The Apriori Algorithm: Basics

The Apriori Algorithm
It is an influential algorithm for mining frequent itemsets and using them for creating association rules.

Key Concepts:
• Frequent Itemsets
• Apriori Property
The Apriori Algorithm: Basics

Key Concepts:

Frequent Itemsets

• The sets of item which has minimum support (denoted by L_i for i^{th}-Itemset)

• Apriori Property

• Any subset of frequent itemset must be frequent

• Join Operation

• To find L_k, a set of candidate k-itemsets is generated by joining L_{k-1} with itself.
The Apriori Algorithm in a Nutshell

- Apriori Algorithm finds the frequent itemsets
 i.e. the sets of items that have minimum support

It follows the Apriori Principle:

a subset of a frequent itemset must also be a frequent itemset

i.e., if \{A, B\} is a frequent itemset, both \{A\} and \{B\} should be a frequent itemset
The Apriori Algorithm in a Nutshell

- Apriori Algorithm

The algorithm Iteratively finds frequent itemsets with cardinality from 1 to \(k \) (k-itemset)

- As the next step in the Apriori Process we use the frequent itemsets to generate association rules
The Apriori Algorithm : Pseudo code

• Join Step: C_k is generated by joining L_{k-1} with itself

• Prune Step: Any (k-1)-itemset that is not frequent cannot be a subset of a frequent k-itemset

• Pseudo-code:

 C_k: Candidate itemset of size k
 L_k: frequent itemset of size k

 $L_1 =$ \{frequent items\};
 for ($k = 1; L_k \neq \emptyset; k++$) do begin
 C_{k+1} = candidates generated from L_k;
 for each transaction t in database do
 increment the count of all candidates in C_{k+1}
 that are contained in t
 L_{k+1} = candidates in C_{k+1} with min_support
 end
 return $\bigcup_k L_k$;
The Apriori Algorithm: Example

- Consider a database, \(D \), consisting of 9 transactions.
- Suppose min. support count required is 2 (i.e. \(\text{min}_\text{sup} = \frac{2}{9} = 22\% \))
- Let minimum confidence required is 70%.
- We have to first find out the frequent itemset using Apriori algorithm.
- Then, Association rules will be generated using min. support & min. confidence.

<table>
<thead>
<tr>
<th>TID</th>
<th>List of Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>T100</td>
<td>I1, I2, I5</td>
</tr>
<tr>
<td>T100</td>
<td>I2, I4</td>
</tr>
<tr>
<td>T100</td>
<td>I2, I3</td>
</tr>
<tr>
<td>T100</td>
<td>I1, I2, I4</td>
</tr>
<tr>
<td>T100</td>
<td>I1, I3</td>
</tr>
<tr>
<td>T100</td>
<td>I2, I3</td>
</tr>
<tr>
<td>T100</td>
<td>I1, I3</td>
</tr>
<tr>
<td>T100</td>
<td>I1, I2, I3, I5</td>
</tr>
<tr>
<td>T100</td>
<td>I1, I2, I3</td>
</tr>
</tbody>
</table>
Step 1: Generating 1-itemset Frequent Pattern

Scan D for count of each candidate

<table>
<thead>
<tr>
<th>Itemset</th>
<th>Sup.Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>{I1}</td>
<td>6</td>
</tr>
<tr>
<td>{I2}</td>
<td>7</td>
</tr>
<tr>
<td>{I3}</td>
<td>6</td>
</tr>
<tr>
<td>{I4}</td>
<td>2</td>
</tr>
<tr>
<td>{I5}</td>
<td>2</td>
</tr>
</tbody>
</table>

C₁

Compare candidate support count with minimum support count

<table>
<thead>
<tr>
<th>Itemset</th>
<th>Sup.Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>{I1}</td>
<td>6</td>
</tr>
<tr>
<td>{I2}</td>
<td>7</td>
</tr>
<tr>
<td>{I3}</td>
<td>6</td>
</tr>
<tr>
<td>{I4}</td>
<td>2</td>
</tr>
<tr>
<td>{I5}</td>
<td>2</td>
</tr>
</tbody>
</table>

L₁

• The set of frequent 1-itemsets, L₁, consists of the candidate
• 1-itemsets satisfying minimum support.
• In the first iteration of the algorithm, each item is a member of the set of candidates.
Step 2: Generating 2-itemset Frequent Pattern

• To **discover** the set of frequent 2-itemsets, \(L_2 \), the algorithm uses \(L_1 \text{Join} L_1 \) to generate a candidate set of 2-itemsets, \(C_2 \).

• **Next**, the transactions in \(D \) are **scanned** and the **support count** for each candidate itemset in \(C_2 \) is accumulated (as shown in the middle table).
Step 2: Generating 2-itemset Frequent Pattern

• 2-itemsets, L_2, is then determined, consisting of those candidate 2-itemsets in C_2 having minimum support

• Note: We haven’t used Apriori Property yet
Step 2: Generating 2-itemset Frequent Pattern

Generate C_2 candidates from L_1

C_2

{I1, I2}
{I1, I3}
{I1, I4}
{I1, I5}
{I2, I3}
{I2, I4}
{I2, I5}
{I3, I4}
{I3, I5}
{I4, I5}

Scan D for count of each candidate

C_2

Compare candidate support count with minimum support count

L_2

<table>
<thead>
<tr>
<th>Itemset</th>
<th>Sup. Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>{I1, I2}</td>
<td>4</td>
</tr>
<tr>
<td>{I1, I3}</td>
<td>4</td>
</tr>
<tr>
<td>{I1, I4}</td>
<td>1</td>
</tr>
<tr>
<td>{I1, I5}</td>
<td>2</td>
</tr>
<tr>
<td>{I2, I3}</td>
<td>4</td>
</tr>
<tr>
<td>{I2, I4}</td>
<td>2</td>
</tr>
<tr>
<td>{I2, I5}</td>
<td>2</td>
</tr>
<tr>
<td>{I3, I4}</td>
<td>0</td>
</tr>
<tr>
<td>{I3, I5}</td>
<td>1</td>
</tr>
<tr>
<td>{I4, I5}</td>
<td>0</td>
</tr>
</tbody>
</table>
Step 3: Generating 3-itemset Frequent Pattern

- In order to find C_3, we first compute $L_2 \ Join \ L_2$
- $C_3 = L_2 \ Join \ L_2 = \{\{I1, I2, I3\}, \{I1, I2, I5\}, \{I1, I3, I5\}, \{I2, I3, I4\}, \{I2, I3, I5\}, \{I2, I4, I5\}\}.$
- Now, Join step is complete and Prune step will be used to reduce the size of C_3
- Prune step helps to avoid heavy computation due to large $C_k.$
Step 3: Generating 3-itemset Frequent Pattern

- Apriori property says that all subsets of a frequent itemset must also be frequent

- \(C_3 = L_2 \text{ Join } L_2 = \{\{I_1, I_2, I_3\}, \{I_1, I_2, I_5\}, \{I_1, I_3, I_5\}, \{I_2, I_3, I_4\}, \{I_2, I_3, I_5\}, \{I_2, I_4, I_5\}\}

- We determine now which of candidates in \(C_3 \) can and which can not possibly be frequent

- Take \(\{I_1, I_2, I_3\} \)

- The 2-item subsets of it are \(\{I_1, I_2\}, \{I_1, I_3\}, \{I_2, I_3\} \)

 All of them are members of \(L_2 \)

 We keep \(\{I_1, I_2, I_3\} \) in \(C_3 \)
Step 3: Generating 3-itemset Frequent Pattern

- Lets take \{I2, I3, I5\}
- The 2-item subsets are \{I2, I3\}, \{I2, I5\}, \{I3, I5\}
- But \{I3, I5\} is not a member of \(L_2\) and hence it is not frequent violating Apriori Property
- Thus we remove \{I2, I3, I5\} from \(C_3\)

All 2-item subsets of \{I1, I2, I5\} members of \(L_2\)
Therefore \(C_3 = \{\{I1, I2, I3\}, \{I1, I2, I5\}\}\)

- Now, the transactions in \(D\) are scanned in order to determine \(L_3\), consisting of those candidates 3-itemsets in \(C_3\) having minimum support and we get that
- \(L_3 = \{\{I1, I2, I3\}, \{I1, I2, I5\}\}\)
Step 4: Generating 4-itemset Frequent Pattern

- The algorithm uses $L_3 \text{Join} L_3$ to generate a candidate set of 4-itemsets, C_4
- $C_4 = L_3 \text{Join} L_3 = \{\{I_1, I_2, I_3, I_5\}\}$
- This itemset $\{\{I_1, I_2, I_3, I_5\}\}$ is pruned since its subset $\{\{I_2, I_3, I_5\}\}$ is not frequent.
- Thus, $C_4 = \emptyset$ and algorithm terminates

What’s Next?

Obtained frequent itemsets are to be used to generate strong association rules
(where strong association rules are rules that satisfy both minimum support and minimum confidence)
Step 5: Generating Association Rules from Frequent Itemsets

• Procedure:
 • For each frequent itemset \(I \), generate the set of all nonempty subsets of \(I \)
 • For every nonempty subset \(S \) of \(I \),
 • output the rule \(S \rightarrow I - S \)
 • if \(\frac{\text{support}_\text{count}(I)}{\text{support}_\text{count}(S)} \geq \text{min}_\text{conf} \)
 • where \(\text{min}_\text{conf} \) is minimum confidence threshold.

• Example
 We obtained the set of all frequent itemsets
 \(L = \{\{I_1\}, \{I_2\}, \{I_3\}, \{I_4\}, \{I_5\}, \{I_1,I_2\}, \{I_1,I_3\}, \{I_1,I_5\}, \{I_2,I_3\}, \{I_2,I_4\}, \{I_2,I_5\}, \{I_1,I_2,I_3\}, \{I_1,I_2,I_5\}\} \)
 • Lets take for example \(I = \{I_1,I_2,I_5\} \)
Step 5: Generating Association Rules from Frequent Itemsets

- Let's take $I = \{I1, I2, I5\}$
 - Its all nonempty subsets are $\{I1, I2\}$, $\{I1, I5\}$, $\{I2, I5\}$, $\{I1\}$, $\{I2\}$, $\{I5\}$

 Let minimum confidence threshold be, say 70%

- The resulting association rules are shown below, each listed with its confidence.
 - $R1: I1 \land I2 \rightarrow I5$
 - Confidence $= sc\{I1, I2, I5\}/sc\{I1, I2\} = 2/4 = 50%$
 - $R1$ is Rejected.

 - $R2: I1 \land I5 \rightarrow I2$
 - Confidence $= sc\{I1, I2, I5\}/sc\{I1, I5\} = 2/2 = 100%$
 - $R2$ is Selected.

 - $R3: I2 \land I5 \rightarrow I1$
 - Confidence $= sc\{I1, I2, I5\}/sc\{I2, I5\} = 2/2 = 100%$
 - $R3$ is Selected.
Step 5: Generating Association Rules from Frequent Itemsets

- **R4: I1 → I2 \(^\land \) I5**
 - Confidence = \(\frac{\text{sc}\{I1,I2,I5\}}{\text{sc}\{I1\}} = \frac{2}{6} = 33\% \)
 - R4 is rejected.

- **R5: I2 → I1 \(^\land \) I5**
 - Confidence = \(\frac{\text{sc}\{I1,I2,I5\}}{\{I2\}} = \frac{2}{7} = 29\% \)
 - R5 is rejected.

- **R6: I5 → I1 \(^\land \) I2**
 - Confidence = \(\frac{\text{sc}\{I1,I2,I5\}}{\{I5\}} = \frac{2}{2} = 100\% \)
 - R6 is Selected

- We have found three **strong association rules**
Methods to Improve Apriori’s Efficiency

- **Hash-based itemset counting:**
 - A *k*-itemset whose corresponding hashing bucket count is below the threshold cannot be frequent.

- **Transaction reduction:**
 - A transaction that does not contain any frequent *k*-itemset is useless in subsequent scans.

- **Partitioning:**
 - Any itemset that is potentially frequent in DB must be frequent in at least one of the partitions of DB.
Methods to Improve Apriori’s Efficiency

- **Sampling:**
 - mining on a *subset* of given data,
 - *lower* support threshold
 - add a method to determine the *completeness*

- **Dynamic itemset counting:**
 - *add* new candidate *itemsets only* when all of their *subsets* are estimated to be *frequent*
Mining Frequent Patterns Without Candidate Generation

- **Compress** a large database into a compact,
- **Frequent-Pattern tree (FP-tree) structure**
 - highly condensed, but complete for frequent pattern mining
 - avoid costly database scans
- **Develop** an efficient, **FP-tree-based** frequent pattern mining method
 - A divide-and-conquer methodology: decompose mining tasks into smaller ones
 - **Avoid** candidate generation:
 sub-database test only!
FP-Growth Method: An Example

Consider the same previous example of a database, D, consisting of 9 transactions.

Suppose min. support count required is 2 (i.e. \(\text{min_sup} = \frac{2}{9} = 22\% \))

The first scan of database is same as Apriori, which derives the set of 1-itemsets & their support counts.

The set of frequent items is sorted in the order of descending support count.

The resulting set is denoted as \(L = \{I2:7, I1:6, I3:6, I4:2, I5:2\} \)

<table>
<thead>
<tr>
<th>TID</th>
<th>List of Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>T100</td>
<td>I1, I2, I5</td>
</tr>
<tr>
<td>T100</td>
<td>I2, I4</td>
</tr>
<tr>
<td>T100</td>
<td>I2, I3</td>
</tr>
<tr>
<td>T100</td>
<td>I1, I2, I4</td>
</tr>
<tr>
<td>T100</td>
<td>I1, I3</td>
</tr>
<tr>
<td>T100</td>
<td>I2, I3</td>
</tr>
<tr>
<td>T100</td>
<td>I1, I3</td>
</tr>
<tr>
<td>T100</td>
<td>I1, I2, I3, I5</td>
</tr>
<tr>
<td>T100</td>
<td>I1, I2, I3</td>
</tr>
</tbody>
</table>
FP-Growth Method: Construction of FP-Tree

• First, create the root of the tree, labeled with “null”.

• Scan the database D a second time
 • First time we scanned it to create 1-itemset and then
 • L = {I2:7, I1:6, I3:6, I4:2, I5:2}

• The items in each transaction are processed in L order (i.e. sorted order)

• A branch is created for each transaction with items having their support count separated by colon
FP-Growth Method: Construction of FP-Tree

• Whenever the same node is encountered in another transaction, we just increment the support count of the common node or Prefix

• To facilitate tree traversal, an item header table is built so that each item points to its occurrences in the tree via a chain of node-links

• The problem of mining frequent patterns in database is transformed to that of mining the FP-Tree
FP-Growth Method: Construction of FP-Tree

<table>
<thead>
<tr>
<th>Item Id</th>
<th>Sup Count</th>
<th>Node-link</th>
</tr>
</thead>
<tbody>
<tr>
<td>I2</td>
<td>7</td>
<td>null{}</td>
</tr>
<tr>
<td>I1</td>
<td>6</td>
<td>I1:4</td>
</tr>
<tr>
<td>I3</td>
<td>6</td>
<td>I3:2</td>
</tr>
<tr>
<td>I4</td>
<td>2</td>
<td>I4:1</td>
</tr>
<tr>
<td>I5</td>
<td>2</td>
<td>I5:1</td>
</tr>
</tbody>
</table>

An FP-Tree that registers compressed, frequent pattern information
Mining the FP-Tree by Creating Conditional (sub) pattern bases

Steps:
1. Start from each frequent length-1 pattern (as an initial suffix pattern).
2. Construct its conditional pattern base which consists of the set of prefix paths in the FP-Tree co-occurring with suffix pattern.
3. Then, Construct its conditional FP-Tree & perform mining on such a tree.
4. The pattern growth is achieved by concatenation of the suffix pattern with the frequent patterns generated from a conditional FP-Tree.
5. The union of all frequent patterns (generated by step 4) gives the required frequent itemset.
Now, Following the above mentioned steps:

- Let's start from \textit{I5}. The \textit{I5} is involved in 2 branches namely \{I2 I1 I5: 1\} and \{I2 I1 I3 I5: 1\}.
- Therefore considering \textit{I5} as \textit{suffix}, its 2 corresponding \textit{prefix paths} would be \{I2 I1: 1\} and \{I2 I1 I3: 1\}, which forms its \textit{conditional pattern base}.

mining the FP-Tree by creating conditional (sub) pattern bases

<table>
<thead>
<tr>
<th>Item</th>
<th>Conditional pattern base</th>
<th>Conditional FP-Tree</th>
<th>Frequent pattern generated</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textit{I5}</td>
<td>{(I2 I1: 1),(I2 I1 I3: 1)}</td>
<td>\langle I2: 2, I1: 2 \rangle</td>
<td>I2 I5: 2, I1 I5: 2, I2 I1 I5: 2</td>
</tr>
<tr>
<td>\textit{I4}</td>
<td>{(I2 I1: 1),(I2: 1)}</td>
<td>\langle I2: 2 \rangle</td>
<td>I2 I4: 2</td>
</tr>
<tr>
<td>\textit{I3}</td>
<td>{(I2 I1: 1),(I2: 2), (I1: 2)}</td>
<td>\langle I2: 4, I1: 2, I1: 2 \rangle</td>
<td>I2 I3: 4, I1, I3: 2, I2 I1 I3: 2</td>
</tr>
<tr>
<td>\textit{I2}</td>
<td>{(I2: 4)}</td>
<td>\langle I2: 4 \rangle</td>
<td>I2 I1: 4</td>
</tr>
</tbody>
</table>
FP-Tree Example

• \{I2 \ I1: 1\}, \{I2 \ I1 \ I3: 1\} form the conditional pattern base

• Out of these, only \ I1 and \ I2 is selected in the conditional FP-Tree because \ I3 is not satisfying the minimum support count.

For \ I1 , support count in conditional pattern base = 1 + 1 = 2
For \ I2 , support count in conditional pattern base = 1 + 1 = 2
For \ I3 , support count in conditional pattern base = 1

Thus support count for \ I3 is less than required min_sup which is 2 here
FP-Tree Example

• Now, we have conditional FP-Tree with us.

• All frequent patterns corresponding to suffix I5 are generated by considering all possible combinations of I5 and conditional FP-Tree.

• The same procedure is applied to suffixes I4, I3 and I1.

• Note:
 • I2 is not taken into consideration for suffix because it doesn’t have any prefix at all.
Why Frequent Pattern Growth Method?

• Performance study shows
 – FP-growth is an order of magnitude faster than Apriori, and is also faster than tree-projection

• Reasoning
 – No candidate generation, no candidate test
 – Use compact data structure
 – Eliminate repeated database scan
 – Basic operation is counting and FP-tree building