Association Analysis Short Review

cse634

Data Mining

Professor Anita Wasilewska
Computer Science Department
Stony Brook University

The Apriori Algorithm: Basics

The Apriori Algorithm

It is an influential algorithm for mining frequent itemsets and using them for creating association rules

Key Concepts:

- Frequent Itemsets
- Apriori Property

The Apriori Algorithm: Basics

Key Concepts:

Frequent Itemsets

- The sets of item which has minimum support (denoted by L_i for ith-Itemset)
- Apriori Property
- Any subset of frequent itemset must be frequent
- Join Operation
- To find L_k, a set of candidate k-itemsets is generated by joining L_{k-1} with itself.

The Apriori Algorithm in a Nutshell

Apriori Algorithm finds the frequent itemsets
 i.e. the sets of items that have minimum support

It follows the Apriori Principle:

a subset of a frequent itemset must also be a frequent itemset

i.e., if {A, B} is a frequent itemset, both {A} and {B} should be a frequent itemset

The Apriori Algorithm in a Nutshell

Apriori Algorithm

The algorithm Iteratively **finds** frequent itemsets with cardinality from 1 to k (k-itemset)

As the next step in the Apriori Process
we use the frequent itemsets to generate
association rules

The Apriori Algorithm: Pseudo code

- Join Step: C_k is generated by joining L_{k-1} with itself
- Prune Step: Any (k-1)-itemset that is not frequent cannot be a subset of a frequent k-itemset

Pseudo-code:

end

return $\bigcup_k L_k$;

```
L_k: frequent itemset of size k

L_1 = {frequent items};
for (k = 1; L_k != \emptyset; k++) do begin

C_{k+1} = candidates generated from L_k;
for each transaction t in database do

increment the count of all candidates in C_{k+1}
```

 L_{k+1} = candidates in C_{k+1} with min_support

C_k: Candidate itemset of size k

that are contained in t

The Apriori Algorithm: Example

TID	List of Items
T100	11, 12, 15
T100	12, 14
T100	12, 13
T100	11, 12, 14
T100	I1, I3
T100	12, 13
T100	I1, I3
T100	11, 12 ,13, 15
T100	11, 12, 13

- Consider a database, D, consisting of 9 transactions.
- Suppose min. support count required is 2 (i.e. min_sup = 2/9 = 22 %)
- Let minimum confidence required is 70%.
- We have to first find out the frequent itemset using Apriori algorithm.
- Then, Association rules will be generated using min. support & min. confidence.

Step 1: Generating 1-itemset Frequent Pattern

Scan D for count of each candidate	Itemset	Sup.Count	Compare candidate support count with minimum support count	Itemset	Sup.Count
	{I1}	6		{I1}	6
	{12}	7		{I2}	7
·	{13}	6		{I3}	6
	{14}	2		{14}	2
	{15}	2		{15}	2
C_1				L	- 1

- The set of frequent 1-itemsets, L₁, consists of the candidate
- 1- itemsets satisfying minimum support.
- In the **first iteration** of the algorithm, each item is a member of the set of candidates.

Step 2: Generating 2-itemset Frequent Pattern

- To discover the set of frequent 2-itemsets, L₂, the algorithm uses L₁ Join L₁ to generate a candidate set of 2-itemsets, C₂
- Next, the transactions in D are scanned and the support count for each candidate itemset in C₂ is accumulated (as shown in the middle table)

Step 2: Generating 2-itemset Frequent Pattern

 2-itemsets, L₂, is then determined, consisting of those candidate 2-itemsets in C₂ having minimum support

Note: We haven't used Apriori Property yet

Step 2: Generating 2-itemset Frequent Pattern

Step 3: Generating 3-itemset Frequent Pattern

- In order to find C_3 , we first compute L_2 Join L_2
- $C_3 = L2$ Join $L2 = \{\{11, 12, 13\}, \{11, 12, 15\}, \{11, 13, 15\}, \{12, 13, 14\}, \{12, 13, 15\}, \{12, 14, 15\}\}.$
- Now, Join step is complete and Prune step will be used to reduce the size of C₃
- Prune step helps to avoid heavy computation due to large C_k.

Step 3: Generating 3-itemset Frequent Pattern

- Apriori property says that all subsets of a frequent itemset must also be frequent
- C₃ = L2 Join L2 = {{I1, I2, I3}, {I1, I2, I5}, {I1, I3, I5}, {I2, I3, I4}, {I2, I3, I5}, {I2, I4, I5}}
- We determine now which of candidates in C₃ can and which can not possibly be frequent
- Take {I1, I2, I3}
- The 2-item subsets of it are {I1, I2}, {I1, I3}, {I2, I3}
 All of them are members of L₂
 We keep {I1, I2, I3} in C₃

Step 3: Generating 3-itemset Frequent Pattern

- Lets take {I2, I3, I5}
- The 2-item subsets are {I2, I3}, {I2, I5}, {I3,I5}
- But {I3, I5} is not a member of L₂ and hence it is not frequent violating Apriori Property
- Thus we **remove** $\{12, 13, 15\}$ from C_3

```
All 2-item subsets of \{11, 12, 15\} members of L_2
Therefore C_3 = \{\{11, 12, 13\}, \{11, 12, 15\}\}
```

Now, the transactions in D are scanned in order to determine L₃, consisting of those candidates 3-itemsets in C₃ having minimum support and we get that

```
L_3 = \{\{11, 12, 13\}, \{11, 12, 15\}\}
```

Step 4: Generating 4-itemset Frequent Pattern

- The algorithm uses L₃ Join L₃ to generate a candidate set of 4-itemsets, C₄
- $C_4 = L3 \ Join \ L3 = \{\{11, 12, 13, 15\}\}$
- This itemset {{I1, I2, I3, I5}} is pruned since its subset {{I2, I3, I5}} is **not frequent.**
- Thus, $C_4 = \Phi$ and algorithm **terminates**
- What's Next?
 - Obtained frequent itemsets are to be used to generate strong association rules
- (where strong association rules are rules that satisfy both minimum support and minimum confidence)

Step 5: Generating Association Rules from Frequent Itemsets

Procedure:

- For each frequent itemset I, generate the set of all nonempty subsets of I
- For every nonempty subset S of I,
- output the rule S → I S
- if support_count(I) / support_count(S) >= min_conf
- where min_conf is minimum confidence threshold.

Example

We obtained the set od all frequent itemsets

```
L = \{\{11\}, \{12\}, \{13\}, \{14\}, \{15\}, \{11,12\}, \{11,13\}, \{11,15\}, \{12,13\}, \{12,14\}, \{12,15\}, \{11,12,13\}, \{11,12,15\}\}
```

• Lets take for example **I** = {**I**1,**I**2,**I**5}

Step 5: Generating Association Rules from Frequent Itemsets

- Lets take $I = \{11, 12, 15\}$
 - Its all nonempty subsets are {I1,I2}, {I1,I5}, {I2,I5}, {I1}, {I2}, {I5}
 - Let minimum confidence threshold be, say 70%
- The resulting association rules are shown below, each listed with its confidence.
 - R1: I1 12 → I5
 - Confidence = $sc{11,12,15}/sc{11,12} = 2/4 = 50\%$
 - R1 is Rejected.
 - R2: I1 15 → I2
 - Confidence = sc{I1,I2,I5}/sc{I1,I5} = 2/2 = 100%
 - R2 is Selected.
 - R3: I2 15 → I1
 - Confidence = $sc\{11,12,15\}/sc\{12,15\} = 2/2 = 100\%$
 - R3 is Selected.

Step 5: Generating Association Rules from Frequent Itemsets

- R4: I1 → I2 ^ I5
 - Confidence = $sc\{11,12,15\}/sc\{11\} = 2/6 = 33\%$
 - R4 is rejected.
- $R5: I2 \rightarrow I1 ^ I5$
 - Confidence = $sc\{11,12,15\}/\{12\} = 2/7 = 29\%$
 - R5 is rejected.
- R6: I5 → I1 12
 - Confidence = sc{I1,I2,I5}/ {I5} = 2/2 = 100%
 - R6 is Selected
 - We have found three strong association rules

Methods to Improve Apriori's Efficiency

- Hash-based itemset counting:
- A k-itemset whose corresponding hashing bucket count is below the threshold cannot be frequent.

- Transaction reduction:
- A transaction that does not contain any frequent k-itemset is useless in subsequent scans

- Partitioning:
- Any itemset that is potentially frequent in DB must be frequent in at least one of the partitions of DB.

Methods to Improve Apriori's Efficiency

- Sampling:
- mining on a subset of given data,
- lower support threshold
- add a method to determine the completeness

- Dynamic itemset counting:
- add new candidate itemsets only when all of their subsets are estimated to be frequent

Mining Frequent Patterns Without Candidate Generation

- Compress a large database into a compact,
- Frequent-Pattern tree (FP-tree) structure
 - highly condensed, but complete for frequent pattern mining
 - avoid costly database scans
- Develop an efficient, FP-tree-based frequent pattern mining method
 - A divide-and-conquer methodology: decompose mining tasks into smaller ones
 - Avoid candidate generation:
 sub-database test only!

FP-Growth Method: An Example

TID	List of Items
T100	I1, I2, I5
T100	12, 14
T100	12, 13
T100	I1, I2, I4
T100	I1, I3
T100	12, 13
T100	I1, I3
T100	I1, I2 ,I3, I5
T100	I1, I2, I3

- Consider the same previous example of a database, D, consisting of 9 transactions.
- Suppose min. support count required is 2 (i.e. min_sup = 2/9 = 22 %)
- The first scan of database is same as Apriori, which derives the set of 1-itemsets & their support counts.
- The set of frequent items is sorted in the order of descending support count.
- The resulting set is denoted as L = {I2:7, I1:6, I3:6, I4:2, I5:2}

FP-Growth Method: Construction of FP-Tree

- First, create the root of the tree, labeled with "null".
- Scan the database D a second time
- First time we scanned it to create 1-itemset and then
- $L = \{12:7, 11:6, 13:6, 14:2, 15:2\}$
- The items in each transaction are processed in L order (i.e. sorted order)
- A branch is created for each transaction with items having their support count separated by colon

FP-Growth Method: Construction of FP-Tree

- Whenever the same node is encountered in another transaction, we just increment the support count
- of the common node or Prefix
- To facilitate tree traversal, an item header table is built
- so that each item points to its occurrences in the
- tree via a chain of node-links
- The problem of mining frequent patterns in database is
- transformed to that of mining the FP-Tree

FP-Growth Method: Construction of FP-Tree

An FP-Tree that registers compressed, frequent pattern information

Mining the FP-Tree by Creating Conditional (sub) pattern bases

Steps:

- 1. Start from each frequent length-1 pattern (as an initial suffix pattern).
- Construct its conditional pattern base which consists of the set of prefix paths in the FP-Tree co-occurring with suffix pattern.
- 3. Then, Construct its conditional FP-Tree & perform mining on such a tree.
- 4. The pattern growth is achieved by concatenation of the suffix pattern with the frequent patterns generated from a conditional FP-Tree
- 5. The **union** of all frequent patterns (generated by step 4) gives the required frequent itemset

FP-Tree Example

Item	Conditional pattern base	Conditional FP-Tree	Frequent pattern generated
15	{(I2 I1: 1),(I2 I1 I3: 1)}	<12:2 , 11:2>	12 15:2, 11 15:2, 12 11 15: 2
14	{(I2 I1: 1),(I2: 1)}	< 2: 2>	12 14: 2
13	{(I2 I1: 1),(I2: 2), (I1: 2)}	4, I1: 2>,<i1:2></i1:2>	I2 I3:4, I1, I3: 2 , I2 I1 I3: 2
12	{(12: 4)}	< 2: 4>	I2 I1: 4

Mining the FP-Tree by creating conditional (sub) pattern bases

Now, Following the above mentioned steps:

- Lets start from I5. The I5 is involved in 2 branches namely {I2 I1 I5: 1} and
- {I2 | I1 | I3 | I5: 1}
- Therefore considering I5 as suffix, its 2 corresponding prefix paths would be {I2 I1: 1} and {I2 I1 I3: 1}, which forms its conditional pattern base.

FP-Tree Example

- {I2 I1: 1}, {I2 I1 I3: 1} form the conditional pattern base
- Out of these, only I1 and I2 is selected in the conditional FP-Tree because I3 is not satisfying the minimum support count.

```
For I1, support count in conditional pattern base = 1 + 1 = 2
For I2, support count in conditional pattern base = 1 + 1 = 2
For I3, support count in conditional pattern base = 1
```

Thus support count for I3 is less than required min_sup which is 2 here

FP-Tree Example

- Now, we have conditional FP-Tree with us
- All frequent patterns corresponding to suffix I5 are generated by considering all possible combinations of
- I5 and conditional FP-Tree.
- The same procedure is applied to suffixes I4, I3 and I1
- Note:
- I2 is not taken into consideration for suffix because it doesn't have any prefix at all

Why Frequent Pattern Growth Method?

Performance study shows

FP-growth is an order of magnitude faster than Apriori,
 and is also faster than tree-projection

Reasoning

- No candidate generation, no candidate test
- Use compact data structure
- Eliminate repeated database scan
- Basic operation is counting and FP-tree building