
BASIC	DECISION	TREE	INDUCTION	
FULL	ALGORITM	

	
cse634	

Data	Mining	

Professor	Anita	Wasilewska	
Computer	Science	Department	

	Stony	Brook	University	

Decision	Tree	Algorithms	
Short	History	

•  Late	1970s	-	ID3	(Interative	Dichotomiser)	by		J.	Ross	
Quinlan		

•  This	work	expanded	on	earlier	work	on	concept	
learning	system,	described	by	E.	B.	Hunt,	J.	Marin,	and	
P.	T.	Stone		

•  Early	1980	-		C4.5	a	successor	of	ID3	by	Quinlan		
•  C4.5		later	became	a	benchmark	to	which	newer	
supervised	learning	algorithms,	are	often	compared		

•  In	1984,	a	group	of	statisticians	(L.	Breinman,	
J.Friedman,	R.	Olshen,	and	C.	Stone)	published	the	
book	“Classification	and	Regression	Trees(CART)	“	

	

Decision	Tree	Algorithms	
Short	History	

•  The		“Classification	and	Regression	Trees	(CART)”	
book		described	a	generation	of	binary	decision	
trees	.	

•  ID3,C4.5	and	CART	were	invented	independently		
of	one	another	yet	follow	a	similar	approach	for	
learning	decision	trees	from	training	tuples.		

•  These	cornerstone	algorithms	spawned	a	flurry	
of	work	on	decision	tree	induction.	

Decision	Tree	Algorithms	
General	Description	

•  ID3,	C4.5,	and	CART	adopt	a	greedy	(i.e.	a		non-
backtracking)	approach	

•  It	this	approach		decision	trees	are	constructed	in	a	top-
down	recursive	divide-and	conquer	manner		

•  Most	algorithms	for	decision	tree	induction	also	follow	
such	a	top-down	approach	

•  All	of	the	algorithms	start		with	a	training	set	of	tuples	
and	their	associated	class	labels	(classification	data	table)		

•  The	training	set	is	recursively	partitioned	into	smaller	
subsets	as	the	tree	is	being	built		

BASIC		Decision	Tree	Algorithm	
General	Description	

	•  A	Basic		Decision	Tree	Algorithm		presented	here	is		as	
published		in	J.Han,	M.	Kamber	book		“Data	Mining,	Concepts	
and	Techniques”,	2006	(second	Edition)	

•  The	algorithm	may	appear	long,	but		is	quite	straightforward	
•  Basic	Algorithm		strategy	is	as	follows	

•  The	algorithm	is	called	with	three	parameters:	D,	
attribute_list,		and	Attribute_selection_method		

•  We	refer	to	D	as	a	data	partition	
•  Initially,	D	is	the	complete	set	of	training	tuples	and	their	

associated	class	labels	(input	training	data)	

Basic	Decision	Tree	Algorithm	
General	Description	

•  The	parameter	attribute_list	is	a	list	of	attributes	
describing	the	tuples	

•  Attribute_seletion	_method	specifies	a	heuristic	
procedure	for	selecting	the	attribute	that	“best”	
discriminates	the	given	tuples	according	to	class		

•  Attribute_seletion	_method	procedure	employs	an	
attribute	selection	measure,	such	as	Information	
Gain	or	the	Gini	Index		

•  Whether	the	tree	is	strictly	binary	is	generally	driven	
by	the	attribute	selection	measure	

Basic	Decision	Tree	Algorithm	
General	Description	

•  Some	attribute	selection	measures,	like	the	Gini	
Index	enforce	the	resulting	tree	to	be	binary	

•  Others,	like		the	Information	Gain,		do	not	
•  They,	as	Information	Gain	does,	allow	multi-way	
splits		

•  They	allow	for	two	or	more	branches	to	be	
grown	from	a	node	

•  	In	this	case	the	branches	represent		all	the	
(discrete)	values		of	the	nodes	attributes		

Basic	Decision	Tree	Algorithm	
General	Description	

•  The	tree	starts	as	a	single	node	N	
						The	node	N	represents	the	training	tuples	in	D	(training	data	table)		
•  This	is	the	step	1	in	the	algorithm	

•  IF	the	tuples	in	D	are	all	of	the	same	class	
•  THEN	node	N	becomes	a	leaf	and	is	labeled	with	that	class		

•  Theses	are	the	steps	2	and	3	in	the	algorithm	

•  The	steps	4	and	5	in	the	algorithm		are	terminating	conditions		
•  All	of	the	terminating	conditions	are	explained	at	the	end	of	the	

algorithm	
		

Basic	Decision	Tree	Algorithm	
General	Description	

•  	Otherwise,	the	algorithm	calls	attribute_selection_method	to	determine	the	
splitting	criterion		

•  The	splitting	criterion	tells	us	which	attributes	to	test	at	node	N		in	order	to		
determine	the	“best”	way	to	separate	or	partition	the	tuples	in	D	into	individual	
classes	(sub-tables)	called	partitions	

•  This	is	the	step	6	in	the	algorithm	

•  The	splitting	criterion	also	tells	us	which	branches	to	grow	from	node	N	with	
respect	to	the	outcomes	of	the	chosen	test		

•  More	specifically,	the	splitting	criterion	indicates	the	splitting	attribute	and	may	
also	indicate	either	a	split-point	or	a	splitting	subset		

Basic	Decision	Tree	Algorithm	
General	Description	

•  The	splitting	criterion	is	determined	so	that,	ideally,	the	
resulting	partitions	at	each	branch	are	as	“pure”	as	
possible.	

•  A	partition	is	PURE	if	all	of	the	tuples	in	it	belong	to	the	
same	class		

•  In	other	words,	if	we	were	to	split	up	the	tuples	in	D	
according	to	the	mutually	exclusive	outcomes	of	the	
splitting	criterion,	we	hope	for	the	resulting	partitions	to	
be	as	pure	as	possible	

•  		

Basic	Decision	Tree	Algorithm	
General	Description	

•  The	node	N	is	labeled	with	the	splitting	criterion,	
which	serves	as	a	test	at	the	node	

•  This	is	step	7	
•  A	branch	is	grown	from	node	N	for	each	of	the	
outcomes	of	the	splitting	criterion		

•  The	tuples	in	D	are	partitioned	accordingly	
•  These	are	steps	10	and	11		

•  There	are	three	possible	scenarios,	as	illustrated	in	
figure	6.4	on		your	handout	

Basic	Decision	Tree	Algorithm	
General	Description	

•  Let	A	be	the	splitting	attribute		
•  A	has		distinct	values	(attribute	values)	
•  		a1,	a2,	…	,	av	
•  	The	values	a1,	a2,	…	,	av	of	the	attribute	A	are	based	on	

the	training	data	for	the	run	of	the	algorithm	
•  	This	is	the	step	7	in	the	algorithm	

•  We	have	the	following	cases	depending	of	the	
						TYPE	of	the	values	of	the	split	attribute	A	

Basic	Decision	Tree	Algorithm	
General	Description	

1.	A		is	discrete-valued:	
•  In	this	case,	the	outcomes	of	the	test	at	node	
N	correspond	directly	to	the	known	in	training	
set	values	of	A		

•  A	branch	is	created	for	each	value		aj		of	the	
attribute	A		

•  The	branch	is	labeled	with	that	value	aj.	
•  There	are	as	many	branches	the	number		of	
values	of	A			in	the	training	data	

Basic	Decision	Tree	Algorithm	
General	Description	

2.	A	is	continuous-valued	
•  	In	this	case,	the	test	at	node	N	has	two	possible	
outcomes,	corresponding	to	the	conditions	

•  	A<=	split_point	and	A>	split_point	
•  The	split_point	is	the	split-point	returned	by	
Attribute_selection_method		

•  In	practice,	the	split-point	is	often	taken	as	
				the	midpoint	of			two	known	adjacent	values	of	A		
•  Therefore	the	split-point		may	not	actually	be	a	pre-
existing	value	of	A	from	the	training	data	

Basic	Decision	Tree	Algorithm	
General	Description	

•  Two	branches	are	grown	from	N	and	labeled		
					A<=	split_point	and	A>	split_point	
•  The	tuples		(table	at	the	node	N)	are	
partitioned		sub-tables	D1	and	D2	

•  D1	holds	the	subset	of	class-labeled	tuples	in	
D	for	which	A<=	split_point	

•  D2	holds	the	rest	

Basic	Decision	Tree	Algorithms	
General	Description	

3.	A	is		discrete-valued	and	a	binary	tree	must	be	
produced	
•  The	test	at	node	N	is	of	the	form	“A?SA?”	
•  SA	is	the	splitting	subset	for	A	
•  SA	is	returned	by	attribute_selection_method	as	
part	of	the	splitting	criterion	

•  SA	is	a	subset	of	the	known	values	of	A	
•  IF	a	given	tuple	has	value	aj	of	A	and		aj	belongs	
to	SA	,	THEN	the	test	at	node	N	is	satisfied	

Basic	Decision	Tree	Algorithms	
General	Description	

•  Two	branches	are	grown	from	N		
•  The	left	branch	out	of	N	is	labeled	yes	so	that	D1	

corresponds	to	the	subset	of	class-labeled	tuples	in	D	that	
satisfy	the	test	

•  	The	right	branch	out	of	N	is	labeled	no	so	that	D2	
corresponds	to	the	subset	of	class-labeled	tuples	from	D	
that	do	not	satisfy	the	test	

•  		
•  The	algorithm	uses	the	same	process	recursively	to	form	a	

decision	tree	for	the	tuples	at	each	resulting	partition,	Dj		
of	D		

•  This	is	step	14	
		

Basic	Decision	Tree	Algorithms	
General	Description	

•  TERMINATING	CONDITIONS	
•  The	recursive	partitioning	stops	only	when	any	
one	of	the	following	terminating	conditions	is	
true	

•  1.	All	of	the	tuples	in	partition	D	(represented	at	
node	N)	belong	to	the	same	class	(step	2	and	3),	
or	

•  2.	There	are	no	remaining	attributes	on	which	
the	tuples	may	be	further	partitioned	(step	4)		

•  In	this	case,	majority	voting	is	employed	(step	5)		

Basic	Decision	Tree	Algorithms	
General	Description	

•  Majority	voting	involves	converting	node	N	into	
a	leaf	and	labeling	it	with	the	most	common	
class	in	D	which	is	a	set	of	training	tuples	and	
their	associated	class	labels	

•  	Alternatively,	the	class	distribution	of	the	node	
tuples	may	be	stored	

•  3.	There	are	no	tuples	for	a	given	branch,	that	is,	
a	partition	Dj	is	empty	

•  	In	this	case,	a	leaf	is	created	with	the	majority	
class	in	the	a	set	of	training	tuples		D	

•  	The	decision	tree	is	returned	
•  This	is	the	step	15	of	the	algorithm	

Basic	Decision	Tree	Algorithm	
	

•  		

•  Algorithm:	Geneate_decision_tree		
•  Input:	
•  Data	partition,	D,	which	is	a	set	of	training	tuples	and	their	associated	class	labels.	
•  Attribute_list,	the	set	of	candidate	attributes	
•  Attribute_selection_method,	a	procedure	to	determine	the	splitting	criterion	that	“best”	partitions	the	

data	tuples	into	individual	classes.	This	criterion	consists	of	a	splitting_attribute	and	,	possibly,	either	a	
split	point	or	splitting	subset.	

•  		
•  Output:	a	decision	tree	
•  		
•  Method:	
•  (1)create	a	node	N;	
•  (2)	if	tuples	in	D	are	all	of	the	same	class,	C	then		
•  	(3)	return	N	as	a	leaf	nod	labeled	with	the	class	C;	
•  (4)	If	attribute_list	is	empty	then	
•  	(5)	Return	N	as	a	leaf	node	labeled	with	the	majority	class	in	D;	//majority	voting	
•  (6)	Apply	attribute_seletion_method	(D,	arrtibute_list)	to	find	the	“best”	splitting_criterion;	
•  (7)Label	node	N	with	splitting_criterion;	
•  (8)If	splitting_attribute	is	discrete-valued	and		
•  																		Multiway	splits	allowed	then	//	not	restricted	to	binary	trees	
•  (9)	attribute_list-àattribute_list	-	splitting_attribute;	//remove	splitting_attribute	
•  (10)	for	each	outcome	j	of	splitting_criterion	//	partition	the	tuples	and	grow	sub-tees	for	each	partition		
•  (11)	Let	Dj	be	the	set	of	a	data	tuples	in	D	satisfying	outcome	j;	//	a	partition		
•  (12)	If	Dj	is	empty	then	
•  (13)	Attach	a	leaf	labeled	with	the	majorty	class	in	D	to	node	N;	
•  (15)	Else	attach	the	node	returned	by	Geneate_decision_tree		(Dj,	attribute	list)	to	node	N;	
•  (16)	Return	N;	
•  		

Training	Dataset	
Age	 Income	 Student	 Credit_ratin

g	
Buys_comput
er	

<=30	 High	 No	 Fair	 No	

<=30	 High	 No	 Excellent	 No	

31…40	 High	 No	 Fair	 Yes	

>40	 Medium	 No	 Fair	 Yes	

>40	 Low	 Yes	 Fair	 Yes	

>40	 Low	 Yes	 Excellent	 No	

31…40	 Low	 Yes	 Excellent	 Yes	

<=30	 Medium	 No		 Fair	 No	

<=30	 Low	 Yes	 Fair	 Yes	

>40	 Medium	 Yes	 Fair	 Yes	

<=30	 Medium	 Yes	 Excellent	 Yes	

31…40	 Medium	 No	 Excellent	 Yes	

31…40	 High	 Yes	 Fair	 Yes	

>40	 Medium	 No		 Excellent	 No	

22	

Attribute	Selection	Measure:	Information	Gain	
	(ID3/C4.5)	

n  Select	the	attribute	with	the	highest	information	gain	
n  Let	pi	be	the	probability	that	an	arbitrary	tuple	in	D	belongs	to	

class	Ci,	estimated	by	|Ci,	D|/|D|	
n  Expected	information	(entropy)	needed	to	classify	a	tuple	in	D:	

n  Information	needed	(after	using	A	to	split	D	into	v	partitions)	to	
classify	D:	

n  Information	gained	by	branching	on	attribute		

)(log)(2
1

i

m

i
i ppDInfo ∑

=

−=

)(
||
||

)(
1

j

v

j

j
A DI

D
D

DInfo ×=∑
=

(D)InfoInfo(D)Gain(A) A−=

23	

Computing	Information-Gain	for	Continuous-Value	
Attributes	

•  Let	attribute	A	be	a	continuous-valued	attribute	
•  Must	determine	the	best	split	point	for	A	

–  Sort	the	value	A	in	increasing	order	
–  Typically,	the	midpoint	between	each	pair	of	adjacent	values	
is	considered	as	a	possible	split	point	

•  (ai+ai+1)/2	is	the	midpoint	between	the	values	of	ai	and	ai+1	

–  The	point	with	the	minimum	expected	information	
requirement	for	A	is	selected	as	the	split-point	for	A	

•  Split:	
–  D1	is	the	set	of	tuples	in	D	satisfying	A	≤	split-point,	and	D2	is	
the	set	of	tuples	in	D	satisfying	A	>	split-point	

24	

Gain	Ratio	for	Attribute	Selection	(C4.5)	

•  Information	gain	measure	is	biased	towards	attributes	with	a	
large	number	of	values	

•  C4.5	(a	successor	of	ID3)	uses	gain	ratio	to	overcome	the	
problem	(normalization	to	information	gain)	

GainRatio(A)	=	Gain(A)/SplitInfo(A)	

We	know	that		Gain((income)	=	0.029	
•  Ex.	

–  GainRatio(income)	=	0.029/0.926	=	0.031	
•  The	attribute	with	the	maximum	gain	ratio	is	selected	as	the	

splitting	attribute	

)
||
||

(log
||
||

)(2
1 D

D
D
D

DSplitInfo j
v

j

j
A ×−= ∑

=

926.0)
14
4(log

14
4)

14
6(log

14
6)

14
4(log

14
4)(222 =×−×−×−=DSplitInfoA

25	

Gini	index	(CART,	IBM	IntelligentMiner)	

•  If	a	data	set	D	contains	examples	from	n	classes,	gini	index,	gini(D)	is	defined	
as	

					
					where	pj	is	the	relative	frequency	of	class	j	in	D	
•  If	a	data	set	D		is	split	on	A	into	two	subsets	D1	and	D2,	the	gini	index	gini(D)	

is	defined	as	

•  Reduction	in	Impurity:	

•  The	attribute	provides	the	smallest	ginisplit(D)	(or	the	largest	reduction	in	
impurity)	is	chosen	to	split	the	node	(need	to	enumerate	all	the	possible	
splitting	points	for	each	attribute)	

∑
=

−=
n

j
p jDgini
1
21)(

)(
||
||)(

||
||)(2

2
1

1 Dgini
D
D

Dgini
D
DDginiA +=

)()()(DginiDginiAgini A−=Δ

Gini	index	(CART,	IBM	IntelligentMiner)	

443.0)(

4
2

4
21

14
4

10
3

10
71

14
10)(

)(
14
4)(

14
10)(

},{

2222

},{

21},{

=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛−⎟
⎠

⎞
⎜
⎝

⎛−⎟
⎠

⎞
⎜
⎝

⎛+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛−⎟
⎠

⎞
⎜
⎝

⎛−⎟
⎠

⎞
⎜
⎝

⎛=

⎟
⎠

⎞
⎜
⎝

⎛+⎟
⎠

⎞
⎜
⎝

⎛=

∈

∈

∈

Dgini

Dgini

DGiniDGiniDgini

mediumlowincome

mediumlowincome

mediumlowincome

If	a	data	set	D		is	split	on	the	attribute	income	on	{low,medium},	it	partitions	
D	into	10	tuples	in	D1:	{low,medium}	and	4	tuples	in	D2	:	{high}.		

The	gini	index																																							is	defined	as	below)(},{ Dgini mediumlowincome∈

Gini	index	(CART,	IBM	IntelligentMiner)	

If	a	data	set	D		is	split	on	the	attribute	income	on	{medium,high},	it	partitions	
D	into	10	tuples	in	D1:	{medium,high}	and	4	tuples	in	D2	:	{low}.		

The	gini	index																																													is	defined		as	below	giniincome∈{medium,high}(D)

450.0)(

4
1

4
31

14
4

10
4

10
61

14
10)(

)(
14
4)(

14
10)(

},{

2222

},{

21},{

=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛−⎟
⎠

⎞
⎜
⎝

⎛−⎟
⎠

⎞
⎜
⎝

⎛+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛−⎟
⎠

⎞
⎜
⎝

⎛−⎟
⎠

⎞
⎜
⎝

⎛=

⎟
⎠

⎞
⎜
⎝

⎛+⎟
⎠

⎞
⎜
⎝

⎛=

∈

∈

∈

Dgini

Dgini

DGiniDGiniDgini

highmediumincome

highmediumincome

highmediumincome

Gini	index	(CART,	IBM	IntelligentMiner)	

If	a	data	set	D		is	split	on	the	attribute	income	on	{high,low},	it	partitions	D	
into	8	tuples	in	D1:	{high,	low}	and	6	tuples	in	D2	:	{medium}.		

The	gini	index																																							is	defined	as	below)(},{ Dgini lowhighincome∈

458.0)(

6
2

6
41

14
6

8
3

8
51

14
8)(

)(
14
6)(

14
8)(

},{

2222

},{

21},{

=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛−⎟
⎠

⎞
⎜
⎝

⎛−⎟
⎠

⎞
⎜
⎝

⎛+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛−⎟
⎠

⎞
⎜
⎝

⎛−⎟
⎠

⎞
⎜
⎝

⎛=

⎟
⎠

⎞
⎜
⎝

⎛+⎟
⎠

⎞
⎜
⎝

⎛=

∈

∈

∈

Dgini

Dgini

DGiniDGiniDgini

lowhighincome

lowhighincome

lowhighincome

Gini	index	(CART,	IBM	IntelligentMiner)	

459.0
14
5

14
91)(

22

=⎟
⎠

⎞
⎜
⎝

⎛−⎟
⎠

⎞
⎜
⎝

⎛−=Dgini

From	the	dataset	D	in	earlier	slide,	there	are	9	tuples	in	buys_computer	=	“yes” 	
and	5	tuples	in	buys_computer	=“no”

001.0458.0459.0)()(),(

009.0450.0459.0)()(),(

016.0443.0459.0)()(),(

},{

},{

},{

=−=−=Δ

=−=−=Δ

=−=−=Δ

∈

∈

∈

DginiDginilowhighgini

DginiDginihighmediumgini

DginiDginimediumlowgini

lowhighincome

highmediumincome

mediumlowincome

		Reduction	in	Impurity	is	calculated	as	shown	below.	

Since	gini{low,medium}	is	0.443	and	thus	the	best	for	the	SPLIT	since	it	is	the	
lowest.							Correspondingly		
is	0.016	which	is	the	highest	and	thus	the	best	Reduction	in	Impurity		

),(mediumlowginiΔ

30	

Gini	index	(CART,	IBM	IntelligentMiner)	

•  Ex.		D	has	9	tuples	in	buys_computer	=	“yes” and	5	in	“no”	

•  Suppose	the	attribute	income	partitions	D	into	10	in	D1:	{low,	medium}	and	4	
in	D2	

but	gini{medium,high}	is	0.30	and	thus	the	best	since	it	is	the	lowest	

•  Case:	All	attributes	are	assumed	continuous-valued	
•  May	need	other	tools,	e.g.,	clustering,	to	get	the	possible	split	values	
•  Can	be	modified	for	categorical	attributes	

459.0
14
5

14
91)(

22

=⎟
⎠

⎞
⎜
⎝

⎛−⎟
⎠

⎞
⎜
⎝

⎛−=Dgini

)(
14
4)(

14
10)(11},{ DGiniDGiniDgini mediumlowincome ⎟

⎠

⎞
⎜
⎝

⎛+⎟
⎠

⎞
⎜
⎝

⎛=∈

31	

Comparing	Attribute	Selection	Measures	

•  The	three	measures,	in	general,	return	good	results	but	
–  Information	gain:		

•  biased	towards	multivalued	attributes	
–  Gain	ratio:		

•  tends	to	prefer	unbalanced	splits	in	which	one	partition	is	
much	smaller	than	the	others	

–  Gini	index:		
•  biased	to	multivalued	attributes	

•  has	difficulty	when	#	of	classes	is	large	
•  tends	to	favor	tests	that	result	in	equal-sized	partitions	
and	purity	in	both	partitions	

32	

Other	Attribute	Selection	Measures	

•  CHAID:	a	popular	decision	tree	algorithm,	measure	based	on	χ2	test	for	
independence	

•  C-SEP:	performs	better	than	info.	gain	and	gini	index	in	certain	cases	

•  G-statistics:	has	a	close	approximation	to	χ2	distribution		

•  MDL	(Minimal	Description	Length)	principle	(i.e.,	the	simplest	solution	is	
preferred):		

–  The	best	tree	as	the	one	that	requires	the	fewest	#	of	bits	to	both	(1)	
encode	the	tree,	and	(2)	encode	the	exceptions	to	the	tree	

•  Multivariate	splits	(partition	based	on	multiple	variable	combinations)	

–  CART:	finds	multivariate	splits	based	on	a	linear	comb.	of	attrs.	

•  Which	attribute	selection	measure	is	the	best?	

–  	Most	give	good	results,	none	is	significantly	superior	than	others	

33	

Overfitting	and	Tree	Pruning	

•  Overfitting:		An	induced	tree	may	overfit	the	training	data		
–  Too	many	branches,	some	may	reflect	anomalies	due	to	noise	or	outliers	

–  Poor	accuracy	for	unseen	samples	

•  Two	approaches	to	avoid	overfitting		
–  Prepruning:	Halt	tree	construction	early—do	not	split	a	node	if	this	

would	result	in	the	goodness	measure	falling	below	a	threshold	

•  Difficult	to	choose	an	appropriate	threshold	
–  Postpruning:	Remove	branches	from	a	“fully	grown”	tree—get	a	

sequence	of	progressively	pruned	trees	

•  Use	a	set	of	data	different	from	the	training	data	to	decide	which	is	
the	“best	pruned	tree”	

34	

Enhancements	to	Basic	Decision	Tree	Induction	

•  Allow	for	continuous-valued	attributes	
–  Dynamically	define	new	discrete-valued	attributes	that	
partition	the	continuous	attribute	value	into	a	discrete	set	of	
intervals	

•  Handle	missing	attribute	values	
–  Assign	the	most	common	value	of	the	attribute	

–  Assign	probability	to	each	of	the	possible	values	
•  Attribute	construction	

–  Create	new	attributes	based	on	existing	ones	that	are	
sparsely	represented	

–  This	reduces	fragmentation,	repetition,	and	replication	

35	

Classification	in	Large	Databases	

•  Classification—a	classical	problem	extensively	studied	by	
statisticians	and	machine	learning	researchers	

•  Scalability:	Classifying	data	sets	with	millions	of	examples	and	
hundreds	of	attributes	with	reasonable	speed	

•  Why	decision	tree	induction	in	data	mining?	
–  relatively	faster	learning	speed	(than	other	classification	
methods)	

–  convertible	to	simple	and	easy	to	understand	classification	
rules	

–  can	use	SQL	queries	for	accessing	databases	
–  comparable	classification	accuracy	with	other	methods	

36	

Scalable	Decision	Tree	Induction	Methods	

•  SLIQ	(EDBT’96	—	Mehta	et	al.)	
–  Builds	an	index	for	each	attribute	and	only	class	list	and	the	
current	attribute	list	reside	in	memory	

•  SPRINT	(VLDB’96	—	J.	Shafer	et	al.)	
–  Constructs	an	attribute	list	data	structure		

•  PUBLIC	(VLDB’98	—	Rastogi	&	Shim)	
–  Integrates	tree	splitting	and	tree	pruning:	stop	growing	the	
tree	earlier	

•  RainForest	(VLDB’98	—	Gehrke,	Ramakrishnan	&	Ganti)	
–  Builds	an	AVC-list	(attribute,	value,	class	label)	

•  BOAT	(PODS’99	—	Gehrke,	Ganti,	Ramakrishnan	&	Loh)	
–  Uses	bootstrapping	to	create	several	small	samples	

