BASICS of CLUSTER ANALYSIS

Chapter 7, 2nd edition
Chapter 10, 3rd edition

Professor Anita Wasilewska
Computer Science Department
Stony Brook University
Introduction to Cluster Analysis

• Introduction
• Clustering Requirements
• Data Representation
• Partitioning Methods
• K-Means Clustering
• K-Medoids Clustering
• Constrained *K-Means* clustering
• *PAM* and *CLARA*
Introduction to Cluster Analysis

• The process of grouping a set of physical or abstract objects into classes of similar objects is called clustering.

• A cluster is a collection of data objects that are similar to one another within the same cluster and are dissimilar to the objects in other clusters.
Formal Definition

• Cluster analysis

Statistical method for grouping a set of data objects into **clusters**

A good clustering method produces high quality clusters with high **intraclass** similarity and low **interclass** similarity

• **Cluster**: Collection of data objects

 Intra-class similarity: Objects are **similar** to objects in same cluster

 Inter-class dissimilarity: Objects are **dissimilar** to objects in other clusters

• **Clustering** is unsupervised classification
Supervised vs. Unsupervised Learning

• **Unsupervised learning** - clustering
 – The class labels of training data are unknown
 – Given a set of measurements, observations, etc. establish the existence of clusters in the data

• **Supervised learning** - classification
 – Supervision: The training data (observations, measurements, etc.) are accompanied by labels indicating the class of the observations
 – New data is classified based on the training set

• **Clustering** is also called **data segmentation** in some applications because clustering partitions large data sets into groups according to their **similarity**
Clustering vs. Classification

Clustering - learning by observations
- Unsupervised
- Input
 - Clustering algorithm
 - Similarity measure
 - Number of clusters
- No specific information for each set of data

Classification - learning by examples
- Supervised
- Consists of class labeled training data examples
- Build a classifier that assigns data objects to one of the classes
Clustering vs. Classification

- Class Label Attribute: *loan_decision*
- Learning of Classifier is "**supervised**" → it is told to which class each training tuple (sample) belongs

Data Mining Concept and Techniques (Chapter 6, Page 287).
Clustering vs. Classification

- **Clustering**
 - class label of training tuple not known
 - number or set of classes to be learned may not be known in advance
 - e.g. if we did not have loan_decision data available we use clustering and NOT classification to determine “groups of like tuples”
 - These “groups of like tuples” may eventually correspond to risk groups within loan application data
Typical Requirements Of Clustering

• **Minimal requirements** for domain knowledge to determine input **parameters**

• Many clustering algorithms require **users to input** certain **parameters** in cluster analysis (such as the **number** of desired clusters)

• The clustering results can be quite sensitive to **input parameters**.

• **Parameters** are often **difficult** to determine, especially for data sets containing **high-dimensional objects**
Typical Requirements Of Clustering

• **Scalability**
 Many clustering algorithms work well on small data sets
 Large database may contain millions of objects
 Clustering on a *sample* of a given large data set may lead to biased results
 Highly scalable clustering algorithms are needed

• **Ability** to deal with different types of attributes
 Many algorithms are *designed* to cluster numerical data
 Applications may require clustering other *types of data*:
 binary, categorical (nominal), and ordinal data, or mixtures of these data types
Typical Requirements Of Clustering

• Ability to deal with noisy data

Some clustering algorithms are sensitive to noisy data and may lead to clusters of poor quality

• Incremental clustering and insensitivity to the order of input records

• Constraint-based clustering

• Interpretability and usability
Typical Requirements Of Clustering

- **Discovery** of clusters with **arbitrary shape**
- Many clustering algorithms determine clusters based on **Euclidean** or **Manhattan distance** measures.
- **Algorithms** based on such **distance measures** tend to find **spherical clusters** with similar size and density.
- A **cluster** could be of any **shape**.
- It is important to **develop algorithms** that can detect clusters of **arbitrary shape**.
Examples of Clustering Applications

• **Marketing:**
 • Help marketers discover distinct groups in their customer bases, and then use this knowledge to develop targeted marketing programs

• **Insurance:**
 • Identifying groups of insurance policy holders with a high average claim cost
Examples of Clustering Applications

• **City-planning:**
 • Identifying groups of houses according to their house type, value, and geographical location

• **Earthquake studies:**
 • Observe earthquake epicenters clustered along continent faults

• **Fraud detection:**
 • Detection of credit card fraud and the monitoring of criminal activities in electronic commerce
Data Representation

- Data matrix

\[
\begin{bmatrix}
x_{11} & \cdots & x_{1f} & \cdots & x_{1p} \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
x_{i1} & \cdots & x_{if} & \cdots & x_{ip} \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
x_{n1} & \cdots & x_{nf} & \cdots & x_{np}
\end{bmatrix}
\]

- n objects with p attributes

- Dissimilarity
 \[d(i,j) : \text{dissimilarity (similarity)}\]
 distance between records i and j

\[
\begin{bmatrix}
0 \\
d(2,1) & 0 \\
d(3,1) & d(3,2) & 0 \\
\vdots & \vdots & \vdots \\
d(n,1) & d(n,2) & \cdots & \cdots & 0
\end{bmatrix}
\]

Data Mining Concept and Techniques (Chapter 7, Page 386-387).
Types of Data in Cluster Analysis

- **Interval-Scaled** Variables
 - (values of attributes)

- **Binary** Variables
 - (values of attributes)

- **Categorical, Ordinal, and Ratio-Scaled** Variables
 - (values of attributes)

- **Variables of Mixed Types**
Interval-Scaled Variables

- Continuous measurements of a roughly linear scale
 - E.g. weight, height, temperature, etc.

<table>
<thead>
<tr>
<th>Height Scale</th>
<th>Weight Scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Scale ranges over the metre or foot scale</td>
<td>1. Scale ranges over the kilogram or pound scale</td>
</tr>
<tr>
<td>2. Need to standardize heights as different scale can be used to express same absolute measurement</td>
<td></td>
</tr>
</tbody>
</table>
Using Interval-Scaled Values

Step 1: Standardize the data
- To ensure they all have equal weight
- To match up different scales into a uniform, single scale
- **Not always needed!** Sometimes we require unequal weights for an attribute

Step 2:
Compute **dissimilarity** between records
- Use **Euclidean**, **Manhattan** or **Minkowski** distance
Data Types and Distance Metrics

Distances are normally used to measure the *similarity* or *dissimilarity* between two data objects (records)

- **Minkowski distance:**
 \[
 d(i,j) = \sqrt[q]{(|x_{i1} - x_{j1}|^q + |x_{i2} - x_{j2}|^q + \ldots + |x_{ip} - x_{jp}|^q)}
 \]

 where \(i = (x_{i1}, x_{i2}, \ldots, x_{ip}) \) and \(j = (x_{j1}, x_{j2}, \ldots, x_{jp}) \) are two \(p \)-dimensional data objects, and \(q \) is a positive integer.
Data Types and Distance Metrics

- If \(q = 1 \), Minkowski \(d \) is **Manhattan distance**

\[
d(i, j) = \sum_{i_1}^{p} |x_{i_1} - x_{j_1}| + |x_{i_2} - x_{j_2}| + \ldots + |x_{i_p} - x_{j_p}|
\]

- If \(q = 2 \), Minkowski \(d \) is **Euclidean distance**

\[
d(i, j) = \sqrt{\left(\sum_{i_1}^{p} |x_{i_1} - x_{j_1}|^2 + |x_{i_2} - x_{j_2}|^2 + \ldots + |x_{i_p} - x_{j_p}|^2\right)}
\]
Data Types and Distance Metrics

- **Distance Properties**
 - \(d(i,j) \geq 0 \)
 - \(d(i,i) = 0 \)
 - \(d(i,j) = d(j,i) \)
 - \(d(i,j) \leq d(i,k) + d(k,j) \)

- Can also use **weighted distance**, or other dissimilarity measures

\[
d(i,j) = \sqrt{\sum_{p} w_p |x_{i_p} - x_{j_p}|^q}
\]
Binary Attributes

- **A contingency table** for binary data

<table>
<thead>
<tr>
<th>Object i</th>
<th>Object j</th>
<th>(\text{sum})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>0</td>
<td>c</td>
<td>d</td>
</tr>
<tr>
<td>(a+c)</td>
<td>(b+d)</td>
<td>(p)</td>
</tr>
<tr>
<td>(a+b)</td>
<td>(c+d)</td>
<td></td>
</tr>
</tbody>
</table>

- **Simple matching** coefficient (applicable only for database with all symmetric binary attributes):

\[
d(i, j) = \frac{b+c}{a+b+c+d}
\]

- **Jaccard coefficient** (applicable only for database with all asymmetric binary attributes):

\[
d(i, j) = \frac{b+c}{a+b+c} \quad \text{and} \quad \text{sim}(i, j) = \frac{a}{a+b+c}
\]

- For **mixed binary** attributes, please refer Data Mining Concept and Techniques (Chapter 7, Section 7.2.4).
Binary Attributes

• Example:

<table>
<thead>
<tr>
<th>Name</th>
<th>Gender</th>
<th>Fever</th>
<th>Cough</th>
<th>Test-1</th>
<th>Test-2</th>
<th>Test-3</th>
<th>Test-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jack</td>
<td>M</td>
<td>Y</td>
<td>N</td>
<td>P</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Mary</td>
<td>F</td>
<td>Y</td>
<td>N</td>
<td>P</td>
<td>N</td>
<td>P</td>
<td>N</td>
</tr>
<tr>
<td>Jim</td>
<td>M</td>
<td>Y</td>
<td>P</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
</tbody>
</table>

Points to be considered (refer Chapter 7 of the book for the above example):
• In this book, gender is assumed as an asymmetric attribute and the rest of the attributes are assumed symmetric
• The book ignores the gender attribute and continues to consider the other attributes
Binary Attributes

Example:

<table>
<thead>
<tr>
<th>Name</th>
<th>Gender</th>
<th>Fever</th>
<th>Cough</th>
<th>Test-1</th>
<th>Test-2</th>
<th>Test-3</th>
<th>Test-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jack</td>
<td>M</td>
<td>Y</td>
<td>N</td>
<td>P</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Mary</td>
<td>F</td>
<td>Y</td>
<td>N</td>
<td>P</td>
<td>N</td>
<td>P</td>
<td>N</td>
</tr>
<tr>
<td>Jim</td>
<td>M</td>
<td>Y</td>
<td>P</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
</tbody>
</table>

Formulas defined for similarity and **dissimilarity** are **applicable** only when all attributes under consideration are **asymmetric** or **symmetric**

Calculation of similarity and dissimilarity between attributes when a **combination** of asymmetric and symmetric attributes is involved, is explained in **section 7.2.4**
Dissimilarity between Binary Attributes

• We now consider

<table>
<thead>
<tr>
<th>Name</th>
<th>Fever</th>
<th>Cough</th>
<th>Test-1</th>
<th>Test-2</th>
<th>Test-3</th>
<th>Test-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jack</td>
<td>Y</td>
<td>N</td>
<td>P</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Mary</td>
<td>Y</td>
<td>N</td>
<td>P</td>
<td>N</td>
<td>P</td>
<td>N</td>
</tr>
<tr>
<td>Jim</td>
<td>Y</td>
<td>P</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
</tbody>
</table>

Since the table was a combination of symmetric and asymmetric attributes, we now omit Gender which is a symmetric attribute from our consideration.

We are now left with the asymmetric attributes – Fever, Cough, Test-1, Test-2, Test-3, Test-4

Calculating the dissimilarity considering only asymmetric attributes using Jaccard coefficient is as follows
Dissimilarity between Binary Attributes

• Example

<table>
<thead>
<tr>
<th>Name</th>
<th>Fever</th>
<th>Cough</th>
<th>Test-1</th>
<th>Test-2</th>
<th>Test-3</th>
<th>Test-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jack</td>
<td>Y</td>
<td>N</td>
<td>P</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Mary</td>
<td>Y</td>
<td>N</td>
<td>P</td>
<td>N</td>
<td>P</td>
<td>N</td>
</tr>
<tr>
<td>Jim</td>
<td>Y</td>
<td>P</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
</tbody>
</table>

Let the values Y and P be set to 1, and the value N be set to 0. We calculate the dissimilarity considering only asymmetric attributes using Jaccard coefficient is as follows:

$$d(jack, mary) = \frac{0 + 1}{2 + 0 + 1} = 0.33$$

$$d(jack, jim) = \frac{1 + 1}{1 + 1 + 1} = 0.67$$

$$d(jim, mary) = \frac{1 + 2}{1 + 1 + 2} = 0.75$$
Categorical Attributes

- **Categorical attribute** is a generalization of the **binary** attribute in that it can take more than 2 states, e.g., red, yellow, blue, green

- **Method 1**: Simple matching

 \[m: \text{# of attributes that are the same for both records}, \]

 \[p: \text{total # of attributes} \]

 \[d(i, j) = \frac{p - m}{p} \]

- **Method 2**: rewrite the database and create a new binary attribute for each of the \(m \) states

 For an object with color yellow, the yellow attribute is set to 1, while the remaining attributes are set to 0
Major Clustering Approaches

• Partitioning approach:
 Construct various partitions and then evaluate them by some criterion, e.g., minimizing the sum of square errors.
 Typical methods: **k-means, k-medoids, CLARANS**

• Hierarchical approach:
 Create a hierarchical decomposition of the set of data (or objects) using some criterion.
 Typical methods: **Diana, Agnes, BIRCH, ROCK, CAMELEON**
Major Clustering Approaches

Density-based approach:
Based on connectivity and density functions
Typical methods: **DBSCAN, OPTICS, DenClue**

- **Grid-based approach:**
 based on a multiple-level granularity structure
 Typical methods: **STING, WaveCluster, CLIQUE**

- **Model-based:**
 A model is hypothesized for each of the clusters and tries to find the best fit of that model to each other
 Typical methods: **EM, SOM, COBWEB**
Major Clustering Approaches

• **Frequent pattern-based:**

 Based on the analysis of frequent patterns

 Typical methods: **pCluster**

• **User-guided or constraint-based:**

 Clustering by considering user-specified or application-specific constraints

 Typical methods: **COD** (obstacles), constrained clustering
Methods to Calculate the Distance between Clusters

- **Single link:** smallest distance between an element in one cluster and an element in the other,
 \[\text{dis}(K_i, K_j) = \min(t_{ip}, t_{jq}) \]

- **Complete link:** largest distance between an element in one cluster and an element in the other,
 \[\text{dis}(K_i, K_j) = \max(t_{ip}, t_{jq}) \]

- **Average:** avg distance between an element in one cluster and an element in the other,
 \[\text{dis}(K_i, K_j) = \text{avg}(t_{ip}, t_{jq}) \]
Methods to Calculate the Distance between Clusters

- **Centroid:**
 - distance between the centroids of two clusters, $\text{dis}(K_i, K_j) = \text{dis}(C_i, C_j)$

- **Medoid:**
 - distance between the medoids of two clusters, $\text{dis}(K_i, K_j) = \text{dis}(M_i, M_j)$

 Medoid is one chosen, centrally located object in the **cluster**
Numerical Data: Centroid, Radius, Diameter

- **Centroid:** the “middle” of a cluster for numerical data

\[C_m = \frac{\sum_{i=1}^{N} (t_{ip})}{N} \]

- **Radius:** square root of average distance from any point of the cluster to its centroid

\[R_m = \sqrt{\frac{\sum_{i=1}^{N} (t_{ip} - c_m)^2}{N}} \]
Numerical Data: Centroid, Radius, Diameter

• Diameter:
 • square root of average mean squared distance between all pairs of points in the cluster

\[R_m = \sqrt{\frac{\sum_{i=1}^{N} (t_{ip} - c_m)^2}{N}} \]
Partitioning Algorithms: Basic Concept

• **Partitioning method:**

 Construct a *partition* of a database D of n objects (records) into a set of k clusters

• Given a k, find a partition of k *clusters* that optimizes the chosen partitioning criterion

Global optimal method:

- exhaustively *enumerate* all partitions
Partitioning Algorithms: Basic Concept

- Given a k, find a partition of k clusters that optimizes the chosen partitioning criterion

 Heuristic methods: *k-means* and *k-medoids* algorithms

 k-means (MacQueen’ 67):
 - Each cluster is represented by the **center** of the cluster

 k-medoids or PAM (Partition around medoids) (Kaufman & Rousseeuw’ 87)
 - Each cluster is represented by **one** of the objects in the cluster
The *K-Means* Clustering Method

- Given *k*, the *k-means* algorithm is **implemented** in four steps:

 1. **Partition** objects into *k* nonempty subsets
 2. **Compute seed points** as the **centroids** of the clusters of the current partition (the centroid is the *center*, i.e., *mean point*, of the cluster)
 3. **Assign** each object to the **cluster** with the **nearest seed point**
 4. **Go back to step 2.**

STOP when **no more** new assignment
The *K-Means* Clustering Method

Example (Book page 31)

1. **K=2**
 - Arbitrarily choose K object as initial cluster center.

2. Assign each object to the most similar center.

3. Update the cluster means.

4. Reassign objects to the closest center.

5. Repeat steps 3 and 4 until convergence.
The \textit{k-Means} Algorithm

The \textbf{basic step} of \textit{k-means} clustering is simple:

- \textbf{Iterate until} \textit{stable}, i.e. \textbf{there is no change} in the clusters of objects
- \textbf{Determine} the \textbf{centroid} coordinate
- \textbf{Determine} the \textbf{distance} of each object to the centroids
- \textbf{Group} the object based on \textbf{minimum distance}
Comments on the *K-Means* Method

- **Strength:**
- Relatively efficient: $O(tkn)$, where n is # objects, k is # clusters, and t is # iterations

 Normally, $k, t << n$
- Comparing:
 - PAM: $O(k(n-k)^2)$
 - CLARA: $O(ks^2 + k(n-k))$
- **Comment:** Often terminates at a *local optimum*
- The *global optimum* may be found using techniques such as: deterministic annealing and genetic algorithms
Comments on the *K-Means* Method

Weakness

- Applicable only when *mean* is **defined**,
- then what about **categorical** data?
- Need to specify *k*, the **number** of clusters, in advance
- Unable to handle **noisy** data and **outliers**
- Not suitable to discover clusters with **non-convex shapes**
Variations of the *K-Means* Method

• A few variants of the *k-means* which differ in are
 – Selection of the initial *k* means,
 – Dissimilarity calculations
 – Strategies to calculate cluster *means*
What Is the Problem of the *K-Means* Method?

- The *k-means* algorithm is sensitive to **outliers**
- **K-Medoids:** Instead of taking the mean value of the object in a cluster as a reference point, the **medoids**, the most centrally located object in a cluster can be used
Variations of the *K-Means* Method

- Handling *categorical* data: *k-modes* (Huang’ 98)
 - Replacing *means* of clusters with *modes*
 - Using new *dissimilarity measures* to deal with *categorical* objects
 - Using a *frequency-based* method to update *modes* of clusters
- A mixture of *categorical* and *numerical* data:
 - *k-prototype* method
The *K-Medoids* Clustering Method

- **Find** *representative* objects, called *medoids*, in clusters
- **PAM** (*Partitioning Around Medoids*, 1987)

 starts from an initial set of *medoids* and iteratively *replaces* one of the *medoids* by one of the *non-medoids* if it *improves* the total *distance* of the resulting clustering

 PAM works effectively for *small data* sets, but *does not* scale well for large data sets

- **CLARA** (*Kaufmann & Rousseeuw*, 1990), **CLARANS** (*Ng & Han*, 1994)
A Typical \textit{K-Medoids} Algorithm (PAM)

- **K=2**
- **Do loop**
- **Until no change**

1. **Arbitrary choose** \(k \) object as initial medoids.
2. **Assign each** remaining object to nearest medoids.
3. Randomly select a nonmedoid object, \(O_{\text{random}} \).
4. **Swapping** \(O \) and \(O_{\text{random}} \)

If quality is improved.

Total Cost = 20

Total Cost = 26

Total Cost = 20
Algorithm- K Medoids PAM

Algorithm: \textit{k-medoids}. PAM, a \textit{k-medoids algorithm} for partitioning based on \textit{medoid} or central objects.

\textbf{Input:}
- \textit{k}: the number of clusters,
- \textit{D}: a data set containing \(n\) objects.

\textbf{Output:}
- A set of \textit{k clusters}

\textbf{Method:}
1. \textit{arbitrarily choose} \textit{k objects in D as the initial representative objects or seeds;}
2. \textit{repeat}
3. \textit{assign} each remaining object to the cluster with the nearest representative object;
4. \textit{randomly select} a non representative object, \textit{O\textsubscript{random}};
5. compute the total cost, \textit{S}, of \textit{swapping} representative object, \textit{O\textsubscript{j}}, \textit{with} \textit{O\textsubscript{random}};
6. if \(S < 0\) then swap \textit{O\textsubscript{j}} \textit{with} \textit{O\textsubscript{random}} \textit{to form the new set of} \textit{k representative objects;}
7. \textit{until} no change;
What Is the Problem with PAM?

PAM is more robust than \textit{k-means} in the presence of noise and outliers because a medoid is less influenced by outliers or other extreme values than a mean.
PAM works efficiently for small data sets but does not scale well for large data sets.

\begin{itemize}
 \item $O(k(n-k)^2)$ for each iteration
\end{itemize}

where n is \# of data, \ k is \# of clusters.

Next Sampling based method:

\textbf{CLARA} (Clustering LARge Applications)
K-Means Clustering Method

Example ("Maschine Learning and Data Mining" (page 3-11))

<table>
<thead>
<tr>
<th>Id</th>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0:</td>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>1:</td>
<td>3.0</td>
<td>2.0</td>
</tr>
<tr>
<td>2:</td>
<td>5.0</td>
<td>4.0</td>
</tr>
<tr>
<td>3:</td>
<td>7.0</td>
<td>2.0</td>
</tr>
<tr>
<td>4:</td>
<td>9.0</td>
<td>0.0</td>
</tr>
<tr>
<td>5:</td>
<td>3.0</td>
<td>-2.0</td>
</tr>
<tr>
<td>6:</td>
<td>5.0</td>
<td>-4.0</td>
</tr>
<tr>
<td>7:</td>
<td>7.0</td>
<td>-2.0</td>
</tr>
<tr>
<td>8:</td>
<td>-1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>9:</td>
<td>-3.0</td>
<td>2.0</td>
</tr>
<tr>
<td>10:</td>
<td>-5.0</td>
<td>4.0</td>
</tr>
<tr>
<td>11:</td>
<td>-7.0</td>
<td>2.0</td>
</tr>
<tr>
<td>12:</td>
<td>-9.0</td>
<td>0.0</td>
</tr>
<tr>
<td>13:</td>
<td>-3.0</td>
<td>-2.0</td>
</tr>
<tr>
<td>14:</td>
<td>-5.0</td>
<td>-4.0</td>
</tr>
<tr>
<td>15:</td>
<td>-7.0</td>
<td>-2.0</td>
</tr>
</tbody>
</table>

![Cluster Analysis Diagram](image-url)
K-Means Clustering Method

Clustering: (4 6 7) (0 1 2 3 5 8 9 10 11 12 13 14 15)
Cluster Centers: (7.0 -2.0) (-1.61538 0.46153)
Average Distance: 4.35887
K-Means Clustering Method

Clustering: (4 6 7) (0 1 2 3 5 8 9 10 11 12 13 14 15)
Cluster Centers: (7.0 -2.0) (-1.61538 0.46153)
Average Distance: 4.35887

Clustering: (2 3 4 5 6 7) (0 1 8 9 10 11 12 13 14 15)
K-Means Clustering Method

Clustering: (4 6 7) (0 1 2 3 5 8 9 10 11 12 13 14 15)
Cluster Centers: (7.0 -2.0) (-1.61538 0.46153)
Average Distance: 4.35887

Clustering: (2 3 4 5 6 7) (0 1 8 9 10 11 12 13 14 15)
Cluster Centers: (6.0 -0.33334) (-3.6 0.2)
Average Distance: 3.6928
K-Means Clustering Method

Clustering: (4 6 7) (0 1 2 3 5 8 9 10 11 12 13 14 15)
Cluster Centers: (7.0 -2.0) (-1.61538 0.46153)
Average Distance: 4.35887

Clustering: (2 3 4 5 6 7) (0 1 8 9 10 11 12 13 14 15)
Cluster Centers: (6.0 -0.33334) (-3.6 0.2)
Average Distance: 3.6928

Clustering: (1 2 3 4 5 6 7) (0 8 9 10 11 12 13 14 15)
K-Means Clustering Method

Clustering: (4 6 7) (0 1 2 3 5 8 9 10 11 12 13 14 15)
Cluster Centers: (7.0 -2.0) (-1.61538 0.46153)
Average Distance: 4.35887

Clustering: (2 3 4 5 6 7) (0 1 8 9 10 11 12 13 14 15)
Cluster Centers: (6.0 -0.33334) (-3.6 0.2)
Average Distance: 3.6928

Clustering: (1 2 3 4 5 6 7) (0 8 9 10 11 12 13 14 15)
Cluster Centers: (5.57143 0.0) (-4.33334 0.0)
Average Distance: 3.49115
K-Means Clustering Method

Clustering: (4 6 7) (0 1 2 3 5 8 9 10 11 12 13 14 15)
Cluster Centers: (7.0 -2.0) (-1.61538 0.46153)
Average Distance: 4.35887

Clustering: (2 3 4 5 6 7) (0 1 8 9 10 11 12 13 14 15)
Cluster Centers: (6.0 -0.33334) (-3.6 0.2)
Average Distance: 3.6928

Clustering: (1 2 3 4 5 6 7) (0 8 9 10 11 12 13 14 15)
Cluster Centers: (5.57143 0.0) (-4.33334 0.0)
Average Distance: 3.49115

Clustering: (0 1 2 3 4 5 6 7) (8 9 10 11 12 13 14 15)
K-Means Clustering Method

Clustering: (4 6 7) (0 1 2 3 5 8 9 10 11 12 13 14 15)
Cluster Centers: (7.0 -2.0) (-1.61538 0.46153)
Average Distance: 4.35887

Clustering: (2 3 4 5 6 7) (0 1 8 9 10 11 12 13 14 15)
Cluster Centers: (6.0 -0.33334) (-3.6 0.2)
Average Distance: 3.6928

Clustering: (1 2 3 4 5 6 7) (0 8 9 10 11 12 13 14 15)
Cluster Centers: (5.57143 0.0) (-4.33334 0.0)
Average Distance: 3.49115

Clustering: (0 1 2 3 4 5 6 7) (8 9 10 11 12 13 14 15)
Cluster Centers: (5.0 0.0) (-5.0 0.0)
Average Distance: 3.41421
K-Means Clustering Method

Clustering: (4 6 7) (0 1 2 3 5 8 9 10 11 12 13 14 15)
Cluster Centers: (7.0 -2.0) (-1.61538 0.46153)
Average Distance: 4.35887

Clustering: (2 3 4 5 6 7) (0 1 8 9 10 11 12 13 14 15)
Cluster Centers: (6.0 -0.33334) (-3.6 0.2)
Average Distance: 3.6928

Clustering: (1 2 3 4 5 6 7) (0 8 9 10 11 12 13 14 15)
Cluster Centers: (5.57143 0.0) (-4.33334 0.0)
Average Distance: 3.49115

Clustering: (0 1 2 3 4 5 6 7) (8 9 10 11 12 13 14 15)
Cluster Centers: (5.0 0.0) (-5.0 0.0)
Average Distance: 3.41421

Clustering: (0 1 2 3 4 5 6 7) (8 9 10 11 12 13 14 15)
No improvement.
CLARA (Clustering LARge Applications)

CLARA (Kaufmann and Rousseew in 1990)

- **Built in** statistical analysis packages, such as S+
- **It draws** multiple samples of the data set,
- **applies** PAM on each sample, and gives the **best clustering** as the output

Strength: deals with larger data sets than PAM

Weakness:

- Efficiency **depends** on the sample size
- A **good** clustering **based** on **samples** will not necessarily **represent** a good clustering of the **whole data** set if the sample is **biased**