cse634 DATA MINING

BASICS of CLUSTER ANALYSIS

Chapter 7, 2nd edition Chapter 10, 3rd edition

Professor Anita Wasilewska Computer Science Department Stony Brook University

Introduction to Cluster Analysis

- Introduction
- Clustering Requirements
- Data Representation
- Partitioning Methods
- K-Means Clustering
- K-Medoids Clustering
- Constrained *K-Means* clustering
- PAM and CLARA

Introduction to Cluster Analysis

 The process of grouping a set of physical or abstract objects into classes of *similar objects* is called clustering

 A cluster is a collection of data objects that are similar to one another within the same cluster and are dissimilar to the objects in other clusters

Formal Definition

• Cluster analysis

Statistical method for grouping a set of data objects into clusters

A good clustering method produces high quality clusters with high intraclass similarity and low interclass similarity

• **Cluster:** Collection of data objects

Intra-class similarity: Objects are similar to objects in same cluster

Inter-class dissimilarity: Objects are dissimilar to objects in other clusters

• Clustering is unsupervised classification

Supervised vs. Unsupervised Learning

- Unsupervised learning clustering
 - The class labels of training data are unknown
 - Given a set of measurements, observations, etc. establish the existence of clusters in the data
- Supervised learning classification
 - Supervision: The training data (observations, measurements, etc.) are accompanied by labels indicating the class of the observations
 - New data is classified based on the training set
- Clustering is also called data segmentation in some applications because clustering partitions large data sets into groups according to their similarity

Clustering vs. Classification

• Clustering - learning by observations

- Unsupervised
- Input
 - Clustering algorithm
 - Similarity measure
 - Number of clusters
- No specific information for each set of data

• Classification - learning by examples

- Supervised
- Consists of class labeled training data examples
- Build a classifier that assigns data objects to one of the classes

Clustering vs. Classification

- Class Label Attribute : *loan_decision*
- Learning of Classifier is "supervised" → it is told to which class each training tuple (sample) belongs

Clustering vs. Classification

Clustering

- class label of training tuple not known
- number or set of classes to be learned may not be known in advance
- e.g. if we did not have *loan_decision* data available we use clustering and NOT classification to determine "groups of like tuples"
- These *"groups of like tuples"* may eventually correspond to risk groups within loan application data

- Minimal requirements for domain knowledge to determine input parameters
- Many clustering algorithms require users to input certain parameters in cluster analysis (such as the number of desired clusters)
- The clustering results can be quite sensitive to input parameters.
- Parameters are often difficult to determine, especially for data sets containing high-dimensional objects

Scalability

Many clustering algorithms work well on small data sets Large database may contain millions of objects Clustering on a *sample* of a given large data set may lead to biased results

Highly scalable clustering algorithms are needed

• **Ability** to deal with different types of attributes Many algorithms are **designed** to cluster numerical data

Applications may require clustering other **types** of data: binary, categorical (nominal), and ordinal data, or mixtures of these data types

• Ability to deal with noisy data

Some clustering algorithms are sensitive to noisy data and may lead to clusters of poor quality

- Incremental clustering and insensitivity to the order of input records
- Constraint-based clustering
- Interpretability and usability

- **Discovery** of clusters with **arbitrary shape**
- Many clustering algorithms determine clusters based on Euclidean or Manhattan distance measures
- Algorithms based on such distance measures tend to find spherical clusters with similar size and density
- A cluster could be of any shape
- It is important to develop algorithms that can detect clusters of arbitrary shape

Examples of Clustering Applications

• Marketing:

 Help marketers discover distinct groups in their customer bases, and then use this knowledge to develop targeted marketing programs

• Insurance:

 Identifying groups of insurance policy holders with a high average claim cost **Examples of Clustering Applications**

- City-planning:
- Identifying groups of houses according to their house type, value, and geographical location
- Earth-quake studies:
- Observe earth quake epicenters clustered along continent faults
- Fraud detection:
- Detection of credit card fraud and the monitoring
- of criminal activities in electronic commerce

Data Representation

- Data matrix
- n objects with p attributes

Dissimilarity

 d(i,j): dissimilarity (similarity)
 distance between records i and j

$$\begin{bmatrix} x_{11} & \cdots & x_{1f} & \cdots & x_{1p} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ x_{i1} & \cdots & x_{if} & \cdots & x_{ip} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ x_{n1} & \cdots & x_{nf} & \cdots & x_{np} \end{bmatrix}$$

Data Mining Concept and Techniques (Chapter 7, Page 386-387).

Types of Data in Cluster Analysis

- Interval-Scaled Variables
- (values od attributes)
- Binary Variables (values od attributes)
- Categorical, Ordinal, and Ratio-Scaled
- Variables (values od attributes)
- Variables of Mixed Types

Interval-Scaled Variables

- Continuous measurements of a roughly linear scale
 - E.g. weight, height, temperature, etc.

Height Scale		Weight Scale
 Scale ranges over the metre or foot scale Need to standardize 	200 cm 195 cm 190 cm 185 cm 180 cm 175 cm	<u>40kg</u> 80kg 120kg 20kg 60kg 100kg 1. Scale ranges over the kilogram or pou nd scale
heights as different scale can be used to express same absolute measurement	170 cm	

Using Interval-Scaled Values

Step 1: Standardize the data

- To ensure they all have equal weight
- To match up different scales into a uniform, single scale
- Not always needed! Sometimes we require unequal weights for an attribute

Step 2:

Compute dissimilarity between records

• Use Euclidean, Manhattan or Minkowski distance

Data Types and Distance Metrics

Distances are normally used to measure the **similarity** or **dissimilarity** between two data objects (records)

• Minkowski distance:

$$d(i,j) = \sqrt{\left(\left|x_{i1} - x_{j1}\right|^{q} + \left|x_{i2} - x_{j2}\right|^{q} + \dots + \left|x_{ip} - x_{jp}\right|^{q}\right)}$$

where $i = (x_{i1}, x_{i2}, ..., x_{ip})$ and $j = (x_{j1}, x_{j2}, ..., x_{jp})$ are two *p*-dimensional data objects, and *q* is a positive integer

Data Types and Distance Metrics

• If q = 1, Minkowski *d* is Manhattan **distance**

$$d(i,j) = |x_{i_1} - x_{j_1}| + |x_{i_2} - x_{j_2}| + \dots + |x_{i_p} - x_{j_p}|$$

• *If* q = 2, Minkowski d is Euclidean distance

$$d(i,j) = \sqrt{\left(|x_{i_1} - x_{j_1}|^2 + |x_{i_2} - x_{j_2}|^2 + \dots + |x_{i_p} - x_{j_p}|^2\right)}$$

Data Types and Distance Metrics

- Distance Properties
 - $d(i,j) \ge 0$
 - d(i,i) = 0
 - d(i,j) = d(j,i)
 - $d(i,j) \leq d(i,k) + d(k,j)$
- Can also use weighted distance, or other dissimilarity measures

$$d(i,j) = \sqrt[q]{w_1(|x_{i_1} - x_{j_1}|^q + w_2|x_{i_2} - x_{j_2}|^q + \dots + w_p|x_{i_p} - x_{j_p}|^q)}$$

Binary Attributes

• A contingency table for binary data

	Object j					
		1	Ο	sum		
	1	a	Ь	a+b		
	Ο	c	d	c+d		
Object <i>i</i>	sum	a+c	b+d	P		

• **Simple matching** coefficient (applicable only for database with **all symmetric binary** attributes):

$$d(i,j) = \frac{b+c}{a+b+c+d}$$

• **Jaccard coefficient** (applicable only for database with **all asymmetric binary** attributes):

$$d(i,j) = \frac{b+c}{a+b+c} \qquad sim(i,j) = \frac{a}{a+b+c}$$

• For **mixed binary** attributes, please refer Data Mining Concept and Techniques (Chapter 7, Section 7.2.4).

Binary Attributes

• Example:

Name	Gender	Fever	Cough	Test-1	Test-2	Test-3	Test-4
Jack	M	Y	N	Р	N	N	Ν
Mary	F	Y	N	P	Ν	P	Ν
Jim	M	Y	P	N	N	N	N

Points to be considered (refer Chapter 7 of the book for the above example):

- In this book, gender is assumed as an asymmetric attribute and the rest of the attributes are assumed symmetric
- The book ignores the gender attribute and continues to consider the other attributes

Binary Attributes

• Example:

Name	Gender	Fever	Cough	Test-1	Test-2	Test-3	Test-4
Jack	M	Y	N	Р	N	N	N
Mary	F	Y	Ν	Р	Ν	Р	Ν
Jim	M	Y	P	N	N	N	N

Formulas defined for similarity and **dissimilarity** are **applicable** only when all attributes under consideration are asymmetric or symmetric

Calculation of similarity and dissimilarity between attributes when a **combination** of asymmetric and symmetric attributes is involved, is explained in section 7.2.4 **Dissimilarity between Binary Attributes**

• We now consider

Name	Fever	Cough	Test-1	Test-2	Test-3	Test-4
Jack	Y	N	Р	N	N	Ν
Mary	Y	N	P	N	Р	Ν
Jim	Y	Р	Ν	Ν	Ν	Ν

Since the table was a combination of symmetric and asymmetric attributes, we now omit Gender which is a symmetric attribute from our consideration

We are now left with the asymmetric attributes – Fever, Cough, Test-1, Test-2, Test-3, Test-4

Calculating the dissimilarity considering only asymmetric attributes using Jaccard coefficient is as follows

Dissimilarity between Binary Attributes

• Example

Name	Fever	Cough	Test-1	Test-2	Test-3	Test-4
Jack	Y	N	Р	N	N	N
Mary	Y	N	P	N	P	Ν
Jim	Y	Р	N	N	Ν	Ν

Let the values Y and P be set to 1, and the value N be set to 0

We **calculate** the dissimilarity considering **only** asymmetric attributes using **Jaccard coefficient** is as follows

$$d(jack, mary) = \frac{0+1}{2+0+1} = 0.33$$
$$d(jack, jim) = \frac{1+1}{1+1+1} = 0.67$$
$$d(jim, mary) = \frac{1+2}{1+1+2} = 0.75$$

Categorical Attributes

- **Categorical attribute** is a **generalization** of the **binary** attribute in that it can take **more** than 2 states, e.g., **red**, **yellow**, **blue**, **green**
- Method 1: Simple matching

m: *#* of attributes that are the **same** for **both** records,

p: total # of attributes

$$d(i,j) = \frac{p-m}{p}$$

• **Method 2:** rewrite the database and **create** a new binary attribute for each of the *m* states

For an object with color yellow, the yellow attribute is set to 1, while the remaining attributes are set to 0

Major Clustering Approaches

• Partitioning approach:

Construct various partitions and then evaluate them by some criterion, e.g., minimizing the sum of square errors Typical methods: k-means, k-medoids, CLARANS

• Hierarchical approach:

Create a hierarchical decomposition of the set of data (or objects) using some criterion

Typical methods: Diana, Agnes, BIRCH, ROCK, CAMELEON

Major Clustering Approaches

Density-based approach:

- Based on connectivity and density functions
- Typical methods: DBSACN, OPTICS, DenClue

• Grid-based approach:

based on a multiple-level granularity structure Typical methods: **STING, WaveCluster, CLIQUE**

• Model-based:

A model is hypothesized for each of the clusters and tries to find the best fit of that model to each other

Typical methods: **EM, SOM, COBWEB**

Major Clustering Approaches

• Frequent pattern-based:

Based on the analysis of frequent patterns Typical methods: **pCluster**

• User-guided or constraint-based:

Clustering by considering user-specified or application-specific constraints

Typical methods: **COD** (obstacles), constrained clustering

Methods to Calculate the Distance between Clusters

• **Single link:** smallest distance between an **element** in one cluster and an element in the other,

 $dis(K_i, K_j) = min(t_{ip}, t_{jq})$

• **Complete link:** largest distance between an **element** in one cluster and an element in the other,

 $dis(K_i, K_j) = max(t_{ip}, t_{jq})$

• Average: avg distance between an element in one cluster and an element in the other,

$$dis(K_i, K_j) = avg(t_{ip}, t_{jq})$$

Methods to Calculate the Distance between Clusters

- Centroid:
- distance between the centroids of two clusters,
 dis(K_i, K_i) = dis(C_i, C_i)
- Medoid:
- distance between the medoids of two clusters,

 $dis(K_i, K_j) = dis(M_i, M_j)$

Medoid is one chosen, centrally located object in the cluster

Numerical Data: Centroid, Radius, Diameter

Centroid: the "middle" of a cluster for numerical data

$$C_m = \frac{\sum_{i=1}^N (t_{ip})}{N}$$

 Radius: square root of average distance from any point of the cluster to its centroid

$$R_m = \sqrt{\frac{\sum_{i=1}^{N} (t_{ip} - c_m)^2}{N}}$$

Numerical Data: Centroid, Radius, Diameter

• Diameter:

 square root of average mean squared distance between all pairs of points in the cluster

$$R_m = \sqrt{\frac{\sum_{i=1}^{N} (t_{ip} - c_m)^2}{N}}$$

Partitioning Algorithms: Basic Concept

• Partitioning method:

Construct a partition of a database **D** of **n** objects (records) into a set of **k** clusters

 Given a k, find a partition of k clusters that optimizes the chosen partitioning criterion

Global optimal method:

exhaustively enumerate all partitions

Partitioning Algorithms: Basic Concept

 Given a k, find a partition of k clusters that optimizes the chosen partitioning criterion

Heuristic methods: *k-means* and *k-medoids* algorithms

k-means (MacQueen' 67):

Each cluster is **represented** by the **center** of the cluster

k-medoids or PAM (Partition around medoids) (Kaufman & Rousseeuw' 87)

Each cluster is represented by **one** of the objects in the cluster

- Given k, the k-means algorithm is implemented in four steps:
 - **1.** Partition objects into k nonempty subsets

2. Compute seed points as the centroids of the clusters of the current partition (the centroid is the center, i.e., *mean point*, of the cluster)

- **3.** Assign each object to the cluster with the nearest seed point
- 4. Go back to step 2.

STOP when **no more** new assignment

Example (Book page 31)

The *k-Means* Algorithm

The **basic step** of *k-means* clustering is simple:

- Iterate until *stable*, i.e. there is no change in the clusters of objects
- **Determine** the **centroid** coordinate
- Determine the distance of each object to the centroids
- Group the object based on minimum distance

Comments on the K-Means Method

- Strength:
- Relatively efficient: O(tkn), where n is # objects, k is # clusters, and t is # iterations

Normally, *k*, *t* << *n*

- Comparing: PAM: O(k(n-k)²)
- CLARA: O(ks² + k(n-k))
- **Comment**: Often terminates at a *local optimum*
- The global optimum may be found using techniques such as: deterministic annealing and genetic algorithms

Comments on the K-Means Method

- Weakness
 - Applicable only when *mean* is **defined**,
 - then what about categorical data?
 - Need to specify k, the number of clusters, in advance
 - Unable to handle noisy data and *outliers*
 - Not suitable to discover clusters with *non-convex* shapes

Variations of the K-Means Method

- A **few variants** of the *k-means* which **differ** in are
 - Selection of the initial k means,
 - Dissimilarity calculations
 - Strategies to calculate cluster means

What Is the Problem of the *K-Means* Method?

- The *k-means* algorithm is sensitive to **outliers**
- K-Medoids: Instead of taking the mean value of the object in a cluster as a reference point, the

medoids, the most centrally located object in a cluster can be used

Variations of the K-Means Method

Handling categorical data: *k-modes* (Huang' 98)
 Replacing means of clusters with modes

Using new dissimilarity measures to deal with categorical objects

Using a **frequency-based** method to update modes of clusters A **mixture** of **categorical** and **numerical** data:

k-prototype method

The K-Medoids Clustering Method

- Find *representative* objects, called medoids, in clusters
- PAM (Partitioning Around Medoids, 1987)
 starts from an initial set of medoids and iteratively replaces
 one of the medoids by one of the non-medoids if it improves
 the total distance of the resulting clustering
 PAM works effectively for small data sets, but does not scale

well for large data sets

• CLARA (Kaufmann & Rousseeuw, 1990), CLARANS (Ng & Han, 1994)

A Typical K-Medoids Algorithm (PAM)

Algorithm- K Medoids PAM

Algorithm: *k-medoids*. PAM, a *k-medoids algorithm* for partitioning based on *medoid* or central objects.

Input:

k: the number of clusters,

D: a data set containing n objects.

Output:

A set of *k clusters*

Method:

(1) arbitrarily choose k objects in D as the initial representative objects or seeds;

(2) repeat

- (3) assign each remaining object to the cluster with the nearest representative object;
- (4) randomly select a non representative object, Orandom;
- (5) compute the total cost, *S*, of swapping representative object, *O*_j, with Orandom;
- (6) if S < 0 then swap Oj with Orandom to form the new set of k representative objects;
- (7) until no change;

What Is the Problem with PAM?

PAM is more **robus**t than *k-means* in the presence of noise and outliers because a **medoid** is less influenced by outliers or other extreme values than a mean **PAM** works *efficiently* for small data sets but does not scale well for large data sets \circ O(k(n-k)²) for each iteration where **n** is # of data, **k** is # of clusters Next Sampling based method:

CLARA (Clustering LARge Applications)

Example ("Maschine Learning and Data Mining" (page 3-11))

Clustering: (467)(0123589101112131415) Cluster Centers: (7.0-2.0)(-1.615380.46153) Average Distance: 4.35887

Clustering: (467)(0123589101112131415) Cluster Centers: (7.0-2.0)(-1.615380.46153) Average Distance: 4.35887

Clustering: (234567)(0189101112131415)

Clustering: (467)(0123589101112131415) Cluster Centers: (7.0-2.0)(-1.615380.46153) Average Distance: 4.35887

Clustering: (234567)(0189101112131415) Cluster Centers: (6.0-0.33334)(-3.60.2) Average Distance: 3.6928

0

x

CLARA (Clustering LARge Applications)

CLARA (Kaufmann and Rousseew in 1990)

Built in statistical analysis packages, such as S+
 It draws multiple samples of the data set,
 applies PAM on each sample, and gives the best clustering as
 the output

Strength: deals with larger data sets than PAM Weakness:

- Efficiency depends on the sample size
- A good clustering based on samples will not necessarily represent a good clustering of the whole data set if the sample is biased