Cse634 DATA MINING

TEST REVIEW

Professor Anita Wasilewska Computer Science Department Stony Brook University

Data Mining Process

Preprocessing stage

- Preprocessing:
- includes all the operations that have to be performed before a data mining algorithm is applied

- Data in the real world is dirty: incomplete, noisy and inconsistent.
- Quality decisions must be based on quality Data.

Preprocessing stage

- Data cleaning
- Fill in missing values, smooth noisy data(binning, clustering, regression), identify or remove outliers, and resolve inconsistencies
- Data integration
- Integration of multiple databases, data cubes, or files

Preprocessing stage

- Data transformation
- Normalization and aggregation
- Data reduction and attribute selection
- Obtains reduced presentation in volume but produces the same or similar analytical results (stratified sampling, PCA, cluster)
- Data discretization
- Part of data reduction but reduces the number of values of the attributes by dividing the range of attributes into intervals (segmentation by natural partition, hierarchy generation)

DM Proper

 DM proper is a step in the DM process in which algorithms are applied to obtain patterns in data.

• It can be re-iterated- and usually is

Descriptive / non descriptive data mining and models

- Statistical descriptive
- Statistical data mining uses historical data to predict some unknown or missing numerical values
- Descriptive data mining aims to find patterns in the data that provide some information about what the data contains
- often presents the knowledge as a set of rules of the form IF.... THEN...

Models

- Discriptive: Decision Trees, Rough Sets, Classification by Association
- Statistical: Neural Networks, Bayesian Networks, Cluster, Outlier analysis, Trend and evolution analysis
- Optimization method: Genetic Algorithms but it can also be descriptive

• Classification:

- Finding models (rules) that describe (characterize) or/ and distinguish (discriminate) classes or concepts for future prediction
- Classification Data Format:
- a data table with key attribute removed.
- Special attribute, called a class attribute must be distinguished.
- The values: c1, c2, ...cn of the class atrribute C are called class labels
- The class label attributes are discrete valued and unordered.

- Goal:
- FIND a minimal set of characteristic and/or discriminant rules, or other descriptions of the class C, or all, or some other classes

• We also want the found rules to involve as few attributes as it is possible

- Stage 1: build the basic patterns structuretraining
- Stage 2: optimize parameter settings; can use (N:N) re-substitution- parameter tuning
- Re-substitution error rate = training data error rate
- Stage 3: use test data to compute- predictive accuracy/error rate - testing

Decision Tree

- DECISION TREE
- A flow-chart-like tree structure;
- Internal node denotes an attribute;
- Branch represents the values of the node attribute;
- Leaf nodes represent class labels

DT Basic Algorithm

- The basic DT algorithm for decision tree construction is a greedy algorithm that constructs decision trees in a top-down recursive divide-and-conquer manner
- Tree STARTS as a single node representing all training dataset (data table with records called samples)
- IF the samples (records in the data table) are all in the same class, THEN the node becomes a leaf and is labeled with that class
- The algorithm uses the same process recursively to form a decision tree at each partition

DT Basic Algorithm

- The recursive partitioning **STOPS** only when any one of the following conditions is TRUE
- 1. All records (samples) for the given node belong to the same class
- 2. There are no remaining attributes on which the samples (records in the data table) may be further partitioned – a LEAF is created with majority vote for training sample
- 3. There is no records (samples) left a LEAF is created with majority vote for training sample
- Majority voting involves converting node N into a leaf and labeling it with the most common class in D which is a set of training tuples and their associated class labels

Attribute Selection Measures

- Some Heuristics:
- Decision Tree: some Attribute Selection Measures are
- Information Gain, Gini Index

 We use them for selecting the attribute that "best" discriminates the given tuples according to class

Neural Networks

- Neural Network is a set of connected INPUT/OUTPUT UNITS, where each connection has a WEIGHT associated with it
- Neural Network learns by adjusting the weights so as to be able to correctly classify the training data and hence, after testing phase, to classify unknown data
- Neural Network needs long time for training Determining network topology is difficult
- Choosing single **learning rate** impossible (train with subset)
- Neural Network has a high tolerance to noisy and incomplete data
- NN is generally better with larger number of hidden units

Neural Networks

- The inputs to the network correspond to the attributes and their values for each training tuple
- Inputs are fed simultaneously into the units making up the input layer
- Inputs are then weighted and fed simultaneously to a hidden layer
- The number of hidden layers is arbitrary, although often only one or two
- The weighted outputs of the last hidden layer are input to units making up the output layer, which emits the network's prediction

Neural Networks

- For each training sample, the weights are first set random then they are modified as to minimize the mean squared error between the network's classification (prediction) and actual classification
- Backpropagation Algorithm:
- **STEP ONE:** initialize the weights and biases
- **STEP TWO:** feed the training sample
- **STEP THREE**: propagate the inputs forward
- **STEP FOUR:** backpropagate the error
- **STEP FIVE:** backpropagate the weights
- STEP SIX: repeat and apply terminating Conditions

Backpropagation Formulas

Backpropagation

- Terminating Conditions:
- Process Stops when:
- All wij in the previous epoch are below some threshold
- The percentage of samples misclassified in the previous epoch is below some threshold
- a pre- specified number of epochs has expired

Building a classifier

- Building a classifier consists of two phases: training and testing.
- We use the training data set to create patterns: rules, trees, or to train a Neural or Bayesian network
- We evaluate created patterns with the use of test data
- We terminate the process
- if it has been **trained** and **tested** and the **predictive accuracy** is on an acceptable level.
- Classifier is a final product of this process ready to be used to classify records with unknown class attribute values
- **PREDICTIVE ACCURACY** of a classifier is a percentage of well classified data in the test data set.

Training and Testing

- The main methods of predictive accuracy evaluations are:
- Re-substitution (N; N)
- Holdout (2N/3 ; N/3)
- k-fold cross-validation (N- N/k; N/k)
- Leave-one-out (N-1; 1)

Association Analysis

- Finding frequent patterns called associations, among sets of items or objects in transaction databases, relational databases, and other information repositories
- Confidence:
- The rule X->Y holds in the database D with confidence c if the c% of the transactions in D that contain X also contain Y
- Support:
- The rule X->Y has support s in D if s% of the transaction in D contain XUY
- We (user) fix MIN support usually low and Confidence high

Data Mining Process

- Questions:
- Describe and discuss all stages of the Data Mining Process
- Describe the role of Preprocessing stage and its main methods
- Discuss the Data Mining Proper stage
- Describe what is **Descriptive/ non Descriptive Data Mining**
- Which Models you would use for the Descriptive Data Mining and which for the non Descriptive Data Mining
- How and what decides which type of Data Mining is the best to use (implement)
- Give examples of types of applications and the best Models (algorithms) for them

- Describe what is CLASSIFICATION; type of data, goals and applications
- Describe all stages of the classification process
- Describe and discuss basic classification Models and their differences
- Discuss the Decision Tree Induction and its strengths and weaknesses
- Discuss the Neural Network Model and its strengths and weaknesses
- Define a **CLASSIFIER**
- Describe a process of building a CLASSIFIER

Association and Genetic Algorithms

- Describe the Apriori Algorithm and Association Analysis
- Discuss types of Association Analysis applications
- Describe classification by Association and compare it with the classification by or Neural Network
- Discuss types of Classification by Association applications

Association and Genetic Algorithms

- Describe principles of Genetic Algorithms
- Give examples of chromosomes encoding
- Describe GA operators and parameters
- Describe the role of fitness function
- Describe GA Reproduction Cycle
- Discuss types of GA applications
- Compare classification by GA with NN and DT classifications

Given a classification dataset **DB** with a set

A = {*a1, a2,..., an*} of **attributes** and a **class** attribute **C** with values

{*c1, c2,..., ck*} - k classes

Definition 1

Any expression a1 = v1 & ... & ak = vk where $ai \in A$ and vi are corresponding values of attributes from A is called a **DESCRIPTION** Any expression C = ci is for $ci \in \{c1, c2,..., ck\}$

Is called a **CLASS DESCRIPTION**

Definition 2

A CHARACTERISTIC FORMULA is any expression

 $C = ck \implies a1 = v1 \& ... \& ak = vk$

We write is as

 $CLASS \Rightarrow DESCRIPTION$

Definition 3

A **DETERMINANT FORMULA** is any expression

 $a1 = v1 \Lambda ... \Lambda ak = vk \implies C = ck$

We write it as

 $\mathsf{DESCIPTION} \Rightarrow \mathsf{CLASS}$

Definition 4

A characteristic formula CLASS ⇒ DESCRIPTION is called a CHARACTERISITIC RULE of the classification dataset DB iff it is TRUE in DB, i.e. when the following holds {o: DESCRIPTION} ∩ {o: CLASS} not= Ø

Where **{o: DESCRIPTION}** is the set of all records of DB corresponding to the **DESCRIPTION**

{o: CLASS} is the set of all records of DB corresponding to the **CLASS**

Definition 5 A discriminant formula DESCRIPTION ⇒ CLASS is called a DISCRIMINANT RULE of DB iff it is TRUE in DB, i.e. the following conditions hold

- **1.** {o: DESCRIPTION} not= \emptyset
- 2. {o: DESCRIPTION} \subseteq {o: CLASS}

PROBLEM 1

Prove

that for any **classification** data base **DB** and any of its **DISCRIMINANT RULES** of the form

DESCRIPTION ⇒ **CLASS**

the formula \subseteq **CLASS \Rightarrow DESCRIPTION**

is a **CHARACTERISTIC RULE** of the **DB**

PROBLEM 1 Solution

By **definition 5**, for any database DB : DESCRIPTION ⇒ CLASS is a DISCRIMINANT RULE iff

1. {o: DESCRIPTION} not= \emptyset

2. {o: DESCRIPTION} ⊆ {o: CLASS}Therefore,

{o: DESCRIPTION} \cap {o: CLASS} not= \emptyset and by Definition 4 CLASS \Rightarrow DESCRIPTION

Is the **CHARACTERISITIC RULE**

PROBLEM 2

Given a dataset:

Record	a1	a2	a3	a4	С
01	1	1	1	0	1
02	2	1	2	0	2
03	0	0	0	0	0
04	0	0	2	1	0
05	2	1	1	0	1

Find the set **{o :DESCRIPTION}** for the following descriptions

a1 = 2 & a2 = 1
a3 = 1 & a4 = 0
a2 = 0 & a3 = 2
c=1
c=0

PROBLEM 2 SOLUTION

Find the set **{o :DESCRIPTION}** for the following descriptions

1)
$$a1 = 2 \& a2 = 1$$

- 3) a2 = 0 & a3 = 2
- 4) c=1
- 5) c=0

Answer : {01 } Answer : {01 , 05} Answer : {04} Answer : {01,05} Answer : {03 ,05}

PROBLEM 3

For the following formulae use proper definitions to determine (**it means prove**) whether **they are / are not DISCRIMINANT / CHARACTERISTIC RULES** of our dataset.

6) $a1 = 1 \& a2 = 1 \Rightarrow C = 1$

7) $C = 1 \implies a1 = 0 \& a2 = 1 \& a3 = 1$

8) C = 2 ⇒ a1 = 1

9) C = 0 \Rightarrow a1 = 1 & a4 = 0

10) a1 = 2 & a2 = 1 & a3 = 1 \Rightarrow C = 0

11) a1 = 0 & a3 = 2 \Rightarrow C = 1

PROBLEM 3 SOLUTION

For the following formulae use proper definitions to determine (**it means prove**) whether **they are / are not DISCRIMINANT / CHARACTERISTIC RULES** of our dataset.

6) $a1 = 1 \& a2 = 1 \Rightarrow C = 1$

{o1} is a subset of {o1, o5} so this is a DISCRIMINANT rule

7) C =1 ⇒ a1 = 0 & a2 = 1 & a3 = 1
{o: a1 = 0 & a2 = 1 & a3 = 1 } is an empty set so this is
not a CHARACTERISTIC rule

8) C = 2 ⇒ a1 = 1

As the intersection is empty so this is **not** a **CHARACTERISTIC** rule

9) C = 0 ⇒ a1 = 1 & a4 = 0 ----- {o3, o4} /\ {o5} is empty set so this is not a CHARACTERISTIC rule

10) a1 = 2 & a2 = 1 & a3 = 1 ⇒ C = 0 ----- {o5} is not a subset of {o3 , o4} , so this is **not a DISCRIMINANT** rule

11) a1 = 0 & a3 = 2 \Rightarrow C = 1 ----- {o4} is not a subset of {o1, o5}, so this is **not a DISCRIMINANT** rule

Problem: Classification by Association

1. Use TRAIN data to find the set of classification rules using the Apriori Algorithm

2. **Test** the rules with the TEST Data

Use 2 different testing Method of your choice and compare the results TRAIN DATA

Record	A1	A2	С
1	1	1	1
2	0	0	0
3	0	1	0
4	0	0	0
5	1	1	1
6	1	1	0
7	0	0	0
8	1	0	1

Transactional Data and Support calculations

	I1 (A1 =0)	I2(A1 = 1)	I3(A2 = 0)	14(A2= 1)	15(C=0)	I6(C=1)
1		+		+		+
2	+		+		+	
3	+			+	+	
4	+		+		+	
5		+		+		+
6		+		+	+	
7	+		+		+	
8		+	+			+
Count	4	4	4	4	5	3

Let the minimum support count = 3

L1

•	Item set	Support Count
•	11	4
	12	4
	13	4
	14	4
	15	5
	16	3

Candidate two item sets :

Item Set	Support Count
1,2	0
1,3	3
1,4	1
1,5	4
1,6	0
2,3	1
2,4	3
2,5	1
2,6	0
3,4	3
3,5	1
3,6	2
4,5	2
4,6	0

Classification by Association

Frequent 2 item set :

Item Set	Support Count
1,3	3
1,5	4
2,4	3
2,6	3
3,5	3

Classification by Association

Candidate 3 item set :

Item Set	Support Count
1,3,5	3
2,4,6	1

Classification by Association

Frequent 3 item Set :

Item set	Support Count
1,3,5	3

$L = \{(1,5), (2,6), (3,5), (1,3,5)\}$

This is the set used to find the classification rules by association

Don't forget to FIX and calculate Confidence and Support!

Testing :

Record	A1	A2	Test Data Class	Rules assigned class	Correctly classified
1	1	1	1	1	Yes
2	1	0	0	?	No
3	0	0	1	0	No
4	1	0	0	0	Yes

Predictive accuracy = 2/4 * 100 = 50 %

PROBLEM:: BUILDING a CLASSIFIER

For a given data set **build a classifier** following all steps needed in the constructions:

preprocessing, training, and testing

Describe and motivate your choice of algorithms and methods used at each step.

Problem: Neural Networks

Given two records (Training Sample)

A1	A2	A3	Class
0.5	0	0.2	1
0	0.3	0.2	1
0.2	0.1	0	0

Construct a Neural Network with your own 2 different topologies and evaluate- describe a passage of ONE EPOCHS (use learning rate I = 0.7). IF I ask you for that- the Backpropagation formulas will be given

Topology:

Input = 3, hidden = 2 and output = 2.

Problem: Neural Networks

For the **first iteration** we take the following values as input :

a1 = 0.5, a2 = 0, a3 = 0.2

- w14 = 0.2, w15 = -0.3, w24 = 0.4, w25 = 0.1
- w34 = 0.2, w35 = -0.3, w46 = 0.4, w56 = 0.1

w47 = 0.1, w57 = 0.2

GENERAL: We take any random values for weights and BIASES, and fix the learning rate