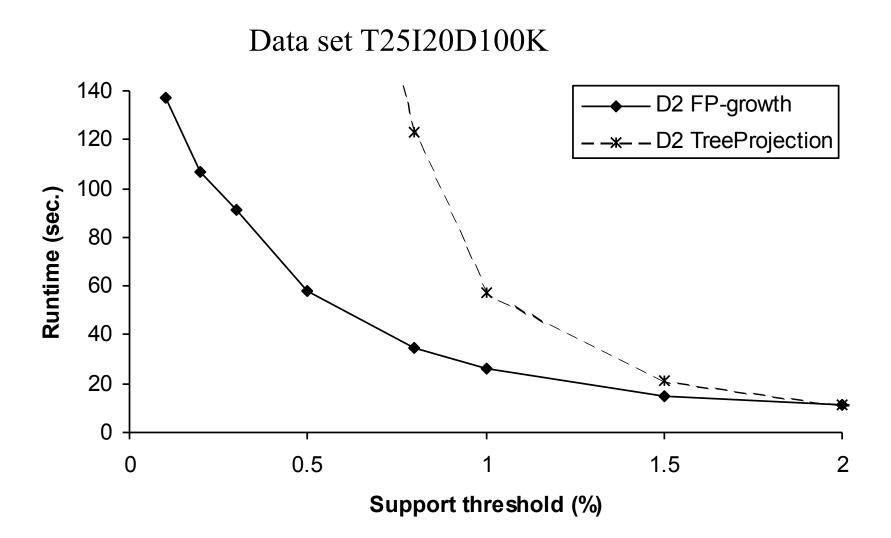
Reasoning

- No candidate generation, no candidate test
- Use compact data structure
- Eliminate repeated database scan
- Basic operation is counting and FP-tree building

FP-growth vs. Apriori: Scalability With the Support Threshold



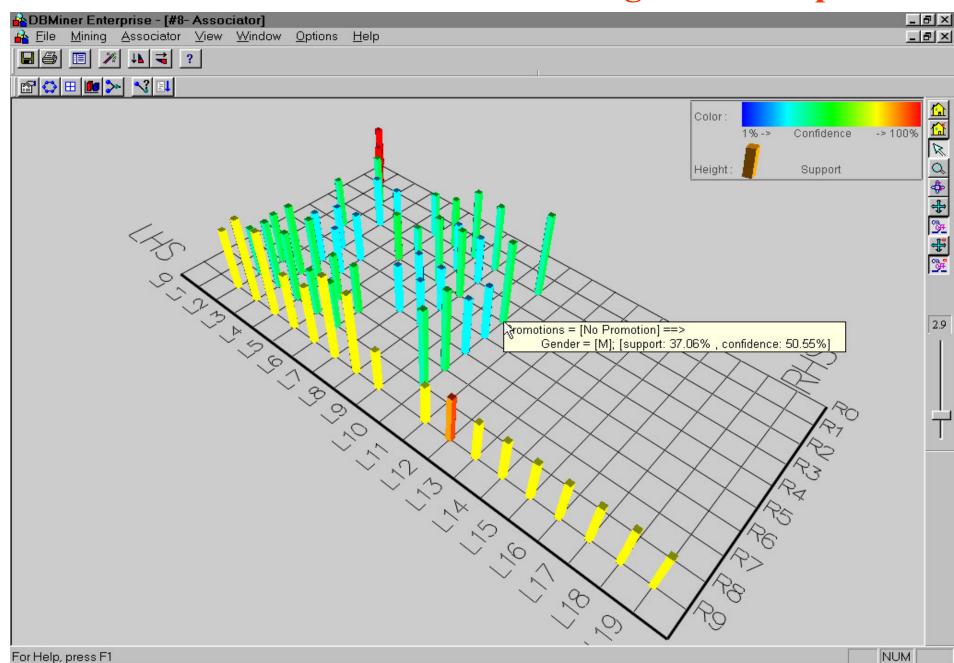
FP-growth vs. Tree-Projection: Scalability with Support Threshold



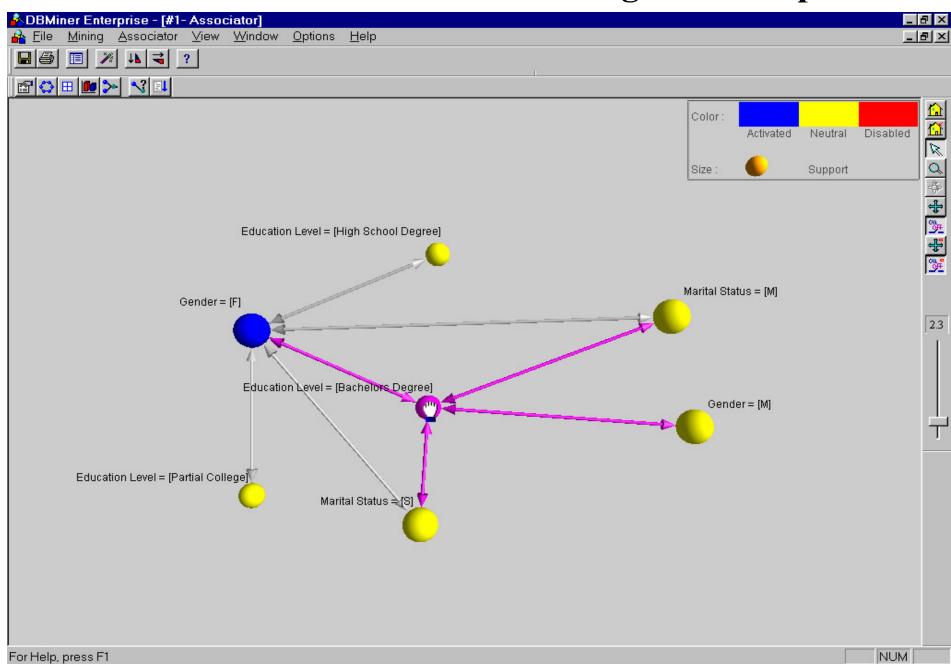
Presentation of Association Rules (Table Form)

	Body	Implies	Head	Supp (%)	Conf (%)	F	G	Н	I	
1	cost(x) = '0.00~1000.00'	==>	revenue(x) = '0.00~500.00'	28.45	40.4					
2	cost(x) = '0.00~1000.00'	==>	revenue(x) = '500.00~1000.00'	20.46	29.05					
3	cost(x) = '0.00~1000.00'	==>	order_qty(x) = '0.00~100.00'	59.17	84.04					
4	cost(x) = '0.00~1000.00'	==>	revenue(x) = '1000.00~1500.00'	10.45	14.84					T
5	cost(x) = '0.00~1000.00'	==>	region(x) = 'United States'	22.56	32.04					T
6	cost(x) = '1000.00~2000.00'	==>	order_qty(x) = '0.00~100.00'	12.91	69.34					T
7	order qty(x) = '0.00~100.00'	==>	revenue(x) = '0.00~500.00'	28.45	34.54					T
8	order qty(x) = '0.00~100.00'	==>	cost(x) = '1000.00~2000.00'	12.91	15.67					T
9	order_qty(x) = '0.00~100.00'	==>	region(x) = 'United States'	25.9	31.45					T
	order_qty(x) = '0.00~100.00'	==>	cost(x) = '0.00~1000.00'	59.17	71.86					T
11	order_qty(x) = '0.00~100.00'	==>	product line(x) = Tents'	13.52	16.42					T
12	order qty(x) = '0.00~100.00'	==>	revenue(x) = '500.00~1000.00'	19.67	23.88					T
13	product_line(x) = Tents'	==>	order_qty(x) = '0.00~100.00'	13.52	98.72					T
14	region(x) = 'United States'	==>	order_qty(x) = '0.00~100.00'	25.9	81.94					
15	region(x) = 'United States'	==>	cost(x) = '0.00~1000.00'	22.56	71.39					
16	revenue(x) = '0.00~500.00'	==>	cost(x) = '0.00~1000.00'	28.45	100					T
17	revenue(x) = '0.00~500.00'	==>	order_qty(x) = '0.00~100.00'	28.45	100					T
18	revenue(x) = '1000.00~1500.00'	==>	cost(x) = '0.00~1000.00'	10.45	96.75					T
19	revenue(x) = '500.00~1000.00'	==>	cost(x) = '0.00~1000.00'	20.46	100					T
20	revenue(x) = '500.00~1000.00'	==>	order_qty(x) = '0.00~100.00'	19.67	96.14					T
21										T
22										T
23	cost(x) = 10.00~1000.00'	==>	revenue(x) = '0.00~500.00' AND order_qty(x) = '0.00~100.00'	28.45	40.4					
24	cost(x) = 10.00~1000.00'	==>	revenue(x) = $0.00 \sim 500.00'$ AND order_qty(x) = $0.00 \sim 100.00'$	28.45	40.4					
25	cost(x) = 10.00~1000.00'	==>	revenue(x) = '500.00~1000.00' AND order_qty(x) = '0.00~100.00'	19.67	27.93					
26	cost(x) = 10.00~1000.00'	==>	revenue(x) = '500.00~1000.00' AND order_qty(x) = '0.00~100.00'	19.67	27.93					
21	cost(x) = '0.00~1000.00' AND order_qty(x) = '0.00~100.00'	==>	revenue(x) = '500.00~1000.00'	19.67	33.23				_	•
	Sheet1 /									1

Visualization of Association Rule Using Plane Graph



Visualization of Association Rule Using Rule Graph



Iceberg Queries

- Iceberg query: Compute aggregates over one or a set of attributes only for those whose aggregate values is above certain threshold
- Example:

```
select P.custID, P.itemID, sum(P.qty)
from purchase P
group by P.custID, P.itemID
having sum(P.qty) >= 10
```

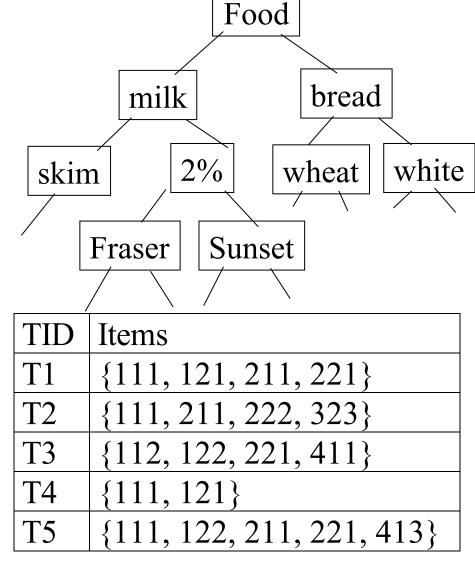
- Compute iceberg queries efficiently by Apriori:
 - First compute lower dimensions
 - Then compute higher dimensions only when all the lower ones are above the threshold

Chapter 5: Mining Association Rules in Large Databases

- Association rule mining
- Mining single-dimensional Boolean association rules from transactional databases
- Mining multilevel association rules from transactional databases
- Mining multidimensional association rules from transactional databases and data warehouse
- From association mining to correlation analysis
- Constraint-based association mining
- Summary

Multiple-Level Association Rules

- Items often form hierarchy
- Items at the lower level are expected to have lower support.
- Rules regarding itemsets at appropriate levels could be quite useful.
- Transaction database can be encoded based on dimensions and levels
- We can explore shared multilevel mining



Mining Multi-Level Associations

- A top_down, progressive deepening approach:
 - First find high-level strong rules:

```
milk → bread [20%, 60%]
```

Then find their lower-level "weaker" rules:

```
2% milk \rightarrow wheat bread [6%, 50%]
```

- Variations at mining multiple-level association rules.
 - Level-crossed association rules:

```
2% milk → Wonder wheat bread
```

Association rules with multiple, alternative hierarchies:

```
2% milk → Wonder bread
```

Chapter 5: Mining Association Rules in Large Databases

- Association rule mining
- Mining single-dimensional Boolean association rules from transactional databases
- Mining multilevel association rules from transactional databases
- Mining multidimensional association rules from transactional databases and data warehouse
- From association mining to correlation analysis
- Constraint-based association mining
- Summary

Multi-Dimensional Association (1)

- Single-dimensional rules:
- buys(X, "milk") \Rightarrow buys(X, "bread")
- Multi-dimensional rules: Involve 2 or more dimensions or predicates
 - Inter-dimension association rules (no repeated predicates)
 - age(X,"19-25") ∧ occupation(X,"student") ⇒ buys(X,"coke")

Multi-Dimensional Association

 Hybrid-dimension association rules (repeated predicates)

```
• age(X,"19-25") ∧ buys(X, "popcorn") ⇒ buys(X, "coke")
```

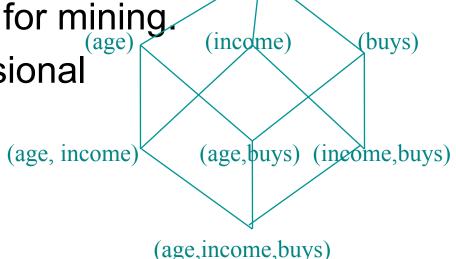
- Categorical (qualitative) Attributes
 - finite number of possible values, no ordering among values
- Quantitative Attributes
 - numeric, implicit ordering among values

Techniques for Mining MD Associations

- Search for frequent k-predicate set:
 - Example:
 - {age, occupation, buys} is a 3-predicate set.
 - Techniques can be categorized by how age are treated.
- 1. Using static discretization of quantitative attributes
 - Quantitative attributes are statically discretized by using predefined concept hierarchies.
- 2. Quantitative association rules
 - Quantitative attributes are dynamically discretized into "bins" based on the distribution of the data.
- 3. Distance-based association rules
 - This is a dynamic discretization process that considers the distance between data points.

Static Discretization of Quantitative Attributes

- Discretized prior to mining using concept hierarchy.
- Numeric values are replaced by ranges
- In relational database, finding all frequent kpredicate sets will require k or k+1 table scans.
- Data cube is well suited for mining.
- The cells of an n-dimensional cuboid correspond to the predicate sets.
- Mining from data cubes can be much faster.



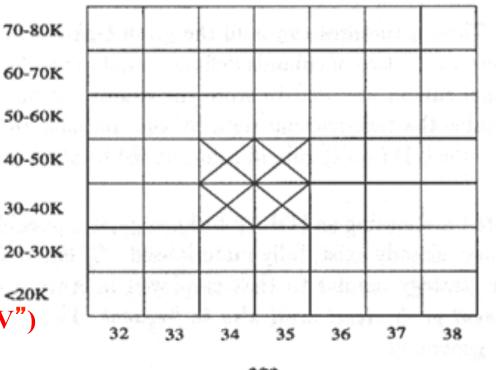
Quantitative Association Rules

- Numeric attributes are dynamically discretized
 - Such that the confidence or compactness of the rules mined is maximized.
- 2-D quantitative association rules: $A_{quan1} \land A_{quan2} \Rightarrow A_{cat}$

Cluster "adjacent"

association rules
to form general
rules using a 2-D
income
grid.

Example:



ARCS (Association Rule Clustering System)

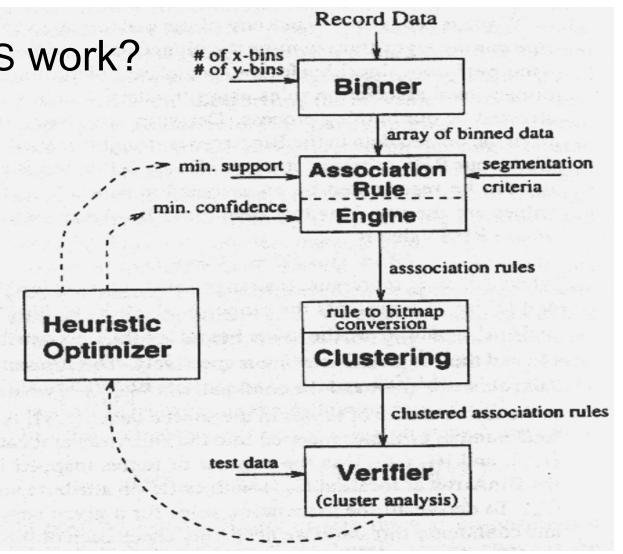
How does ARCS work?

1. Binning

2. Find frequent predicateset

3. Clustering

4. Optimize



Limitations of ARCS

- Only quantitative attributes on LHS of rules.
- Only 2 attributes on LHS. (2D limitation)
- An alternative to ARCS
 - Non-grid-based
 - equi-depth binning
 - clustering based on a measure of partial completeness.
 - "Mining Quantitative Association Rules in Large Relational Tables" by R. Srikant and R. Agrawal.

Clusters and Distance Measurements

 The diameter, d, assesses the density of a cluster C_X, where

$$d(C_X) \le d_0^X$$

$$|C_X| \ge S_0$$

- Finding clusters and distance-based rules
 - the density threshold, d_0 , replaces the notion of support
 - modified version of the BIRCH clustering algorithm

Mining Distance-based Association Rules

Binning methods do not capture the semantics of interval

data

	Equi-width	Equi-depth	Distance-
Price(\$)	(width \$10)	(depth 2)	based
7	[0,10]	[7,20]	[7,7]
20	[11,20]	[22,50]	[20,22]
22	[21,30]	[51,53]	[50,53]
50	[31,40]		
51	[41,50]		
53	[51,60]		

- Distance-based partitioning, more meaningful discretization considering:
 - density/number of points in an interval
 - "closeness" of points in an interval

Clusters and Distance Measurements

- S[X] is a set of N tuples t₁, t₂, ..., t_N, projected on the attribute set X
- The diameter of S[X]:

$$d(S[X]) = \frac{\sum_{i=1}^{N} \sum_{j=1}^{N} dist_X(t_i[X], t_j[X])}{N(N-1)}$$

- dist_x:distance metric, e.g. Euclidean distance or

Manhattan

Chapter 5: Mining Association Rules in Large Databases

- Association rule mining
- Mining single-dimensional Boolean association rules from transactional databases
- Mining multilevel association rules from transactional databases
- Mining multidimensional association rules from transactional databases and data warehouse
- From association mining to correlation analysis
- Constraint-based association mining
- Summary

Interestingness Measurements

- Objective measures
 - Two popular measurements:
 - 1 support; and
 - 2 confidence
- Subjective measures (Silberschatz & Tuzhilin, KDD95)
 - A rule (pattern) is interesting if
 - it is *unexpected* (surprising to the user); and/or
 - actionable (the user can do something with it)

Criticism to Support and Confidence

Example 2:

- X and Y: positively correlated,
- X and Z, negatively related
- support and confidence of X=>Z dominates

X	1	1	1	1	0	0	0	0
Y	~	1	0	0	0	0	0	0
Z	0	1	1	1	1	1	1	1

Rule	Support	Confidence
X=>Y	25%	50%
X=>Z	37.50%	75%

Other Interestingness Measures: Interest

$$\frac{P(A \land B)}{P(A)P(B)}$$

- taking both P(A) and P(B) in consideration
- $-P(A^B)=P(B)^*P(A)$, if A and B are independent events
- A and B negatively correlated, if the value is less than 1;
 otherwise A and B positively correlated.

X	1	1	1	1	0	0	0	0
Y	1	1	0	0	0	0	0	0
Z	0	1	1	1	1	1	1	1

Itemset	Support	Interest
X,Y	25%	2
X,Z	37.50%	0.9
Y,Z	12.50%	0.57

Chapter 5: Mining Association Rules in Large Databases

- Association rule mining
- Mining single-dimensional Boolean association rules from transactional databases
- Mining multilevel association rules from transactional databases
- Mining multidimensional association rules from transactional databases and data warehouse
- From association mining to correlation analysis
- Constraint-based association mining
- Summary

Constraint-Based Mining

- Interactive, exploratory mining giga-bytes of data?
 - Could it be real? Making good use of constraints!
- What kinds of constraints can be used in mining?
 - Knowledge type constraint: classification, association, etc.
 - Data constraint: SQL-like queries
 - Dimension/level constraints:
 - in relevance to region, price, brand, customer category
 - small sales (price < \$10) triggers big sales (sum > \$200).
 - Interestingness constraints:
 - strong rules (min_support ≥ 3%, min_confidence ≥ 60%).

Rule Constraints in Association Mining

- Two kind of rule constraints:
 - Rule form constraints: meta-rule guided mining.
 - $P(x, y) \wedge Q(x, w) \rightarrow takes(x, "database systems").$
 - Rule (content) constraint: constraint-based query optimization (Ng, et al., SIGMOD' 98).
 - sum(LHS) < 100 ^ min(LHS) > 20 ^ count(LHS) > 3 ^ sum(RHS) > 1000
- 1-variable vs. 2-variable constraints (Lakshmanan, et al. SIGMOD' 99):
 - 1-var: A constraint confining only one side (L/R) of the rule, e.g., as shown above.
 - 2-var: A constraint confining both sides (L and R).
 - sum(LHS) < min(RHS) ^ max(RHS) < 5* sum(LHS)

Chapter 5: Mining Association Rules in Large Databases

- Association rule mining
- Mining single-dimensional Boolean association rules from transactional databases
- Mining multilevel association rules from transactional databases
- Mining multidimensional association rules from transactional databases and data warehouse
- From association mining to correlation analysis
- Constraint-based association mining
- Summary

Why Is the Big Pie Still There?

- More on constraint-based mining of associations
 - Boolean vs. quantitative associations
 - Association on discrete vs. continuous data
 - From association to correlation and causal structure analysis.
 - Association does not necessarily imply correlation or causal relationships
 - From intra-trasanction association to intertransaction associations
 - E.g., break the barriers of transactions (Lu, et al. TOIS' 99).
 - From association analysis to classification and clustering analysis
 - E.g, clustering association rules

Summary

- Association rule mining
 - probably the most significant contribution from the database community in KDD
 - A large number of papers have been published
- Many interesting issues have been explored
- An interesting research direction:
 - Association analysis in other types of data: spatial data, multimedia data, time series data, etc.