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Decision	Tree	Algorithms	
Short	History	

•  Late	1970s	-	ID3	(Interative	Dichotomiser)	by		J.	Ross	
Quinlan		

•  This	work	expanded	on	earlier	work	on	concept	
learning	system,	described	by	E.	B.	Hunt,	J.	Marin,	and	
P.	T.	Stone		

•  Early	1980	-		C4.5	a	successor	of	ID3	by	Quinlan		
•  C4.5		later	became	a	benchmark	to	which	newer	
supervised	learning	algorithms,	are	often	compared		

•  In	1984,	a	group	of	statisticians	(L.	Breinman,	
J.Friedman,	R.	Olshen,	and	C.	Stone)	published	the	
book	“Classification	and	Regression	Trees(CART)	“	

	



Decision	Tree	Algorithms	
Short	History	

•  The		“Classification	and	Regression	Trees	(CART)”	
book		described	a	generation	of	binary	decision	
trees	.	

•  ID3,C4.5	and	CART	were	invented	independently		
of	one	another	yet	follow	a	similar	approach	for	
learning	decision	trees	from	training	tuples.		

•  These	cornerstone	algorithms	spawned	a	flurry	
of	work	on	decision	tree	induction.	



Decision	Tree	Algorithms	
General	Description	

•  ID3,	C4.5,	and	CART	adopt	a	greedy	(i.e.	a		non-
backtracking)	approach	

•  It	this	approach		decision	trees	are	constructed	in	a	top-
down	recursive	divide-and	conquer	manner		

•  Most	algorithms	for	decision	tree	induction	also	follow	
such	a	top-down	approach	

•  All	of	the	algorithms	start		with	a	training	set	of	tuples	
and	their	associated	class	labels	(classification	data	table)		

•  The	training	set	is	recursively	partitioned	into	smaller	
subsets	as	the	tree	is	being	built		



BASIC		Decision	Tree	Algorithm	
General	Description	

	•  A	Basic		Decision	Tree	Algorithm		presented	here	is		as	
published		in	J.Han,	M.	Kamber	book		“Data	Mining,	Concepts	
and	Techniques”,	2006	(second	Edition)	

•  The	algorithm	may	appear	long,	but		is	quite	straightforward	
•  Basic	Algorithm		strategy	is	as	follows	

•  The	algorithm	is	called	with	three	parameters:	D,	
attribute_list,		and	Attribute_selection_method		

•  We	refer	to	D	as	a	data	partition	
•  Initially,	D	is	the	complete	set	of	training	tuples	and	their	

associated	class	labels	(input	training	data)	



Basic	Decision	Tree	Algorithm	
General	Description	

•  The	parameter	attribute_list	is	a	list	of	attributes	
describing	the	tuples	

•  Attribute_seletion	_method	specifies	a	heuristic	
procedure	for	selecting	the	attribute	that	“best”	
discriminates	the	given	tuples	according	to	class		

•  Attribute_seletion	_method	procedure	employs	an	
attribute	selection	measure,	such	as	Information	
Gain	or	the	Gini	Index		

•  Whether	the	tree	is	strictly	binary	is	generally	driven	
by	the	attribute	selection	measure	



Basic	Decision	Tree	Algorithm	
General	Description	

•  Some	attribute	selection	measures,	like	the	Gini	
Index	enforce	the	resulting	tree	to	be	binary	

•  Others,	like		the	Information	Gain,		do	not	
•  They,	as	Information	Gain	does,	allow	multi-way	
splits		

•  They	allow	for	two	or	more	branches	to	be	
grown	from	a	node	

•  	In	this	case	the	branches	represent		all	the	
(discrete)	values		of	the	nodes	attributes		



Basic	Decision	Tree	Algorithm	
General	Description	

•  The	tree	starts	as	a	single	node	N	
						The	node	N	represents	the	training	tuples	in	D	(training	data	table)		
•  This	is	the	step	1	in	the	algorithm	

•  IF	the	tuples	in	D	are	all	of	the	same	class	
•  THEN	node	N	becomes	a	leaf	and	is	labeled	with	that	class		

•  Theses	are	the	steps	2	and	3	in	the	algorithm	

•  The	steps	4	and	5	in	the	algorithm		are	terminating	conditions		
•  All	of	the	terminating	conditions	are	explained	at	the	end	of	the	

algorithm	
		



Basic	Decision	Tree	Algorithm	
General	Description	

•  	Otherwise,	the	algorithm	calls	attribute_selection_method	to	determine	the	
splitting	criterion		

•  The	splitting	criterion	tells	us	which	attributes	to	test	at	node	N		in	order	to		
determine	the	“best”	way	to	separate	or	partition	the	tuples	in	D	into	individual	
classes	(sub-tables)	called	partitions	

•  This	is	the	step	6	in	the	algorithm	

•  The	splitting	criterion	also	tells	us	which	branches	to	grow	from	node	N	with	
respect	to	the	outcomes	of	the	chosen	test		

•  More	specifically,	the	splitting	criterion	indicates	the	splitting	attribute	and	may	
also	indicate	either	a	split-point	or	a	splitting	subset		



Basic	Decision	Tree	Algorithm	
General	Description	

•  The	splitting	criterion	is	determined	so	that,	ideally,	the	
resulting	partitions	at	each	branch	are	as	“pure”	as	
possible.	

•  A	partition	is	PURE	if	all	of	the	tuples	in	it	belong	to	the	
same	class		

•  In	other	words,	if	we	were	to	split	up	the	tuples	in	D	
according	to	the	mutually	exclusive	outcomes	of	the	
splitting	criterion,	we	hope	for	the	resulting	partitions	to	
be	as	pure	as	possible	

•  		



Basic	Decision	Tree	Algorithm	
General	Description	

•  The	node	N	is	labeled	with	the	splitting	criterion,	
which	serves	as	a	test	at	the	node	

•  This	is	step	7	
•  A	branch	is	grown	from	node	N	for	each	of	the	
outcomes	of	the	splitting	criterion		

•  The	tuples	in	D	are	partitioned	accordingly	
•  These	are	steps	10	and	11		

•  There	are	three	possible	scenarios,	as	illustrated	in	
figure	6.4	on		your	handout	



Basic	Decision	Tree	Algorithm	
General	Description	

•  Let	A	be	the	splitting	attribute		
•  A	has		distinct	values	(attribute	values)	
•  		a1,	a2,	…	,	av	
•  	The	values	a1,	a2,	…	,	av	of	the	attribute	A	are	based	on	

the	training	data	for	the	run	of	the	algorithm	
•  	This	is	the	step	7	in	the	algorithm	

•  We	have	the	following	cases	depending	of	the	
						TYPE	of	the	values	of	the	split	attribute	A	



Basic	Decision	Tree	Algorithm	
General	Description	

1.	A		is	discrete-valued:	
•  In	this	case,	the	outcomes	of	the	test	at	node	
N	correspond	directly	to	the	known	in	training	
set	values	of	A		

•  A	branch	is	created	for	each	value		aj		of	the	
attribute	A		

•  The	branch	is	labeled	with	that	value	aj.	
•  There	are	as	many	branches	the	number		of	
values	of	A			in	the	training	data	



Basic	Decision	Tree	Algorithm	
General	Description	

2.	A	is	continuous-valued	
•  	In	this	case,	the	test	at	node	N	has	two	possible	
outcomes,	corresponding	to	the	conditions	

•  	A<=	split_point	and	A>	split_point	
•  The	split_point	is	the	split-point	returned	by	
Attribute_selection_method		

•  In	practice,	the	split-point	is	often	taken	as	
				the	midpoint	of			two	known	adjacent	values	of	A		
•  Therefore	the	split-point		may	not	actually	be	a	pre-
existing	value	of	A	from	the	training	data	



Basic	Decision	Tree	Algorithm	
General	Description	

•  Two	branches	are	grown	from	N	and	labeled		
					A<=	split_point	and	A>	split_point	
•  The	tuples		(table	at	the	node	N)	are	
partitioned		sub-tables	D1	and	D2	

•  D1	holds	the	subset	of	class-labeled	tuples	in	
D	for	which	A<=	split_point	

•  D2	holds	the	rest	



Basic	Decision	Tree	Algorithms	
General	Description	

3.	A	is		discrete-valued	and	a	binary	tree	must	be	
produced	
•  The	test	at	node	N	is	of	the	form	“A?SA?”	
•  SA	is	the	splitting	subset	for	A	
•  SA	is	returned	by	attribute_selection_method	as	
part	of	the	splitting	criterion	

•  SA	is	a	subset	of	the	known	values	of	A	
•  IF	a	given	tuple	has	value	aj	of	A	and		aj	belongs	
to	SA	,	THEN	the	test	at	node	N	is	satisfied	



Basic	Decision	Tree	Algorithms	
General	Description	

•  Two	branches	are	grown	from	N		
•  The	left	branch	out	of	N	is	labeled	yes	so	that	D1	

corresponds	to	the	subset	of	class-labeled	tuples	in	D	that	
satisfy	the	test	

•  	The	right	branch	out	of	N	is	labeled	no	so	that	D2	
corresponds	to	the	subset	of	class-labeled	tuples	from	D	
that	do	not	satisfy	the	test	

•  		
•  The	algorithm	uses	the	same	process	recursively	to	form	a	

decision	tree	for	the	tuples	at	each	resulting	partition,	Dj		
of	D		

•  This	is	step	14	
		



Basic	Decision	Tree	Algorithms	
General	Description	

•  TERMINATING	CONDITIONS	
•  The	recursive	partitioning	stops	only	when	any	
one	of	the	following	terminating	conditions	is	
true	

•  1.	All	of	the	tuples	in	partition	D	(represented	at	
node	N)	belong	to	the	same	class	(step	2	and	3),	
or	

•  2.	There	are	no	remaining	attributes	on	which	
the	tuples	may	be	further	partitioned	(step	4)		

•  In	this	case,	majority	voting	is	employed	(step	5)		



Basic	Decision	Tree	Algorithms	
General	Description	

•  Majority	voting	involves	converting	node	N	into	
a	leaf	and	labeling	it	with	the	most	common	
class	in	D	which	is	a	set	of	training	tuples	and	
their	associated	class	labels	

•  	Alternatively,	the	class	distribution	of	the	node	
tuples	may	be	stored	

•  3.	There	are	no	tuples	for	a	given	branch,	that	is,	
a	partition	Dj	is	empty	

•  	In	this	case,	a	leaf	is	created	with	the	majority	
class	in	the	a	set	of	training	tuples		D	

•  	The	decision	tree	is	returned	
•  This	is	the	step	15	of	the	algorithm	



Basic	Decision	Tree	Algorithm	
	

•  		

•  Algorithm:	Geneate_decision_tree		
•  Input:	
•  Data	partition,	D,	which	is	a	set	of	training	tuples	and	their	associated	class	labels.	
•  Attribute_list,	the	set	of	candidate	attributes	
•  Attribute_selection_method,	a	procedure	to	determine	the	splitting	criterion	that	“best”	partitions	the	

data	tuples	into	individual	classes.	This	criterion	consists	of	a	splitting_attribute	and	,	possibly,	either	a	
split	point	or	splitting	subset.	

•  		
•  Output:	a	decision	tree	
•  		
•  Method:	
•  (1)create	a	node	N;	
•  (2)	if	tuples	in	D	are	all	of	the	same	class,	C	then		
•  	(3)	return	N	as	a	leaf	nod	labeled	with	the	class	C;	
•  (4)	If	attribute_list	is	empty	then	
•  	(5)	Return	N	as	a	leaf	node	labeled	with	the	majority	class	in	D;	//majority	voting	
•  (6)	Apply	attribute_seletion_method	(D,	arrtibute_list)	to	find	the	“best”	splitting_criterion;	
•  (7)Label	node	N	with	splitting_criterion;	
•  (8)If	splitting_attribute	is	discrete-valued	and		
•  																		Multiway	splits	allowed	then	//	not	restricted	to	binary	trees	
•  (9)	attribute_list-àattribute_list	-	splitting_attribute;	//remove	splitting_attribute	
•  (10)	for	each	outcome	j	of	splitting_criterion	//	partition	the	tuples	and	grow	sub-tees	for	each	partition		
•  (11)	Let	Dj	be	the	set	of	a	data	tuples	in	D	satisfying	outcome	j;	//	a	partition		
•  (12)	If	Dj	is	empty	then	
•  (13)	Attach	a	leaf	labeled	with	the	majorty	class	in	D	to	node	N;	
•  (15)	Else	attach	the	node	returned	by	Geneate_decision_tree		(Dj,	attribute	list)	to	node	N;	
•  (16)	Return	N;	
•  		



Training	Dataset	
Age	 Income	 Student	 Credit_ratin

g	
Buys_comput
er	

<=30	 High	 No	 Fair	 No	

<=30	 High	 No	 Excellent	 No	

31…40	 High	 No	 Fair	 Yes	

>40	 Medium	 No	 Fair	 Yes	

>40	 Low	 Yes	 Fair	 Yes	

>40	 Low	 Yes	 Excellent	 No	

31…40	 Low	 Yes	 Excellent	 Yes	

<=30	 Medium	 No		 Fair	 No	

<=30	 Low	 Yes	 Fair	 Yes	

>40	 Medium	 Yes	 Fair	 Yes	

<=30	 Medium	 Yes	 Excellent	 Yes	

31…40	 Medium	 No	 Excellent	 Yes	

31…40	 High	 Yes	 Fair	 Yes	

>40	 Medium	 No		 Excellent	 No	
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Attribute	Selection	Measure:	Information	Gain	
	(ID3/C4.5)	

n  Select	the	attribute	with	the	highest	information	gain	
n  Let	pi	be	the	probability	that	an	arbitrary	tuple	in	D	belongs	to	

class	Ci,	estimated	by	|Ci,	D|/|D|	
n  Expected	information	(entropy)	needed	to	classify	a	tuple	in	D:	

n  Information	needed	(after	using	A	to	split	D	into	v	partitions)	to	
classify	D:	

n  Information	gained	by	branching	on	attribute		
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Computing	Information-Gain	for	Continuous-Value	
Attributes	

•  Let	attribute	A	be	a	continuous-valued	attribute	
•  Must	determine	the	best	split	point	for	A	

–  Sort	the	value	A	in	increasing	order	
–  Typically,	the	midpoint	between	each	pair	of	adjacent	values	
is	considered	as	a	possible	split	point	

•  (ai+ai+1)/2	is	the	midpoint	between	the	values	of	ai	and	ai+1	

–  The	point	with	the	minimum	expected	information	
requirement	for	A	is	selected	as	the	split-point	for	A	

•  Split:	
–  D1	is	the	set	of	tuples	in	D	satisfying	A	≤	split-point,	and	D2	is	
the	set	of	tuples	in	D	satisfying	A	>	split-point	
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Gain	Ratio	for	Attribute	Selection	(C4.5)	

•  Information	gain	measure	is	biased	towards	attributes	with	a	
large	number	of	values	

•  C4.5	(a	successor	of	ID3)	uses	gain	ratio	to	overcome	the	
problem	(normalization	to	information	gain)	

GainRatio(A)	=	Gain(A)/SplitInfo(A)	

We	know	that		Gain((income)	=	0.029	
•  Ex.	

–  GainRatio(income)	=	0.029/0.926	=	0.031	
•  The	attribute	with	the	maximum	gain	ratio	is	selected	as	the	

splitting	attribute	
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Gini	index	(CART,	IBM	IntelligentMiner)	

•  If	a	data	set	D	contains	examples	from	n	classes,	gini	index,	gini(D)	is	defined	
as	

					
					where	pj	is	the	relative	frequency	of	class	j	in	D	
•  If	a	data	set	D		is	split	on	A	into	two	subsets	D1	and	D2,	the	gini	index	gini(D)	

is	defined	as	

•  Reduction	in	Impurity:	

•  The	attribute	provides	the	smallest	ginisplit(D)	(or	the	largest	reduction	in	
impurity)	is	chosen	to	split	the	node	(need	to	enumerate	all	the	possible	
splitting	points	for	each	attribute)	
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Gini	index	(CART,	IBM	IntelligentMiner)	
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If	a	data	set	D		is	split	on	the	attribute	income	on	{low,medium},	it	partitions	
D	into	10	tuples	in	D1:	{low,medium}	and	4	tuples	in	D2	:	{high}.		

The	gini	index																																							is	defined	as	below	)(},{ Dgini mediumlowincome∈



Gini	index	(CART,	IBM	IntelligentMiner)	

If	a	data	set	D		is	split	on	the	attribute	income	on	{medium,high},	it	partitions	
D	into	10	tuples	in	D1:	{medium,high}	and	4	tuples	in	D2	:	{low}.		

The	gini	index																																													is	defined		as	below	giniincome∈{medium,high}(D)
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Gini	index	(CART,	IBM	IntelligentMiner)	

If	a	data	set	D		is	split	on	the	attribute	income	on	{high,low},	it	partitions	D	
into	8	tuples	in	D1:	{high,	low}	and	6	tuples	in	D2	:	{medium}.		

The	gini	index																																							is	defined	as	below	)(},{ Dgini lowhighincome∈
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Gini	index	(CART,	IBM	IntelligentMiner)	
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From	the	dataset	D	in	earlier	slide,	there	are	9	tuples	in	buys_computer	=	“yes” 	
and	5	tuples	in	buys_computer	=“no” 
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		Reduction	in	Impurity	is	calculated	as	shown	below.	

Since	gini{low,medium}	is	0.443	and	thus	the	best	for	the	SPLIT	since	it	is	the	
lowest.							Correspondingly		
is	0.016	which	is	the	highest	and	thus	the	best	Reduction	in	Impurity		

),( mediumlowginiΔ
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Gini	index	(CART,	IBM	IntelligentMiner)	

•  Ex.		D	has	9	tuples	in	buys_computer	=	“yes” and	5	in	“no”	

•  Suppose	the	attribute	income	partitions	D	into	10	in	D1:	{low,	medium}	and	4	
in	D2	

but	gini{medium,high}	is	0.30	and	thus	the	best	since	it	is	the	lowest	

•  Case:	All	attributes	are	assumed	continuous-valued	
•  May	need	other	tools,	e.g.,	clustering,	to	get	the	possible	split	values	
•  Can	be	modified	for	categorical	attributes	
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Comparing	Attribute	Selection	Measures	

•  The	three	measures,	in	general,	return	good	results	but	
–  Information	gain:		

•  biased	towards	multivalued	attributes	
–  Gain	ratio:		

•  tends	to	prefer	unbalanced	splits	in	which	one	partition	is	
much	smaller	than	the	others	

–  Gini	index:		
•  biased	to	multivalued	attributes	

•  has	difficulty	when	#	of	classes	is	large	
•  tends	to	favor	tests	that	result	in	equal-sized	partitions	
and	purity	in	both	partitions	
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Other	Attribute	Selection	Measures	

•  CHAID:	a	popular	decision	tree	algorithm,	measure	based	on	χ2	test	for	
independence	

•  C-SEP:	performs	better	than	info.	gain	and	gini	index	in	certain	cases	

•  G-statistics:	has	a	close	approximation	to	χ2	distribution		

•  MDL	(Minimal	Description	Length)	principle	(i.e.,	the	simplest	solution	is	
preferred):		

–  The	best	tree	as	the	one	that	requires	the	fewest	#	of	bits	to	both	(1)	
encode	the	tree,	and	(2)	encode	the	exceptions	to	the	tree	

•  Multivariate	splits	(partition	based	on	multiple	variable	combinations)	

–  CART:	finds	multivariate	splits	based	on	a	linear	comb.	of	attrs.	

•  Which	attribute	selection	measure	is	the	best?	

–  	Most	give	good	results,	none	is	significantly	superior	than	others	
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Overfitting	and	Tree	Pruning	

•  Overfitting:		An	induced	tree	may	overfit	the	training	data		
–  Too	many	branches,	some	may	reflect	anomalies	due	to	noise	or	outliers	

–  Poor	accuracy	for	unseen	samples	

•  Two	approaches	to	avoid	overfitting		
–  Prepruning:	Halt	tree	construction	early—do	not	split	a	node	if	this	

would	result	in	the	goodness	measure	falling	below	a	threshold	

•  Difficult	to	choose	an	appropriate	threshold	
–  Postpruning:	Remove	branches	from	a	“fully	grown”	tree—get	a	

sequence	of	progressively	pruned	trees	

•  Use	a	set	of	data	different	from	the	training	data	to	decide	which	is	
the	“best	pruned	tree”	
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Enhancements	to	Basic	Decision	Tree	Induction	

•  Allow	for	continuous-valued	attributes	
–  Dynamically	define	new	discrete-valued	attributes	that	
partition	the	continuous	attribute	value	into	a	discrete	set	of	
intervals	

•  Handle	missing	attribute	values	
–  Assign	the	most	common	value	of	the	attribute	

–  Assign	probability	to	each	of	the	possible	values	
•  Attribute	construction	

–  Create	new	attributes	based	on	existing	ones	that	are	
sparsely	represented	

–  This	reduces	fragmentation,	repetition,	and	replication	
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Classification	in	Large	Databases	

•  Classification—a	classical	problem	extensively	studied	by	
statisticians	and	machine	learning	researchers	

•  Scalability:	Classifying	data	sets	with	millions	of	examples	and	
hundreds	of	attributes	with	reasonable	speed	

•  Why	decision	tree	induction	in	data	mining?	
–  relatively	faster	learning	speed	(than	other	classification	
methods)	

–  convertible	to	simple	and	easy	to	understand	classification	
rules	

–  can	use	SQL	queries	for	accessing	databases	
–  comparable	classification	accuracy	with	other	methods	
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Scalable	Decision	Tree	Induction	Methods	

•  SLIQ	(EDBT’96	—	Mehta	et	al.)	
–  Builds	an	index	for	each	attribute	and	only	class	list	and	the	
current	attribute	list	reside	in	memory	

•  SPRINT	(VLDB’96	—	J.	Shafer	et	al.)	
–  Constructs	an	attribute	list	data	structure		

•  PUBLIC	(VLDB’98	—	Rastogi	&	Shim)	
–  Integrates	tree	splitting	and	tree	pruning:	stop	growing	the	
tree	earlier	

•  RainForest	(VLDB’98	—	Gehrke,	Ramakrishnan	&	Ganti)	
–  Builds	an	AVC-list	(attribute,	value,	class	label)	

•  BOAT	(PODS’99	—	Gehrke,	Ganti,	Ramakrishnan	&	Loh)	
–  Uses	bootstrapping	to	create	several	small	samples	


