Overview

- Introduction
- Basic Concept on training and testing
- Main Methods of predictive accuracy evaluations
- Building a Classifier
Predictive Accuracy Evaluation

The **main methods** of **predictive accuracy** evaluations are:

- Resubstitution \((N ; N)\)
- Holdout \((2N/3 ; N/3)\)
- \(k\)-fold cross-validation \((N- N/k ; N/k)\)
- Leave-one-out \((N-1 ; 1)\)

where **\(N\)** is the number of records (instances) in the dataset
Predictive Accuracy

- **REMEMBER:** we must know the classification (class attribute values) of all instances (records) used in the test procedure.

- **Basic Concepts**
 - **Success:** instance (record) class is classified correctly
 - **Error:** instance class is classified incorrectly
 - **Error rate:** a percentage of errors made over the whole set of instances (records) used for testing

Predictive Accuracy: a percentage of well classified data in the testing data set.
Correctly and Not Correctly Classified

- A test data record is correctly classified if and only if the following conditions hold:
 1. we can classify the record, i.e. there is a pattern or a rule such that its LEFT side matches the record,
 2. classification determined by the pattern or the rule is correct, i.e. the RIGHT side of the rule matches the value of the record’s class attribute

OTHERWISE

- the record is not correctly classified

Words used:
- not correctly = incorrectly = misclassified
- Validation data = Test data
Predictive Accuracy

• Example:

Testing Rules (testing record #1) = record #1.class - Succ
Testing Rules (testing record #2) not= record #2.class - Error
Testing Rules (testing record #3) = record #3.class - Succ
Testing Rules (testing record #4) = instance #4.class - Succ
Testing Rules (testing record #5) not= record #5.class - Error

Error rate:

2 errors: #2 and #5

Error rate = 2/5=40%

Predictive Accuracy: 3/5 = 60%
Resubstitution (N ; N)

Testing the classification model by using the given data set (already used for "training")
Re-substitution Error Rate

- Re-substitution error rate is obtained from training data.
- **Training Data Error**: uncertainty of the rules.
- The error rate is not always 0%, but usually (and hopefully) very low!
- Re-substitution error rate indicates only how good (bad) are our results (rules, patterns, NN) on the TRAINING data.
- It expresses some knowledge about the algorithm used.
Re-substitution Error Rate

- Re-substitution error rate is usually used as the performance measure:

 The training error rate reflects imprecision of the training results

 The lower training error rate the better

 In the case of rules it is called rules accuracy
Predictive Accuracy

Predictive accuracy reflects how **good** are the **training results** with respect to the **test data**

The higher predictive accuracy **the better**

(N:N) re-substitution does not compute predictive accuracy

• **Re-substitution error rate** = **training data error rate**
Why not always 0%?

- The **error rate** on the **training data** is **not always 0%** because **algorithms** involve different (often statistical) **parameters** and **measures** that lead to **uncertainties**
- It is used for **“parameters tuning”**
- The **error** on the **training data** is **NOT** a good indicator of performance on **future data** since it does not measure any **not yet seen data**
- **Solution:**
 - Split data into **training and test set**
Training and test set

• **Training** and **Test** data may differ in nature, but **must have** the same format.

Example:

Given customer data from two different towns A and B. We **train the classifier** with the data from town A and we **test it** on data from town B, and vice-versa.
Classification Learning Process

- It is important that the **test data** is **not used** in any way to create the training **rules or other patterns**.

- In fact, **classification process** operate in three stages:

 Stage 1: build the **basic patterns** structure

 Stage 2: optimize **parameter settings**;
 can use **(N:N) re-substitution**
 - parameter tuning

 Stage 3: use **test data** to compute **predictive accuracy/error rate**
Validation Data

- Proper **classification** process uses three sets of data:
 - training data, validation data and test data
- validation data is **used** for parameter tuning
- validation data is **not** a test data
- validation data can be the training data, or a subset of training data
- The **test data** can not be used for parameter tuning!
Training and testing

• Generally, the **larger is** the training set, the **better is** the classifier

• **Larger test data** assures more **accurate** predictive accuracy, or error estimation

• **Remember:**
 • the **error rate** of re-substitution \((N;N)\) can tell us **ONLY** whether the **algorithm** used in training is **good** or **not good** or **how good** it is
Training and testing

- **Holdout procedure** is a method of splitting original data into training and test data sets.

- **Dilemma:**
 - ideally both training and test data should be large!
 - What to do if the amount of data is limited?
 - How to split the data into training and test subsets?
 - **Disjoint sets** - in the best way
Holdout

Train-and-Test (for large sample sizes (> 1000))
dividing the given data set in

- a **training sample** for generating the classification model
- a **test sample** to test the model on independent objects with given classifications (randomly selected, 20-30% of the complete data set)
Holdout \((N - N/3 ; N/3)\)

- The **holdout method** reserves a certain amount of data for **testing** and uses the **remainder** for **training** – so they are **disjoint**!

- **Usually**, one third \((N/3)\) of data is used for **testing**, and the **rest** \((N - N/3) = (2N/3)\) for **training**

- **The choice** of records for **train** and **test** data is **essential**

We usually perform a **cycle**:

Train-and-test; repeat
Repeated Holdout

• **Holdout** can be made more reliable by repeating the process with **different sub-samples** (subsets of data):

 1. In each iteration, a **certain portion** is randomly selected for **training**, the **rest of data** is used for **testing**
 2. The **error rates** or **predictive accuracy** on different **iterations** are **averaged** to yield an overall **error rate**, or overall **predictive accuracy**

• Repeated holdout still **is not optimal**: the different **test sets** **overlap**
k-fold cross-validation (N - N/k ; N/k)

- This is a cross-validation used to prevent the overlap of the test sets

- First step: split data into k disjoint subsets
- D1, ... Dk, of equal size, called folds

- Second step: use each subset in turn for testing, the remainder for training

- Training and testing is performed k times
k-fold cross-validation
predictive accuracy computation

• The predictive accuracy estimate is the overall number of correct classifications from all iterations, divided by the total number of records in the initial data.
Stratified cross-validation

In the stratified cross-validation, the folds are stratified; i.e., the class distribution of the tuples (records) in each fold is approximately the same as in the initial data.
10 folds cross-validation

- In general,
- 10-fold cross-validation or stratified 10-fold cross-validation
- is **recommended** and
- **widely used** even if computational power allows using more folds
- **Why 10?**

 Extensive experiments have shown that this is the **best choice** to get an accurate estimate due to its relatively low bias and variance

So interesting!
Improved Repeated Holdout

- 10-fold cross-validation is an improvement over repeated holdout (N- N/10 ; N/10) repeated 10 times where we use each subset in turn for testing, the remainder for training and predictive accuracy results are averaged.

In the descriptive case we can adopt the union of rules as the new set of rules for the final Classifier.
A particular form of cross-validation

- k-fold cross-validation: \((N - N/k ; N/k)\)
- If \(k = N\), what happens?
- We get \((N-1; 1)\)

It is called "leave-one-out"

Each sample (record) is used the same number of times for training and once for testing
Leave-one-out (N-1 ; 1)

Cross-Validation (for moderated sample sizes) → Sampling without replacement
- Dividing the given data set into \(m \) subsamples of equal size
- Each subsample is tested by using a model generated from the remaining \((m-1)\) subsamples
→ Leave-One-Out: \(m = \) Number of objects
Leave-one-out (N-1 ; 1)

- Leave-one-out is a particular form of cross-validation

 We set number of folds to number of training instances, i.e. \(k = N \)

 For \(N \) instances we build classifier (repeat the training - testing) \(n \) times
Leave-one-out Procedure

• Let $C(i)$ be the classifier (rules, patterns) built on all data except record x_i
• Evaluate $C(i)$ on x_i
• Determine if it is correct or in error
• Repeat for all $i=1,2,...,n$
• The total error is the proportion of all the incorrectly classified x_i

• The final CLASSIFIER set of rules (patterns) can be a union of all rules obtained in the process
Leave-one-out (N-1 ; 1)

- Makes the **best** use of the data
- Involves **no random** sub-sampling
- **Stratification** is not possible
- **Computationally** expensive
- MOST commonly used
Building a Classifier

• Book Edition 2, chapter 6, sections 6.12-6.16

• Book Edition 3, chapter 8, sections 8.5-8.6
Building a Classifier

- **Stage 1**: build the classification patterns structure - training
- We call them a **learned classifier**
- **Stage 2**: optimize parameter settings; can use \(N:N \) re-substitution - parameter tuning
- **Stage 3**: use **test data** to compute – predictive accuracy/error rate – **testing**
- **Stage 4**: consolidate Stages 1-3 to build a **Classifier** as a **final product**
Model Evaluation and Selection (book slide)

• Evaluation metrics:
• How can we measure (predictive) accuracy?
• Other metrics to consider?
• Use validation test set of class-labeled tuples instead of training set when assessing accuracy
• Methods for estimating a classifier’s accuracy:
 – Holdout method, random subsampling
 – Cross-validation
 – Bootstrap
The book uses the words “classifier” and “model” interchangeably.

Sometimes “classifier” means Stage 1 basic classifier model (rules, patterns) ready for testing.

Sometimes “classifiers” means classifiers models (rules, patterns) obtained by training-testing methods (like k-fold cross validation, repeated holdout, etc..). i.e. are the results of Stages 1-3.
Classifier, Model Terminology

• When the book talks about **comparison of classifiers**, “classifier” means comparison of classifiers models (rules, patterns) obtained by **train-test methods** i.e. means comparison results of **Stages 1-3**

• These **comparison methods** or other methods are called “**model selection**”

• Their goal is to **choose** the best one to be

• **THE CLASSIFIER**

• the final product that would the best **classify unknown records**
Classifier, Model Terminology

• In some cases the term “learned models” or “base classifiers” are used for results of Stages 1-3.

• It happens when the method is presented how to combine them in a way that would the best to return a class prediction for unknown records, i.e. to build the final CLASSIFIER.
Metrics for Evaluating Classifier Performance

• The **predictive accuracy** is one of basic performance measures of a **classifier (model)** learned in **Stages 1-3** when applied to predict the class label of **unknown records**

• Before we discuss other measures (metrics)

• We introduce some new notions
Positive, Negative

- Given classification data with $n \geq 2$ classes

 - Positive tuples - tuples (record) belonging to the MAIN class of interest
 - Negative tuples - all other tuples

 - This is called **Contrast Classification**
 - We contrast one MAIN class of interest with all other classes
Classifier Evaluation Metrics

- Consider a case of \(n=2 \) classes
- Assume that the \textbf{test data} has \(N \) records
- We use the following terms that are “building blocks” used in the \textit{learned classifier (Stage 1)} evaluation metrics

- \textbf{True Positives (TP)}:
 These are positive \textbf{test} tuples that were \textit{correctly} labeled by the \textit{learned classifier}
- We denote by \(TP \) the \textbf{number of} true positives
Classifier Evaluation Metrics

- **True Negatives (TN):**
 These are negative test tuples that were correctly labeled by the learned classifier.
 We denote by TN the number of true negatives.

- **False Positives (FP):**
 These are negative test tuples that were incorrectly labeled as positive by the learned classifier.
 We denote by FP the number of false positives.
Classifier Evaluation Metrics

• **False Negatives (FN):**
 These are *positive* test tuples that were *incorrectly* labeled as *positive* by the learned classifier.

• We denote by FN the number of false negatives.

• These terms are summarized in the following Confusion Matrix.
Classifier Evaluation Metrics: Confusion Matrix

Confusion Matrix:

<table>
<thead>
<tr>
<th>Actual class \ Predicted class</th>
<th>C_1</th>
<th>$\neg C_1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_1</td>
<td>True Positives (TP)</td>
<td>False Negatives (FN)</td>
</tr>
<tr>
<td>$\neg C_1$</td>
<td>False Positives (FP)</td>
<td>True Negatives (TN)</td>
</tr>
</tbody>
</table>

Example of Confusion Matrix:

<table>
<thead>
<tr>
<th>Actual class \ Predicted class</th>
<th>buy_computer = yes</th>
<th>buy_computer = no</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>buy_computer = yes</td>
<td>6954</td>
<td>46</td>
<td>7000</td>
</tr>
<tr>
<td>buy_computer = no</td>
<td>412</td>
<td>2588</td>
<td>3000</td>
</tr>
<tr>
<td>Total</td>
<td>7366</td>
<td>2634</td>
<td>10000</td>
</tr>
</tbody>
</table>
Classifier Evaluation Metrics: Confusion Matrix

• Given m classes
• An entry, $CM_{i,j}$ in a confusion matrix
• indicates # of tuples in class i that were
• labeled by the classifier as class j

• May have extra rows/columns to provide totals
Classifier Evaluation Metrics: Accuracy, Error Rate

- **Classifier Accuracy**, or recognition rate: percentage of test set tuples that are correctly classified

\[
\text{Accuracy} = \frac{TP + TN}{\text{All}}
\]

- **Error rate**: \(1 - \text{accuracy}\), or

\[
\text{Error rate} = \frac{FP + FN}{\text{All}}
\]
Classifier Evaluation Metrics:
Sensitivity and Specificity

<table>
<thead>
<tr>
<th>A\P</th>
<th>C</th>
<th>¬C</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>TP</td>
<td>FN</td>
</tr>
<tr>
<td>¬C</td>
<td>FP</td>
<td>TN</td>
</tr>
<tr>
<td>P'</td>
<td>N'</td>
<td>All</td>
</tr>
</tbody>
</table>

- **Class Imbalance Problem:**
 - One class may be *rare*, e.g. fraud, or HIV-positive
 - Significant *majority of the negative class* and minority of the *positive* class

- **Sensitivity:** True Positive recognition rate
 - Sensitivity = $\frac{TP}{P}$

- **Specificity:** True Negative recognition rate
 - Specificity = $\frac{TN}{N}$
Classifier Evaluation Metrics: Precision and Recall

- **Precision**: exactness – what % of tuples that the classifier labeled as positive are actually positive

\[\text{precision} = \frac{TP}{TP + FP} \]

- **Recall**: completeness – what % of positive tuples did the classifier label as positive?

\[\text{recall} = \frac{TP}{TP + FN} \]

- **Perfect score is 1.0**
- **Inverse** relationship between precision and recall
Classifier Evaluation Metrics: F-measures

- **F measure** \((F_1\) or **F-score**): harmonic mean of precision and recall,

- \(F_\beta\): weighted measure of precision and recall
 - assigns \(\beta\) times
 - as much
 - weight to recall as to precision
Classifier Evaluation Metrics: Example

<table>
<thead>
<tr>
<th>Actual Class</th>
<th>Predicted class</th>
<th>cancer = yes</th>
<th>cancer = no</th>
<th>Total</th>
<th>Recognition(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>cancer = yes</td>
<td>90</td>
<td>210</td>
<td>300</td>
<td>30.00 (sensitivity)</td>
<td></td>
</tr>
<tr>
<td>cancer = no</td>
<td>140</td>
<td>9560</td>
<td>9700</td>
<td>98.56 (specificity)</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>230</td>
<td>9770</td>
<td>10000</td>
<td>96.40 (accuracy)</td>
<td></td>
</tr>
</tbody>
</table>

- **Precision** = \(\frac{90}{230} = 39.13\% \)
- **Recall** = \(\frac{90}{300} = 30.00\% \)
Evaluating Classifier Accuracy
(Predictive Accuracy)

• **Holdout method**
 Given data is *randomly* partitioned into two independent sets
 • **Training** set (e.g., 2/3) for *model construction*
 • **Test** set (e.g., 1/3) for *accuracy estimation*

Random sampling: a variation of holdout
 • Repeat **holdout k times**, accuracy = avg. of the accuracies obtained
Evaluating Classifier Accuracy
(Predictive Accuracy)

• **k-fold Cross-validation** (k = 10 is most popular)
 – Randomly partition the data into *k mutually exclusive subsets*, each approximately equal size
 – At *i*-th iteration, use D_i as **test set** and others as **training set**

 – **Leave-one-out**: *k* folds where $k = \# \text{ of tuples}$, for small sized data

 – *Stratified cross-validation*:* folds are stratified so that **class distribution** in each fold is approximately the same as that in the **initial data**
Evaluating Classifier Accuracy: Bootstrap

.632 bootstrap

A data set with d tuples is sampled d times, with replacement, resulting in a training set of d samples. The data tuples that did not make it into the training set end up forming the test set. About **63.2%** of the original data end up in the bootstrap, and the remaining **36.8%** form the test set.

Repeat the sampling procedure k times, overall accuracy of the model:

$$\text{Acc}(M) = \frac{1}{k} \sum_{i=1}^{k} (0.632 \times \text{Acc}(M_i)_{\text{test set}} + 0.368 \times \text{Acc}(M_i)_{\text{train set}})$$
Evaluating Classifier Accuracy: Bootstrap

• Bootstrap samples the given training tuples uniformly with replacement.
 i.e., each time a tuple is selected, it is equally likely to be selected again and re-added to the training set.

• There are several bootstrap methods, and a common one is .632 bootstrap.
Evaluating Classifier Accuracy: Bootstrap

• .632 bootstrap

A data set with \(d\) tuples is sampled \(d\) times, with replacement. Resulting is a training set of \(d\) samples.

The data tuples that did not make it into the training set end up forming the test set.

About 63.2% of the original data end up in the bootstrap, and the remaining 36.8% form the test set (since \((1 - 1/d)^d \approx e^{-1} = 0.368\))
Compare Learned Models M_1 vs. M_2

• **Suppose** we have learned 2 classifiers, M_1 and M_2

• **Which one is better?**

• Use 10-fold cross-validation to obtain $\overline{err}(M_1)$

• and $\overline{err}(M_2)$

• These mean error rates are just *estimates* of error on the true population of *future* data cases

• Want to **choose** one for the final **Classifier**
Choosing Models M_1 vs. M_2

• What if the **difference** between the 2 error rates is just **attributed** to *chance*?

• **We use t-test** (or Student’s t-test)

• **Null Hypothesis**: M_1 & M_2 mean error rates are the same

• If we can **reject** null hypothesis, then

 – we conclude that the **difference** between M_1 & M_2 is **statistically significant**

We chose model with lower error rate

– Otherwise, **conclude** that any difference is **chance**
Ensemble Methods

- Ensemble methods
 - Use a combination of models to increase accuracy
 - Combine a series of k learned models M_1, M_2, \ldots, M_k, with the aim of creating an improved model M^* as a CLASSIFIER
Building the CLASSIFIER

- Popular ensemble methods of building the CLASSIFIER
 - **Bagging:** averaging the prediction over a collection of classifiers
 - **Boosting:** weighted vote with a collection of classifiers
 - **Erandom Forest:** decision tree classifier
Bagging: Bootstrap Aggregation

- **Analogy:** Diagnosis based on multiple doctors’ majority vote

- **Training**

 Given a set D of d tuples, at each iteration i

 a training set D_i of d tuples is **sampled with replacement** from D (i.e., bootstrap)

 - A classifier model M_i is learned for each training set D_i
Bagged Classifier

- **Classifier**: we build to classify an *unknown* sample \(X \)
- We proceed as follows
 - Each classifier model \(M_i \) returns its class prediction
 - The *bagged classifier* \(M^* \) counts the votes and assigns the class with the *most votes* to \(X \)

- **Accuracy**
 - Often significantly *better* than a *single classifier* derived from \(D \)
Boosting

• Analogy:
Consult several doctors, based on a combination of *weighted diagnoses*—weight assigned based on the previous diagnosis *accuracy*
How boosting works?

Weights are assigned to each training tuple. A series of k classifiers is iteratively learned.

After a classifier M_i is learned, the weights are updated to allow the subsequent classifier M_{i+1} to pay more attention to the training tuples that were misclassified by M_i.
Boosting

- Boosting algorithm can be extended for numeric prediction

- Comparing with bagging:
 - Boosting tends to have greater accuracy, but it also risks overfitting the model to misclassified data
Adaboost

Given a set D of d class-labeled tuples

$(X_1, y_1), ..., (X_d, y_d)$

Initially, all the **weights** of tuples are set the same $(1/d)$

- **Generate** k classifiers in k rounds
- **At round** i
 - Tuples from D are **sampled** (with replacement) to form a **training** set D_i of the same size
 Each tuple’s **chance** of being **selected** is based on its **weight**
 - A classification **model** M_i is derived from D_i
 Its **error rate** is calculated using D_i as a **test** set
 - If a tuple is **misclassified**, its **weight** is **increased**, otherwise it is **decreased**
Adaboost

- **Error rate:**
 - \(\text{err}(X_j) \) is the *misclassification error* of tuple \(X_j \)
- **Classifier model** \(M_i \) *error rate* is the sum of the *weights* of the *misclassified* tuples:

\[
\text{error}(M_i) = \sum_{j=1}^{d} w_j \times \text{err}(X_j)
\]

The **weight** of classifier \(M_i \)'s vote is

\[
\log \frac{1 - \text{error}(M_i)}{\text{error}(M_i)}
\]

The **final classifier** \(M^* \) combines the votes of each individual classifier
Random Forest

- Random Forest:
 each classifier in the ensemble is a decision tree classifier
 It is generated using a random selection of attributes at each node of the tree to determine the split
 In final classifier, each tree votes and the most popular class is returned
Random Forest

• **Two Methods** to construct Random Forest:

Forest-RI *(random input selection)*:
Randomly select, at each node, F attributes as candidates for the **split** at the **node**
The **CART** methodology is used to grow the trees to **maximum size**
Random Forest

Forest-RC (*random linear combinations*):
Creates new attributes (or features) that are a linear combination of the existing attributes.
 - It reduces the **correlation** between individual classifiers.

- **Random Forest**
- **Insensitive** to the **number** of attributes selected for consideration at each **split**
- **Faster** than **bagging** or **boosting**
Classification of Class-Imbalanced Data Sets

- Class-imbalance problem: Rare positive example but numerous negative ones, e.g., medical diagnosis, fraud, oil-spill, fault, etc.
- Traditional methods assume a balanced distribution of classes and equal error costs: not suitable for class-imbalanced data
- Typical methods for imbalance data in 2-class classification:
 - **Oversampling**: re-sampling of data from positive class
 - **Under-sampling**: randomly eliminate tuples from negative class
 - **Threshold-moving**: moves the decision threshold, t, so that the rare class tuples are easier to classify, and hence, less chance of costly false negative errors
 - Ensemble techniques: Ensemble multiple classifiers introduced above
- Still difficult for class imbalance problem on multiclass tasks
Classification of Class-Imbalanced Data Sets

• Class-imbalance problem: Rare positive example but numerous negative ones, e.g., medical diagnosis, fraud, oil-spill, fault, etc.

• Traditional methods assume a balanced distribution of classes and equal error costs: not suitable for class-imbalanced data.

• Typical methods for imbalance data in 2-class classification:
 – Oversampling: re-sampling of data from positive class
 – Under-sampling: randomly eliminate tuples from negative class
 – Threshold-moving: moves the decision threshold, \(t \), so that the rare class tuples are easier to classify, and hence, less chance of costly false negative errors
 – Ensemble techniques: Ensemble multiple classifiers introduced above

• Still difficult for class imbalance problem on multiclass tasks
Book Summary

- Stratified k-fold cross-validation is a recommended method for accuracy estimation.
- Bagging and boosting can be used to increase overall accuracy by learning and combining a series of individual models.
- Significance tests and ROC curves are useful for model selection - building a final classifier.