Association Rules Mining
An Introduction

• This is an intuitive (more or less) introduction
• It contains explanation of the main ideas:
• Frequent item sets, association rules, how we construct the association rules
• How we judge the goodness of the rules
• Example of an intuitive “run” of the Apriori Algorithm and association rules generation
• Discussion of the relationship between the Association and Correlation analysis
What Is Association Mining?

Association rule mining:

Finding frequent patterns called associations, among sets of items or objects in transaction databases, relational databases, and other information repositories

• Applications:
 – Basket data analysis, cross-marketing, catalog design, loss-leader analysis, clustering, classification, etc.
Association Rules

• Rule **general** form:
 “Body → Head [support, confidence]”

Rule **Predicate** form:

buys(x, “diapers”) → buys(x, “beer”) [0.5%, 60%]

major(x, “CS”) ^ takes(x, “DB”) → grade(x, “A”) [1%, 75%]

Rule **Attribute** form:

Diapers → beer [1%, 75%]
Association Analysis: Basic Concepts

- **Given:** a database of transactions, where each transaction is a list of items

- **Find:** all rules that associate the presence of one set of items with that of another set of items

- **Example**

 98% of people who purchase tires and auto accessories also get automotive services done
Association Model

- $I = \{i_1, i_2, \ldots, i_n\}$ a set of items
- $J = P(I)$ set of all subsets of the set of items, elements of J are called itemsets
- Transaction T: T is subset of set I of items
- Data Base: set of transactions
- An association rule is an implication of the form: $X \rightarrow Y$, where X, Y are disjoint subsets of items I (elements of J)
- Problem: Find rules that have support and confidence greater than user-specified minimum support and minimum confidence
Apriori Algorithm

- Apriori Algorithm:
 - First Step: we find all frequent item-sets
 - An item-set is frequent if it has a support greater or equal a fixed minimum support
 - We fix minimum support usually low
 - Rules generation from the frequent item-sets is a separate problem and we will cover it as a part of Association Process
Apriori Algorithm

• In order to **calculate** efficiently frequent item-sets:
 • 1-item-sets (one element item-sets)
 • 2-item-sets (two elements item-sets)
 • 3-item-sets (three elements item-sets), etc..
• we use a **principle**, called an Apriori Principle (hence the name: Apriori Algorithm):
 • **Apriori Principle**
 • **ANY SUBSET OF A FREQUENT ITEMSET IS A FREQUENT ITEMSET**
The Apriori Algorithm (Han Book)

• Pseudo-code:

\(C_k\): Candidate itemset of size \(k\)
\(L_k\) : frequent itemset of size \(k\)

\(L_1 = \{\text{frequent items}\}\);
\[\text{for} \ (k = 1; \ L_k \neq \emptyset; \ k++; \ \text{do begin} \]
 \(C_{k+1} = \text{candidates generated from } L_k;\)
 \[\text{for each transaction } t \text{ in database do} \]
 \quad \text{increment the count of all candidates in } C_{k+1} \]
 \quad \text{that are contained in } t
 \[L_{k+1} = \text{candidates in } C_{k+1} \text{ with min_support}\]
[\text{end} \]
\[\text{return } \bigcup_k L_k;\]
Appriori Process: Rules Generation

• **Appriori Algorithm** stops after the First Step
• **Second Step** in the **Appriori Process** (item-sets generation AND rules generation) is the **rules generation**:
 • We calculate, from the **frequent item-sets** a set of the **strong rules**
 • **Strong rules**: rules with at least minimum support (low) and minimum confidence (high)
• **Apriori Process** is then finished.
Apriori Process
Rules Generation

• The Apriori Process problem is:
 • How do we form the association rules (A =>B) from the frequent item sets?

• Remember: A, B are disjoint subsets of the set I of items in general, and of the set 2-frequent, 3-frequent item sets etc, ... as generated by the Apriori Algorithm
How we find the rules?

- **1-frequent** item set: \{i1\} - no rule
- **2-frequent** item set \{i1, i2\}: there are two rules:
 - \{i1\} => \{i2\} and \{i2\} => \{i2\}
 - We write them also as
 - \(i1 \Rightarrow i2\) and \(i2 \Rightarrow i2\)
- We decide which rule we accept by calculating its **support** (greater= minimum support) and **confidence** (greater= minimum confidence)
How we find the rules?

- 3-frequent item set: \{i1, i2, i3\}
- **The rules**, by definition are of the form \((A \Rightarrow B)\) where \(A\) and \(B\) are **disjoint subsets** of \{i1, i2, i3\}, i.e.
 - we have to find all subsets \(A, B\) of \{i1, i2, i3\} such that \(A \cup B = \{i1, i2, i3\}\) and \(A \cap B = \emptyset\)
- **For example,**
 - let \(A = \{i1, i2\}\) and \(B = \{i3\}\)
 - **The rule** is
 - \{i1, i2\} \Rightarrow \{i3\}
 - and we write it in a form:
 - \(i1 \cap i2 \Rightarrow i3\) or \(\text{milk} \cap \text{bread} \Rightarrow \text{vodka}\)
 - if item \(i1\) is milk, item \(i2\) is bread and item \(i3\) is vodka
How we find the rules?

- Another choice for A and B is, for example:
 - \(A = \{i1\} \) and \(B = \{12, i3\} \).
- **The rule** is
 - \(\{i1\} \Rightarrow \{i2, i3\} \) and we write it in a form:
 - \(i1 \Rightarrow i2 \cap i3 \) or \(\text{milk} \Rightarrow \text{bread} \cap \text{vodka} \)
 - if item \(i1 \) is milk, item \(i2 \) is bread and item \(i3 \) is vodka
- **REMEMBER:**
 - **We have to cover all the choices for A and B!**
 - **Which rule we accept is being decided by calculating its support** (greater = minimum support) and **confidence** (greater = minimum confidence)
Rules Confidence and Support

- **Confidence:**
 - the rule \(X \rightarrow Y \) holds in the database \(D \) with confidence \(c \) if the \(c\% \) of the transactions in \(D \) that contain \(X \) also contain \(Y \)

- **Support:** The rule \(X \rightarrow Y \) has support \(s \) in \(D \) if \(s\% \) of the transaction contain \(XUY \)
Support and Confidence

- **Find** all the rules $X \& Y \Rightarrow Z$ with minimum confidence and support
 - **Support s:** probability that a transaction contains $\{X, Y, Z\}$
 - **Confidence c:** conditional probability that a transaction containing $\{X, Y\}$ also contains Z
Support Definition

• **Support** of a rule \(A \Rightarrow B \) in the database \(D \) of transactions is given by formula (where sc=support count)

\[
\text{Support}(A \Rightarrow B) = P(A \cup B) = \frac{\text{sc}(A \cup B)}{\#D}
\]

• **Frequent Item sets:** sets of items with a support support \(\geq \text{MINIMAL support} \)

We (user) **fix** MIN support usually **low** and Min Confidence **high**
Confidence Definition

- **Confidence** of a rule $A=>B$ in the database D of transactions is given by formula (where $sc=$support count).

- $Conf(A => B) = P(B|A) = \frac{P(A \cup B)}{P(A)} = \frac{sc(A \cup B)}{scA} \div \frac{#D}{#D}$
Example

- Let consider a data base $D = \{ T_1, T_2, \ldots, T_9 \}$, where
- $T_1 = \{ 1, 2, 5 \}$ (we write k for item i_k)
- $T_2 = \{ 2, 4 \}$, $T_3 = \{ 2, 3 \}$, $T_4 = \{ 1, 2, 4 \}$, $T_5 = \{ 1, 3 \}$
- $T_6 = \{ 2, 3 \}$, $T_7 = \{ 1, 3 \}$, $T_8 = \{ 1, 2, 3, 5 \}$, $T_9 = \{ 1, 2, 3 \}$
- To find association rules we follow the following steps
 - STEP 1: **Count** occurrences of items in D
 - STEP 2: Fix Minimum support (usually **low**)
 - STEP 3: Calculate frequent 1-item sets
 - STEP 4: Calculate frequent 2-item sets
 - STEP 5: Calculate frequent 3-item sets
 - **STOP** when there is no more frequent item sets
- This is the end of **Apriori Algorithm** phase
Example

• **How to** generate all frequent 3-item sets (in Step 5)

• **FIRST:** use the frequent 2-item sets to generate all 3-item set candidates

• **SECOND:** use Apriori Principle to prune the candidates set

• **THIRD:** Evaluate the count of the pruned set

• **FOUR:** list the frequent 3-item sets

• **STEP 6:** repeat the procedure for 4-item sets etc (if any)
Example- Apriori Process

• Apriori Process Steps:

 • **STEP 7:** Fix the *minimum* confidence (usually high)

 • **STEP 8:** Generate *strong rules* (support > min support and confidence > min confidence)

• END of rules generation phase

• END of the *Apriori Process*
Example- Apriori Process

- Lets now calculate all steps of our Apriori Process for a database
- \(D = \{ T_1, T_2, \ldots, T_9 \} \), where
 - \(T_1 = \{ 1, 2, 5 \} \) (we write \(k \) for item \(i_k \))
 - \(T_2 = \{ 2, 4 \}, \ T_3 = \{ 2, 3 \}, \ T_4 = \{ 1, 2, 4 \}, \ T_5 = \{ 1, 3 \} \)
 - \(T_6 = \{ 2, 3 \}, \ T_7 = \{ 1, 3 \}, \ T_8 = \{ 1, 2, 3, 5 \}, \ T_9 = \{ 1, 2, 3 \} \)
- Here is our Step 1
- We represent our transactional data base as relational data base (a table) and put the occurrences of items as an extra row, on the bottom
Example: Step 1

STEP 1: items occurrences = \(sc \)

<table>
<thead>
<tr>
<th>its</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>+</td>
</tr>
<tr>
<td>T2</td>
<td>0</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td>T3</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>T4</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td>T5</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>T6</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>T7</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>T8</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>+</td>
</tr>
<tr>
<td>T9</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>sc</td>
<td>6</td>
<td>7</td>
<td>6</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>
Example; Step 2

- **STEP 2:** Fix *minimal support count*, for example
 - msc = 2
 - **Minimal support** = \(\frac{msc}{\#D} = \frac{2}{9} = 22\% \)
 - ms=22%

- **Observe:** *minimal support* of an item set is determined uniquely by the *minimal support count* (msc) and we are going to use only **msc** to choose our frequent k-itemsets
Example: steps 3, 4

• **STEP 3:** calculate frequent 1-item sets: look at the sc count – we get that all 1-item sets are frequent

• **STEP 4:** calculate frequent 2-item sets

• First we calculate 2-item sets candidates from frequent 1-item sets.

• As our all 1-item sets are frequent so all subsets of any 2-item set are frequent and we have to find counts of all 2-item sets
Observation

- If for example we set our msc=6, i.e we would have only \{1\}, \{2\} and \{3\} as frequent item sets

- Then by Apriori Principle:
 - “if A is a frequent item set, then each of its subsets is a frequent item set”

- we would be examining only those 2-item sets that have \{1\}, \{2\}, \{3\} as subsets

- Apriori Principle reduces the complexity of the algorithm
Example: Step 4

• **STEP 4**: All 2-item sets = all 2-element subsets of \{1,2,3,4,5\} are **candidates** and we evaluate their **sc**=support counts (in red). They are called **2-item set candidates**

 • T1={ 1,2}, T2= {1, 3}, T3={1, 4}, T4={1, 5},

 • T5={2, 3}, T6={2, 4}, T7={2, 5}, T8={3,4}, T9={3,5}, T10={4,5}

 • \{1,2,\} (4), \{1,3\} (4), \{1,4\} (1), \{1,5\} (2),

 • \{2,3\} (4), \{2,4\} (2), \{2,5\} (2),

 • \{3,4\} (0), \{3,5\} (1),

 • \{4,5\} (0)

 • **msc**=2 and we choose **candidates** with **sc** >= 2 and get the following

• **Frequent 2- item sets**:

 • \{1,2\}, \{1,3\}, \{1,5\}, \{2,3\}, \{2,4\}, \{2,5\}
Example: Step 5

• **STEP 5**: generate all frequent 3-item sets
• We use frequent 2-item sets:
 • \{1,2\}, \{1,3\}, \{1,5\}, \{2,3\}, \{2,4\}, \{2,5\}
• and proceed as follows
• **FIRST**: we calculate from the frequent 2-item sets a set of all 3-item set candidates:
 • \{1,2,3\}, \{1,2,4\}, \{1,2,5\}, \{1,3,4\}, \{1,3,5\}, \{2,3,4\}, \{2,3,5\}, \{2,4,5\}
• Observe that the candidates
 • \{1,3,4\}, \{1,3,5\}, \{2,3,4\}, \{2,3,5\}, \{2,4,5\}
• **do not** follow Apriori Principle:
• “if A is a frequent item set, then each of its subsets is a frequent item set”
Example: Step 5

- **Frequent 2-item sets are:**
 - \{1,2\}, \{1,3\}, \{1,5\}, \{2,3\}, \{2,4\}, \{2,5\}
 - We reject \{1,3,4\} as its subset \{3,4\} is not a frequent 2-item set.
 - We reject \{1,3,5\} as its subset \{3,5\} is not a frequent 2-item set.
 - We reject \{2,3,4\} as its subset \{3,4\} is not a frequent 2-item set.
 - We reject \{2,3,5\} as its subset \{3,5\} is not a frequent 2-item set.
 - We reject \{2,4,5\} as its subset \{4,5\} is not a frequent 2-item set.

This rejection process is called **pruning**.

The following form of the Apriori Algorithm is called

- **Prune Step:** Any (k-1)-item set that is not frequent cannot be a subset of a frequent k-item set.
Example: Step 5

• SECOND: we perform the **Prune Step** and write the **pruned** frequent 3-item set **candidates**

 • \{1,2,3\}, \{1,2,5\}, \{1,2,4\}

• THIRD: we calculate the **sc=support count** for the **pruned** frequent 3-item **candidates**

 • \{1,2,3\} (2), \{1,2,5\} (2), \{1,2,4\} (1)

• FOUR:

 • **msc=2** and we choose the 3-item **candidates** with **sc >= 2** and get the following list of

 • **Frequent 3-item sets**

 • \{1,2,3\}, \{1,2,5\}
Example: Steps 6, 7

- **STEP 6:** there is no 4-item sets
- We **STOP** when there is no more frequent item sets

- This is the end of **Apriori Algorithm** phase

- **STEP 7:**
- We fix **minimum confidence** (usually high) as

- min conf = 70%

- We use the **confidence** to generate **Apriori Rules**
Example: Step 8
Association Rules Generation

• **Step 8:** Strong Rules Generation
• We will generate, as an example rules only from one frequent 2-item set: \{1,2\}
• Rule generation for other 2-item sets is similar
• Reminder: \(\text{conf}(A=>B) = \frac{\text{sc}(A\cup B)}{\text{sc}A}\)

We split \{1,2\} into disjoint subsets \(A\) and \(B\) as follows: \(A=\{1\}\) and \(B=\{2\}\) or \(A=\{2\}\) and \(B=\{1\}\) and get two possible rules:
• \(\{1\}=>\{2\}\) or \(\{2\}=>\{1\}\)
Example: Association Rules Generation

- \(\text{Conf}(1 \Rightarrow 2) = \frac{\text{sc}(1,1)}{\text{sc}(1)} = \frac{4}{6} = 66\% \)

 The rule is not accepted (\(\text{min conf} = 70\% \))

- \(\text{Conf}(2 \Rightarrow 1) = \frac{\text{sc}(1,2)}{\text{sc}(2)} = \frac{4}{7} = 57\% \)

 The rule is not accepted
Example: Step 8

- Now we use one frequent 3-item set \{1,2,5\} to show how to generate strong rules

- **First** we evaluate all possibilities how to split the set \{1,2,5\} into disjoint subsets A,B to obtain all possible rules A=>B

- For each rule we evaluate its confidence and choose only those with \text{conf} \geq 70\% (our minimal confidence)

- The minimal support condition is fulfilled as we deal only with frequent items

- The rules such obtained are strong rules
Example: Association Rules Generation

• The rules for \{1,2,5\} are the following:
• **R1**: \{1,2\} => \{5\}
 • \text{conf}(R1) = sc\{1,2,5\}/sc\{1,2\} = 2/4 = \frac{1}{2} = 50\%
 • R1 is rejected
• **R2**: \{1,5\} => \{2\}
 • \text{conf}(R2) = sc\{1,2,5\}/sc\{1,5\} = 2/2 = 100\%
 • R2 is a strong rule (keep)
• **R3**: \{2,5\} => \{1\}
 • \text{conf}(R3) = sc\{1,2,5\}/sc\{2,5\} = 2/2 = 100\%
 • R3 is a strong rule (keep)
• **R4**: \{1\} => \{2,5\}
 • \text{conf}(R4) = sc\{1,2,5\}/sc\{1\} = 2/6 = 33\%
 • R4 is rejected
Example: Association Rules Generation

• The next set of rules for \{1,2,5\} are the following:
• R5: \{2\}=>\{1,5\}
 • conf(R5)=\text{sc}\{1,2,5\}/\text{sc}\{2\}= 2/7 = 27%
• R5 is rejected
• R6: \{5\} => \{1,2\}
 • conf(R6)=\text{sc}\{1,2,5\}/\text{sc}\{5\} = 2/2 = 100%
• R6 is a strong rule (keep)
• As the last step we evaluate the exact support for the strong rules
• We know already that it is greater or equal to minimum support, as rules were obtained from the frequent item sets
Example: Association Rules Generation

- **Exact support** for the strong rules is:

 - \(\text{Sup}({1,5}=>{2}) = \frac{\text{sc}(1,2,5)}{\#D} = \frac{2}{9} = 22\% \)
 - We write: \(1 \cap 5 \Rightarrow 2 \ [22\%, 100\%] \)
 - \(\text{Sup}({2,5}=>{1}) = \frac{\text{sc}(1,2,5)}{\#D} = \frac{2}{9} = 22\% \)
 - We write: \(2 \cap 5 \Rightarrow 1 \ [22\%, 100\%] \)
 - \(\text{Sup}({5}=>{1,2}) = \frac{\text{sc}(1,2,5)}{\#D} = \frac{2}{9} = 22\% \)
 - We write: \(5 \Rightarrow 1 \cap 2 \ [22\%, 100\%] \)

- **THE END of Apriori Process**
Association and Correlation

• As we can see the support-confidence framework can be misleading;
• it can identify a rule A=>B as interesting (strong) when, in fact the occurrence of A might not imply the occurrence of B
• **Correlation Analysis** provides an alternative framework for finding interesting relationships,
• or to **improve** understanding of meaning of some association rules (a lift of an association rule)
Correlation and Association

• **Definition:** Two item sets A and B are **independent** (the occurrence of A is independent of the occurrence of item set B) iff probability P fulfills the condition

 $$P(A \cup B) = P(A) \cdot P(B)$$

• Otherwise A and B are **dependent** or **correlated**

• The **measure of correlation**, or **correlation** between A and B is given by the formula:

 $$\text{Corr}(A,B)= \frac{P(A \cup B)}{P(A)P(B)}$$
Correlation and Association

• $\text{corr}(A,B) > 1$ means that A and B are positively correlated i.e. the occurrence of one implies the occurrence of the other

• $\text{corr}(A,B) < 1$ means that the occurrence of A is negatively correlated with B or discourages the occurrence of B

• $\text{corr}(A,B) = 1$ means that A and B are independent
Correlation and Association

• The correlation formula can be re-written as

\[
\text{Corr}(A, B) = \frac{P(B|A)}{P(B)}
\]

• \(\text{Supp}(A\Rightarrow B) = P(A \cup B)\)
• \(\text{Conf}(A\Rightarrow B) = P(B|A), \text{ i.e.}\)
• \(\text{Conf}(A\Rightarrow B) = \text{corr}(A, B) \cdot P(B)\)

• So correlation, support and confidence are all different, but the correlation provides an *extra information* about the *association rule* \(A\Rightarrow B\)

• We say that the correlation \(\text{corr}(A, B)\) provides the *LIFT* of the *association rule* \(A\Rightarrow B\), i.e.

• \(A\) is said to *increase* or to *LIFT* the likelihood of \(B\) by the factor of the value returned by the formula for \(\text{corr}(A, B)\)
Correlation Rule (HAN Book)

- **A correlation rule** is a set of items
- \(\{i_1, i_2, \ldots, i_n\} \), where the items occurrences are correlated
- The correlation value is given by the **correlation formula** and we use **X square test** to determine if correlation is statistically significant
- The **X square test** can also determine the **negative correlation**
- We can also form **minimal correlated item sets**, etc…
- **Limitations**: **X square test** is less accurate on the data tables that are sparse and can be misleading for the contingency tables larger than 2x2
Criticism to Support and Confidence
(Han book)

• **Example 1:** (Aggarwal & Yu, PODS98)
 - Among 5000 students
 - 3000 play basketball
 - 3750 eat cereal
 - 2000 both play basketball and eat cereal

RULE: \(\text{play basketball} \Rightarrow \text{eat cereal} \) [40\%, 66.7\%] is misleading because the overall percentage of students eating cereal is 75\% which is higher than 66.7\%.

RULE: \(\text{play basketball} \Rightarrow \text{not eat cereal} \) [20\%, 33.3\%] is far more accurate, although with lower support and confidence

<table>
<thead>
<tr>
<th></th>
<th>basketball</th>
<th>not basketball</th>
<th>sum(row)</th>
</tr>
</thead>
<tbody>
<tr>
<td>cereal</td>
<td>2000</td>
<td>1750</td>
<td>3750</td>
</tr>
<tr>
<td>not cereal</td>
<td>1000</td>
<td>250</td>
<td>1250</td>
</tr>
<tr>
<td>sum(col.)</td>
<td>3000</td>
<td>2000</td>
<td>5000</td>
</tr>
</tbody>
</table>
EXTRTA Slides

• ADDITIONAL MATERIAL
• Read, explore; much of it I already covered in our slides
Mining Association Rules in Large Databases
Slightly modified HAN Book slides follow from now
Mining Association Rules in Large Databases

• Association rule mining
• Mining single-dimensional Boolean association rules from transactional databases
• Mining multilevel association rules from transactional databases
• Mining multidimensional association rules from transactional databases and data warehouse
• From association mining to correlation analysis
• Constraint-based association mining
• Summary
Association Rule Mining: A Road Map

- **Boolean (Qualitative) vs. quantitative associations** (Based on the types of values handled)

 \[
 \text{bought}(x, \text{"SQLServer"}) \land \text{income}(x, \text{"DMBook"}) \Rightarrow \text{bought}(x, \text{"DBMiner"}) \quad [0.2\%, 60\%] \quad \text{(Boolean/Qualitative)}
 \]

 \[
 \text{age}(x, \text{"30..39"}) \land \text{income}(x, \text{"42..48K"}) \Rightarrow \text{bought}(x, \text{"PC"}) \quad [1\%, 75\%] \quad \text{(quantitative)}
 \]

- **Single dimension** (one predicate) vs. **multiple dimensional associations** (multiple predicates)
Association Rule Road Map (c.d)

- **Single level vs. multiple-level analysis**
 - What **brands of beers** are associated with what **brands of diapers** – **single level**
 - Various extensions
 1. Correlation analysis (just discussed)
 2. **Association does not necessarily imply correlation or causality**
 3. Constraints enforced
 Example:

 \[\text{smallsales (sum} < 100) \text{ implies bigbuys (sum} > 1,000) \]?
Chapter 5: Mining Association Rules

- Association rule mining
- Mining single-dimensional Boolean association rules from transactional databases
- Mining multilevel association rules from transactional databases
- Mining multidimensional association rules from transactional databases and data warehouse
- From association mining to correlation analysis
- Constraint-based association mining
- Summary
An Example

For rule $A \Rightarrow C$:

- **Support**
 \[
 \text{support} = \text{support}\left(\{A, C\}\right) = 50\%
 \]

- **Confidence**
 \[
 \text{confidence} = \frac{\text{sc}(\{A, C\})}{\text{sc}(\{A\})} = \frac{50\%}{50\%} = 66.6\%
 \]

The Apriori principle:

Any subset of a frequent itemset must be frequent.
Mining Frequent Itemsets: the Key Step

• **Find the frequent item sets**: the sets of items that have minimum support
 – A subset of a frequent item set must also be a frequent item set
 • i.e., if \{A, B\} is a frequent item set, both \{A\} and \{B\} should be a frequent item set
 – Iteratively find frequent item sets with cardinality from 1 to \(k\) (\(k\)-item set)

• **Use the frequent item sets to generate association rules.**
Apriori Algorithm — Book Example of frequent items sets generation

Database D

<table>
<thead>
<tr>
<th>TID</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>1 3 4</td>
</tr>
<tr>
<td>200</td>
<td>2 3 5</td>
</tr>
<tr>
<td>300</td>
<td>1 2 3 5</td>
</tr>
<tr>
<td>400</td>
<td>2 5</td>
</tr>
</tbody>
</table>

Scan D

\[C_1 \]

itemset	sup.
{1} | 2
{2} | 3
{3} | 3
{4} | 1
{5} | 3

\[L_1 \]

itemset	sup.
{1} | 2
{2} | 3
{3} | 3
{5} | 3

Scan D

\[C_2 \]

itemset	sup
{1 2} | 1
{1 3} | 2
{1 5} | 1
{2 3} | 2
{2 5} | 3
{3 5} | 2

\[L_2 \]

itemset

{1 3}
{2 3}
{2 5}
{3 5}
{1 2}
{1 3}
{1 5}
{2 3}
{2 5}
{3 5}

Scan D

\[C_3 \]

itemset

{2 3 5}

\[L_3 \]

itemset	sup.
{2 3 5} | 2
Generating Candidates: C_k

- **Join Step**: C_k is generated by joining L_k with itself.

- **Prune Step**: Any $(k-1)$-item set that is not frequent cannot be a subset of a frequent k-item set.
Example of Generating Candidates

• $L_3=\{abc, abd, acd, ace, bcd\}$

• We write abc for $\{a,b,c\}$, etc…

• Self-joining: $L_3 \ast L_3$
 – $abcd$ from abc and abd
 – $acde$ from acd and ace

• Pruning:
 – $acde$ is removed because ade is not frequent: is not in L_3

• $C_4=\{abcd\}$
Appriori Performance Bottlenecks

• The **core** of the Apriori algorithm:
 – Use frequent \((k-1)\)-item sets to generate **candidate** frequent \(k\)-item sets
 – Use database scan and pattern matching to collect counts for the **candidate** item sets

• The **bottleneck** of Apriori: **candidate generation**
 – Huge candidate sets:
 • \(10^4\) frequent 1-itemset will generate \(10^7\) **candidate** 2-itemsets
 • To discover a frequent pattern of size 100, e.g.,
 • \(\{a_1, a_2, \ldots, a_{100}\}\), one needs to generate \(2^{100} \approx 10^{30}\) candidates
 – Multiple scans of database:
 • Needs \((n + 1)\) scans, \(n\) is the length of the longest pattern
How to Count Supports of Candidates?

• Why counting supports of candidates is a problem?
 – The total number of candidates can be very huge
 – One transaction may contain many candidates

• Method:
 – Candidate itemsets are stored in a hash-tree
 – Leaf node of hash-tree contains a list of itemsets and counts
 – Interior node contains a hash table
 – Subset function: finds all the candidates contained in a transaction
Methods to Improve Apriori’s Efficiency

- **Hash-based itemset counting**: A k-itemset whose corresponding hashing bucket count is below the threshold cannot be frequent.

- **Transaction reduction**: A transaction that does not contain any frequent k-itemset is useless in subsequent scans.

- **Partitioning**: Any itemset that is potentially frequent in DB must be frequent in at least one of the partitions of DB.

- **Sampling**: mining on a subset of given data, lower support threshold + a method to determine the completeness.

- **Dynamic itemset counting**: add new candidate itemsets only when all of their subsets are estimated to be frequent.
An Alternative: Mining Frequent Patterns Without Candidate Generation

- **Compress** a large database into a compact,
 - **Frequent-Pattern tree (FP-tree) structure**
 - highly condensed, but complete for frequent pattern mining
 - avoid costly database scans
 - **Develop** an efficient, **FP-tree-based** frequent pattern mining method
 - A divide-and-conquer methodology: decompose mining tasks into smaller ones
 - **Avoid candidate generation**: sub-database test only!
Why Is Frequent Pattern Growth Fast?

• **Performance study shows**
 – FP-growth is an order of magnitude faster than Apriori, and is also faster than tree-projection

• **Reasoning**
 – No candidate generation, no candidate test
 – Use compact data structure
 – Eliminate repeated database scan
 – Basic operation is counting and FP-tree building
FP-growth vs. Apriori: Scalability With the Support Threshold

Data set T25I20D10K

Run time (sec.)

Support threshold (%)
FP-growth vs. Tree-Projection: Scalability with Support Threshold

Data set T25I20D100K

- D2 FP-growth
- D2 TreeProjection
Presentation of Association Rules

(Table Form)

<table>
<thead>
<tr>
<th>Body</th>
<th>Implies</th>
<th>Head</th>
<th>Supp (%)</th>
<th>Conf (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>cost(x) = '0.00~1000.00'</td>
<td>revenue(x) = '0.00~500.00'</td>
<td>28.45</td>
<td>40.4</td>
</tr>
<tr>
<td>2</td>
<td>cost(x) = '0.00~1000.00'</td>
<td>revenue(x) = '500.00~1000.00'</td>
<td>20.46</td>
<td>29.05</td>
</tr>
<tr>
<td>3</td>
<td>cost(x) = '0.00~1000.00'</td>
<td>order_qty(x) = '0.00~100.00'</td>
<td>59.17</td>
<td>34.04</td>
</tr>
<tr>
<td>4</td>
<td>cost(x) = '0.00~1000.00'</td>
<td>revenue(x) = '1000.00~1500.00'</td>
<td>10.45</td>
<td>14.84</td>
</tr>
<tr>
<td>5</td>
<td>cost(x) = '0.00~1000.00'</td>
<td>region(x) = 'United States'</td>
<td>22.56</td>
<td>32.04</td>
</tr>
<tr>
<td>6</td>
<td>cost(x) = '1000.00~2000.00'</td>
<td>order_qty(x) = '0.00~100.00'</td>
<td>12.91</td>
<td>69.34</td>
</tr>
<tr>
<td>7</td>
<td>order_qty(x) = '0.00~100.00'</td>
<td>revenue(x) = '0.00~500.00'</td>
<td>28.45</td>
<td>34.54</td>
</tr>
<tr>
<td>8</td>
<td>order_qty(x) = '0.00~100.00'</td>
<td>cost(x) = '1000.00~2000.00'</td>
<td>12.91</td>
<td>15.67</td>
</tr>
<tr>
<td>9</td>
<td>order_qty(x) = '0.00~100.00'</td>
<td>region(x) = 'United States'</td>
<td>25.9</td>
<td>31.45</td>
</tr>
<tr>
<td>10</td>
<td>order_qty(x) = '0.00~100.00'</td>
<td>cost(x) = '0.00~1000.00'</td>
<td>59.17</td>
<td>71.86</td>
</tr>
<tr>
<td>11</td>
<td>order_qty(x) = '0.00~100.00'</td>
<td>product_line(x) = 'Tents'</td>
<td>13.52</td>
<td>16.42</td>
</tr>
<tr>
<td>12</td>
<td>order_qty(x) = '0.00~100.00'</td>
<td>revenue(x) = '500.00~1000.00'</td>
<td>19.67</td>
<td>23.88</td>
</tr>
<tr>
<td>13</td>
<td>product_line(x) = 'Tents'</td>
<td>order_qty(x) = '0.00~100.00'</td>
<td>13.52</td>
<td>98.72</td>
</tr>
<tr>
<td>14</td>
<td>region(x) = 'United States'</td>
<td>order_qty(x) = '0.00~100.00'</td>
<td>25.9</td>
<td>31.94</td>
</tr>
<tr>
<td>15</td>
<td>region(x) = 'United States'</td>
<td>cost(x) = '0.00~1000.00'</td>
<td>22.56</td>
<td>71.39</td>
</tr>
<tr>
<td>16</td>
<td>revenue(x) = '0.00~500.00'</td>
<td>cost(x) = '0.00~1000.00'</td>
<td>28.45</td>
<td>100</td>
</tr>
<tr>
<td>17</td>
<td>revenue(x) = '0.00~500.00'</td>
<td>order_qty(x) = '0.00~100.00'</td>
<td>28.45</td>
<td>100</td>
</tr>
<tr>
<td>18</td>
<td>revenue(x) = '1000.00~1500.00'</td>
<td>cost(x) = '0.00~1000.00'</td>
<td>10.45</td>
<td>96.75</td>
</tr>
<tr>
<td>19</td>
<td>revenue(x) = '500.00~1000.00'</td>
<td>cost(x) = '0.00~1000.00'</td>
<td>20.46</td>
<td>100</td>
</tr>
<tr>
<td>20</td>
<td>revenue(x) = '500.00~1000.00'</td>
<td>order_qty(x) = '0.00~100.00'</td>
<td>19.67</td>
<td>96.14</td>
</tr>
<tr>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>cost(x) = '0.00~1000.00'</td>
<td>revenue(x) = '0.00500.00' AND order_qty(x) = '0.00100.00'</td>
<td>28.45</td>
<td>40.4</td>
</tr>
<tr>
<td>24</td>
<td>cost(x) = '0.00~1000.00'</td>
<td>revenue(x) = '0.00500.00' AND order_qty(x) = '0.00100.00'</td>
<td>28.45</td>
<td>40.4</td>
</tr>
<tr>
<td>25</td>
<td>cost(x) = '0.00~1000.00'</td>
<td>revenue(x) = '500.001000.00' AND order_qty(x) = '0.00100.00'</td>
<td>19.67</td>
<td>27.93</td>
</tr>
<tr>
<td>26</td>
<td>cost(x) = '0.00~1000.00'</td>
<td>revenue(x) = '500.001000.00' AND order_qty(x) = '0.00100.00'</td>
<td>19.67</td>
<td>27.93</td>
</tr>
<tr>
<td>27</td>
<td>cost(x) = '0.001000.00' AND order_qty(x) = '0.00100.00'</td>
<td>revenue(x) = '500.00~1000.00'</td>
<td>19.67</td>
<td>33.23</td>
</tr>
</tbody>
</table>
Visualization of Association Rule Using Plane Graph
Visualization of Association Rule Using Rule Graph

- Education Level = [High School Degree]
- Gender = [F]
- Marital Status = [M]
- Education Level = [Bachelors Degree]
- Marital Status = [S]
- Education Level = [Partial College]
- Gender = [M]
Iceberg Queries

- **Iceberg query:** Compute aggregates over one or a set of attributes only for those whose aggregate values is above certain threshold

- **Example:**
  ```sql
  select P.custID, P.itemID, sum(P.qty)
  from purchase P
  group by P.custID, P.itemID
  having sum(P.qty) >= 10
  ```

- **Compute iceberg queries efficiently by Apriori:**
 - First compute lower dimensions
 - Then compute higher dimensions only when all the lower ones are above the threshold
Chapter 5: Mining Association Rules in Large Databases

- Association rule mining
- Mining single-dimensional Boolean association rules from transactional databases
- Mining multilevel association rules from transactional databases
- Mining multidimensional association rules from transactional databases and data warehouse
- From association mining to correlation analysis
- Constraint-based association mining
- Summary
Multiple-Level Association Rules

- **Items often form hierarchy**
- **Items at the lower level are expected to have lower support.**
- **Rules regarding itemsets at appropriate levels could be quite useful.**
- **Transaction database can be encoded based on dimensions and levels**
- **We can explore shared multi-level mining**

<table>
<thead>
<tr>
<th>TID</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>{111, 121, 211, 221}</td>
</tr>
<tr>
<td>T2</td>
<td>{111, 211, 222, 323}</td>
</tr>
<tr>
<td>T3</td>
<td>{112, 122, 221, 411}</td>
</tr>
<tr>
<td>T4</td>
<td>{111, 121}</td>
</tr>
<tr>
<td>T5</td>
<td>{111, 122, 211, 221, 413}</td>
</tr>
</tbody>
</table>
Mining Multi-Level Associations

• A top_down, progressive deepening approach:
 – First find high-level strong rules:
 milk \rightarrow bread [20%, 60%]
 – Then find their lower-level “weaker” rules:
 2% milk \rightarrow wheat bread [6%, 50%]

• Variations at mining multiple-level association rules.
 – Level-crossed association rules:
 2% milk \rightarrow Wonder wheat bread
 – Association rules with multiple, alternative hierarchies:
 2% milk \rightarrow Wonder bread
Chapter 5: Mining Association Rules in Large Databases

- Association rule mining
- Mining single-dimensional Boolean association rules from transactional databases
- Mining multilevel association rules from transactional databases
- Mining multidimensional association rules from transactional databases and data warehouse
- From association mining to correlation analysis
- Constraint-based association mining
- Summary
Multi-Dimensional Association (1)

- **Single-dimensional rules:**

- buys(X, “milk”) \Rightarrow buys(X, “bread”)

- **Multi-dimensional rules:** Involve 2 or more dimensions or predicates

 - Inter-dimension association rules (no repeated predicates)

 - age(X,”19-25”) \land occupation(X,”student”) \Rightarrow buys(X,”coke”)
Multi-Dimensional Association

- Hybrid-dimension association rules (repeated predicates)

 \[\text{age}(X, "19-25") \land \text{buys}(X, "popcorn") \implies \text{buys}(X, "coke") \]

- Categorical (qualitative) Attributes
 - finite number of possible values, no ordering among values

- Quantitative Attributes
 - numeric, implicit ordering among values
Techniques for Mining MD Associations

• Search for frequent k-predicate set:
 – Example:
 – \{age, occupation, buys\} is a 3-predicate set.
 – Techniques can be categorized by how age are treated.

1. Using static discretization of quantitative attributes
 – Quantitative attributes are statically discretized by using predefined concept hierarchies.

2. Quantitative association rules
 – Quantitative attributes are dynamically discretized into “bins” based on the distribution of the data.

3. Distance-based association rules
 – This is a dynamic discretization process that considers the distance between data points.
Static Discretization of Quantitative Attributes

- **Discretized prior** to mining using concept hierarchy.
- Numeric values are replaced by ranges
- In relational database, finding all frequent \(k \)-predicate sets will require \(k \) or \(k+1 \) table scans.
- Data cube is well suited for mining.
- The cells of an \(n \)-dimensional cuboid correspond to the predicate sets.
- Mining from data cubes can be much faster.
Quantitative Association Rules

- Numeric attributes are *dynamically* discretized
 - Such that the confidence or compactness of the rules mined is maximized.
- 2-D quantitative association rules: $A_{\text{quan}1} \land A_{\text{quan}2} \Rightarrow A_{\text{cat}}$
- Cluster “adjacent” association rules to form general rules using a 2-D grid.
- Example:

\[
\text{age}(X, "30-34") \land \\
\text{income}(X, "24K - 48K") \Rightarrow \text{buys}(X, "high resolution TV")
\]
ARCS (Association Rule Clustering System)

How does ARCS work?
1. Binning
2. Find frequent predicateset
3. Clustering
4. Optimize
Limitations of ARCS

- Only quantitative attributes on LHS of rules.
- Only 2 attributes on LHS. (2D limitation)
- An alternative to ARCS
 - Non-grid-based
 - equi-depth binning
 - clustering based on a measure of *partial completeness*.
 - “*Mining Quantitative Association Rules in Large Relational Tables*” by R. Srikant and R. Agrawal.
Clusters and Distance Measurements

• The diameter, d, assesses the density of a cluster C_X, where

\[d(C_X) \leq d_0^X \]

\[|C_X| \geq s_0 \]

• Finding clusters and distance-based rules
 – the density threshold, d_0, replaces the notion of support
 – modified version of the BIRCH clustering algorithm
Mining Distance-based Association Rules

- Binning methods do not capture the semantics of interval data

<table>
<thead>
<tr>
<th>Price ($)</th>
<th>Equi-width (width $10)</th>
<th>Equi-depth (depth 2)</th>
<th>Distance-based</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>[0,10]</td>
<td>[7,20]</td>
<td>[7,7]</td>
</tr>
<tr>
<td>20</td>
<td>[11,20]</td>
<td>[22,50]</td>
<td>[20,22]</td>
</tr>
<tr>
<td>22</td>
<td>[21,30]</td>
<td>[51,53]</td>
<td>[50,53]</td>
</tr>
<tr>
<td>50</td>
<td>[31,40]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>[41,50]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>[51,60]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Distance-based partitioning, more meaningful discretization considering:
 - density/number of points in an interval
 - “closeness” of points in an interval
Clusters and Distance Measurements

• $S[X]$ is a set of N tuples t_1, t_2, \ldots, t_N, projected on the attribute set X

• The diameter of $S[X]$:

$$d(S[X]) = \frac{\sum_{i=1}^{N} \sum_{j=1}^{N} \text{dist}_x(t_i[X], t_j[X])}{N(N-1)}$$

– dist_x: distance metric, e.g. Euclidean distance or Manhattan
Chapter 5: Mining Association Rules in Large Databases

- Association rule mining
- Mining single-dimensional Boolean association rules from transactional databases
- Mining multilevel association rules from transactional databases
- Mining multidimensional association rules from transactional databases and data warehouse
- From association mining to correlation analysis
- Constraint-based association mining
- Summary
Interestingness Measurements

• Objective measures
 Two popular measurements:
 ❶ support; and
 ❷ confidence

• Subjective measures (Silberschatz & Tuzhilin, KDD95)
 A rule (pattern) is interesting if
 ❶ it is unexpected (surprising to the user); and/or
 ❷ actionable (the user can do something with it)
Criticism to Support and Confidence

• Example 2:
 – X and Y: positively correlated,
 – X and Z, negatively related
 – support and confidence of
 X=>Z dominates

<table>
<thead>
<tr>
<th>Rule</th>
<th>Support</th>
<th>Confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>X=>Y</td>
<td>25%</td>
<td>50%</td>
</tr>
<tr>
<td>X=>Z</td>
<td>37.50%</td>
<td>75%</td>
</tr>
</tbody>
</table>
Other Interestingness Measures: Interest

- **Interest**
 \[
 \frac{P(A \land B)}{P(A)P(B)}
 \]
 - taking both \(P(A) \) and \(P(B) \) in consideration
 - \(P(A \land B) = P(B) \times P(A) \), if \(A \) and \(B \) are independent events
 - \(A \) and \(B \) negatively correlated, if the value is less than 1; otherwise \(A \) and \(B \) positively correlated.

<table>
<thead>
<tr>
<th>Itemset</th>
<th>Support</th>
<th>Interest</th>
</tr>
</thead>
<tbody>
<tr>
<td>X,Y</td>
<td>25%</td>
<td>2</td>
</tr>
<tr>
<td>X,Z</td>
<td>37.5%</td>
<td>0.9</td>
</tr>
<tr>
<td>Y,Z</td>
<td>12.5%</td>
<td>0.57</td>
</tr>
</tbody>
</table>
Chapter 5: Mining Association Rules in Large Databases

• Association rule mining
• Mining single-dimensional Boolean association rules from transactional databases
• Mining multilevel association rules from transactional databases
• Mining multidimensional association rules from transactional databases and data warehouse
• From association mining to correlation analysis
• Constraint-based association mining
• Summary
Constraint-Based Mining

- Interactive, exploratory mining giga-bytes of data?
 - Could it be real? — Making good use of constraints!
- What kinds of constraints can be used in mining?
 - Knowledge type constraint: classification, association, etc.
 - Data constraint: SQL-like queries
 - Dimension/level constraints:
 - in relevance to **region, price, brand, customer category**
 - small sales (price < $10) triggers big sales (sum > $200).
 - Interestingness constraints:
 - strong rules (min_support ≥ 3%, min_confidence ≥ 60%).
Rule Constraints in Association Mining

• Two kind of rule constraints:
 – Rule form constraints: meta-rule guided mining.
 • \(P(x, y) \land Q(x, w) \rightarrow \text{takes}(x, \text{“database systems”}) \).
 – Rule (content) constraint: constraint-based query optimization (Ng, et al., SIGMOD’ 98).
 • \(\text{sum}(\text{LHS}) < 100 \land \text{min}(\text{LHS}) > 20 \land \text{count}(\text{LHS}) > 3 \land \text{sum}(\text{RHS}) > 1000 \)

• 1-variable vs. 2-variable constraints (Lakshmanan, et al. SIGMOD’ 99):
 – 1-var: A constraint confining only one side (L/R) of the rule, e.g., as shown above.
 – 2-var: A constraint confining both sides (L and R).
 • \(\text{sum}(\text{LHS}) < \text{min}(\text{RHS}) \land \text{max}(\text{RHS}) < 5 \ast \text{sum}(\text{LHS}) \)
Chapter 5: Mining Association Rules in Large Databases

- Association rule mining
- Mining single-dimensional Boolean association rules from transactional databases
- Mining multilevel association rules from transactional databases
- Mining multidimensional association rules from transactional databases and data warehouse
- From association mining to correlation analysis
- Constraint-based association mining
- Summary
Why Is the Big Pie Still There?

- More on constraint-based mining of associations
 - **Boolean vs. quantitative associations**
 - Association on discrete vs. continuous data
 - **From association to correlation and causal structure analysis.**
 - Association does not necessarily imply correlation or causal relationships
 - **From intra-trasaction association to inter-transaction associations**
 - E.g., break the barriers of transactions (Lu, et al. TOIS’ 99).
 - **From association analysis to classification and clustering analysis**
 - E.g, clustering association rules
Summary

• **Association rule mining**
 – probably the *most significant contribution* from the database community in KDD
 – A large number of papers have been published

• Many interesting issues have been explored

• An interesting research direction:
 – **Association analysis in other types of data**: spatial data, multimedia data, time series data, etc.