Genetic Algorithms Overview and Examples

Cse634
DATA MINING

Professor Anita Wasilewska
Computer Science Department
Stony Brook University
Genetic Algorithm Short Overview

• **INITIALIZATION**

• At the beginning of a run of a Genetic Algorithm an
 INITIAL POPULATION of *random* chromosomes is created

• The INITIAL POPULATION depends on the nature of the problem, but typically contains several hundreds or thousands of possible chromosomes (possible solutions)

• Often the INITIAL POPULATION covers the entire range of possible solutions (*the search space*)

• Sometimes the solutions (chromosomes) may be "seeded" in areas where optimal solutions are likely to be found
GA Short Overview

• SELECTION
• During each successive generation, a portion of the existing population is selected through a fitness-based process measured by a fitness function
• The fitness function is always problem dependent
• For each new chromosome (solution) to be produced, a pair of "parent" chromosomes is selected from the pool selected previously
GA Short Overview

• The new chromosome (solution) is produced by applying operators of crossover and mutation.
• New parents are selected for each new child, and
• the process continues until a new population of chromosomes (solutions) of appropriate constant size is generated.
• It is possible to use other operators such as regrouping, colonization-extinction, or migration.
Parameters

• Crossover probability, mutation probability and population size are used often (and tuned) to find reasonable settings for the problem

• A very small mutation rate may lead to genetic drift
• A recombination rate that is too high may lead to premature convergence of the genetic algorithm

• A mutation rate that is too high may lead to loss of good solutions, unless we employ the elitist selection
One generation of a genetic algorithm, consisting of - from top to bottom - selection, crossover, and mutation stages
Example: Genetic Programming

A program in C

• int foo (int time)

 { int temp1, temp2;
 if (time > 10)
 temp1 = 3;
 else
 temp1 = 4;
 temp2 = temp1 + 1 + 2;
 return (temp2);
 }

• Equivalent expression (similar to a classification rule in data mining):

 (+ 1 2 (IF (> TIME 10) 3 4))
Program tree

\[(+ \ 1 \ 2 \ (IF \ (> \ TIME \ 10) \ 3 \ 4))\]
Given data

<table>
<thead>
<tr>
<th>Input: Independent variable X</th>
<th>Output: Dependent variable Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>-0.80</td>
<td>0.84</td>
</tr>
<tr>
<td>-0.60</td>
<td>0.76</td>
</tr>
<tr>
<td>-0.40</td>
<td>0.76</td>
</tr>
<tr>
<td>-0.20</td>
<td>0.84</td>
</tr>
<tr>
<td>0.00</td>
<td>1.00</td>
</tr>
<tr>
<td>0.20</td>
<td>1.24</td>
</tr>
<tr>
<td>0.40</td>
<td>1.56</td>
</tr>
<tr>
<td>0.60</td>
<td>1.96</td>
</tr>
<tr>
<td>0.80</td>
<td>2.44</td>
</tr>
<tr>
<td>1.00</td>
<td>3.00</td>
</tr>
</tbody>
</table>

Citation: www.genetic-programming.com/c2003lecture1modified.ppt
<table>
<thead>
<tr>
<th>Objective:</th>
<th>Find a computer program with one input (independent variable (x)) whose output (Y) equals the given data</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Terminal set:</td>
<td>(T = { X, \text{Random-Constants} })</td>
</tr>
<tr>
<td>2 Function set:</td>
<td>(F = { +, - , \times , \div })</td>
</tr>
<tr>
<td>3 Initial population:</td>
<td>Randomly created individuals from elements in (T) and (F).</td>
</tr>
<tr>
<td>4 Fitness:</td>
<td>(</td>
</tr>
<tr>
<td>5 Termination:</td>
<td>An individual emerges whose sum of absolute errors (the value of its fitness function) is less than 0.1</td>
</tr>
</tbody>
</table>

Citation: www.genetic-programming.com/c2003lecture1modified.ppt
Generation 0

Population of 4 randomly created individuals

(a) \(x + 1 \)

(b) \(x^2 + 1 \)

(c) 2

(d) \(x \)

Citation: examples taken from: www.genetic-programming.com/c2003lecture1modified.ppt
Mutation

Mutation:

picking “2” as mutation point

Citation: part of the pictures used as examples are taken from: www.genetic-programming.com/c2003lecture1modified.ppt
Crossover

Crossover:

picking “+” subtree and leftmost “x” as crossover points

Citation: example taken from: www.genetic-programming.com/c2003lecture1modified.ppt
Generation 1

(a)
\[\begin{array}{c}
\text{+} \\
\text{-} \\
\text{+} \\
x \\
1 \\
0 \end{array} \]

x + 1

(b)
\[\begin{array}{c}
\text{+} \\
\text{/} \\
\text{0} \\
x \\
\text{x} \\
x \end{array} \]

1

(c)
\[\begin{array}{c}
\text{-} \\
x \\
\text{0} \\
x \\
\text{x} \\
\text{x} \end{array} \]

x

(d)
\[\begin{array}{c}
\text{+} \\
1 \\
\text{x} \\
\text{+} \\
\text{x} \\
\text{1} \end{array} \]

\[x^2 + x + 1 \]

Copy of (a)

Mutant of (c)
picking “2” as mutation point

First offspring of crossover of (a) and (b)
picking “+” of parent (a) and left-most “x” of parent (b) as crossover points

Second offspring of crossover of (a) and (b)
picking “+” of parent (a) and left-most “x” of parent (b) as crossover points

Citation: part of the examples is taken from: www.genetic-programming.com/c2003lecture1modified.ppt
| X | Y | $X+1$ | $|X+1-Y|$ | 1 | $|1-Y|$ | X | $|X-Y|$ | X^2+X+1 | $|X^2+X+1-Y|$ |
|------|------|-------|------------|---|--------|------|--------|------------|---------------|
| -1.00| 1.00 | 0 | 1 | 1 | 0 | -1.00| 2 | 1 | 0 |
| -0.80| 0.84 | 0.20 | 0.64 | 1 | 0.16 | -0.80| 1.64 | 0.84 | 0 |
| -0.60| 0.76 | 0.40 | 0.36 | 1 | 0.24 | -0.60| 1.36 | 0.76 | 0 |
| -0.40| 0.76 | 0.60 | 0.16 | 1 | 0.24 | -0.40| 1.16 | 0.76 | 0 |
| -0.20| 0.84 | 0.80 | 0.04 | 1 | 0.16 | -0.20| 1.04 | 0.84 | 0 |
| 0.00 | 1.00 | 1.00 | 0 | 1 | 0 | 0.00 | 1 | 1 | 0 |
| 0.20 | 1.24 | 1.20 | 0.04 | 1 | 0.24 | 0.20 | 1.04 | 1.24 | 0 |
| 0.40 | 1.56 | 1.40 | 0.16 | 1 | 0.56 | 0.40 | 1.16 | 1.56 | 0 |
| 0.60 | 1.96 | 1.60 | 0.36 | 1 | 0.96 | 0.60 | 1.36 | 1.96 | 0 |
| 0.80 | 2.44 | 1.80 | 0.64 | 1 | 1.44 | 0.80 | 1.64 | 2.44 | 0 |
| 1.00 | 3.00 | 2.00 | 1 | 1 | 2 | 1.00 | 2 | 3 | 0 |

Fitness: 4.40 6.00 15.40 0.00

Found!
Example: Classification

Classify customers based on number of children and salary:

<table>
<thead>
<tr>
<th>Parameter</th>
<th># of children (NOC)</th>
<th>Salary (S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain</td>
<td>0…10</td>
<td>0…500000</td>
</tr>
<tr>
<td>Syntax of atomic</td>
<td>NOC = x</td>
<td>S = x</td>
</tr>
<tr>
<td>expression</td>
<td>NOC < x</td>
<td>S < x</td>
</tr>
<tr>
<td></td>
<td>NOC <= x</td>
<td>S > x</td>
</tr>
<tr>
<td></td>
<td>NOC > x</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NOC >= x</td>
<td></td>
</tr>
</tbody>
</table>
Classification Rules

• A classification rule is of the form

IF description THEN class=c;

Antecedent Consequence

Formula representation

- Possible rule:
 - If (NOC = 2) AND (S > 80000) then GOOD (customer)
Initial data table

<table>
<thead>
<tr>
<th>Nr. Crt.</th>
<th>Number of children (NOC)</th>
<th>Salary (S)</th>
<th>Type of customer (C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>> 80000</td>
<td>GOOD</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>> 30000</td>
<td>GOOD</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>= 50000</td>
<td>GOOD</td>
</tr>
<tr>
<td>4</td>
<td>> 2</td>
<td>< 10000</td>
<td>BAD</td>
</tr>
<tr>
<td>5</td>
<td>= 10</td>
<td>= 30000</td>
<td>BAD</td>
</tr>
<tr>
<td>6</td>
<td>= 5</td>
<td>< 30000</td>
<td>BAD</td>
</tr>
</tbody>
</table>
Initial data represented as rules

- Rule 1: If (NOC = 2) AND (S > 80000) then C = GOOD
- Rule 2: If (NOC = 1) AND (S > 30000) then C = GOOD
- Rule 3: If (NOC = 0) AND (S = 50000) then C = GOOD
- Rule 4: If (NOC > 2) AND (S < 10000) then C = BAD
- Rule 5: If (NOC = 10) AND (S = 30000) then C = BAD
- Rule 6: If (NOC = 5) AND (S < 30000) then C = BAD
Generation 0

• Population of 3 randomly created individuals:
 – If (NOC > 3) AND (S > 10000) then C = GOOD
 – If (NOC > 1) AND (S > 30000) then C = GOOD
 – If (NOC >= 0) AND (S < 40000) then C = GOOD

• We want to find a more general (if it is possible the most general) characteristic description for class GOOD

• We want to assign predicted class GOOD for all individuals
Generation 0

Individual 1

\[(\text{NOC} > 3) \land (S > 10000)\]

Individual 2

\[(\text{NOC} > 1) \land (S > 30000)\]

Individual 3

\[(\text{NOC} \geq 0) \land (S < 40000)\]
Fitness function

• For a rule IF A THEN C

\[
CF (\text{Confidence factor}) = \frac{|A \cup C|}{|A|}
\]

|A| = number of records that satisfy A

|A \cup C| = number of records that satisfy A and are in predicted class C

Citation: the confidence formula is taken from class slides: http://www.cs.sunysb.edu/~cse634/lecture_notes/07association.pdf
Rule 1: If (NOC = 2) AND (S > 80000) then GOOD
Rule 2: If (NOC = 1) AND (S > 30000) then GOOD
Rule 3: If (NOC = 0) AND (S = 50000) then GOOD
Rule 4: If (NOC > 2) AND (S < 10000) then BAD
Rule 5: If (NOC = 10) AND (S = 30000) then BAD
Rule 6: If (NOC = 5) AND (S < 30000) then BAD

Fitness of Individual 1: If (NOC > 3) AND (S > 10000) then GOOD
 |A| = 2 (Rule 5 & 6), |AUC| = 0, CF = 0 / 2 = 0
Fitness of Individual 2: If (NOC > 1) AND (S > 30000) then GOOD
 |A| = 1 (Rule 1), |AUC| = 1, CF = 1 / 1 = 1
Best in Gen 0
Fitness of Individual 3: If (NOC >= 0) AND (S < 40000) then GOOD
 |A| = 4 (Rule 2 & 4 & 5 & 6), |AUC| = 1, CF = 1 / 4 = 0.25
(NOC \geq 0) \text{ AND } (S < 40000)

(NOC > 0) \text{ AND } (S < 90000)
Crossover

(NOC > 1) AND (S > 30000)

(NOC >= 0) AND (S > 30000)

(NOC > 1) AND (S < 40000)

(NOC >= 0) AND (S < 40000)
Generation 1

Individual 1

\[(\text{NOC} > 1) \land (S < 40000)\]

Individual 2

\[(\text{NOC} \geq 0) \land (S > 30000)\]

Individual 3

\[(\text{NOC} > 0) \land (S < 90000)\]
Fitness function – Generation 1

Rule 1: If (NOC = 2) AND (S > 80000) then GOOD
Rule 2: If (NOC = 1) AND (S > 30000) then GOOD
Rule 3: If (NOC = 0) AND (S = 50000) then GOOD
Rule 4: If (NOC > 2) AND (S < 10000) then BAD
Rule 5: If (NOC = 10) AND (S = 30000) then BAD
Rule 6: If (NOC = 5) AND (S < 30000) then BAD

Individual 1: If (NOC > 1) AND (S < 40000) then GOOD
|A| = 2 (Rule 4 & 5 & 6), |A&C| = 0, CF = 0 / 2 = 0

Individual 2: If (NOC >= 0) AND (S > 30000) then GOOD
|A| = 3 (Rule 1 & 2 & 3), |A&C| = 3, CF = 3 / 3 = 1

Individual 3: If (NOC > 0) AND (S < 90000) then GOOD
|A| = 5 (Rule 1 & 2 & 4 & 5 & 6), |A&C| = 1, CF = 1 / 5 = 0.2

Best in Gen 1
- When GAs are used for optimization, the goal is typically to return a single value - the best solution found to date.

- The entire population ultimately converges to the neighborhood of a single solution.

- Sometimes GAs employ a special method called a niching method that makes them capable of finding and maintaining multiple rules.
APPLICATION EXAMPLE

Technical Document of

LBS Capital Management, Inc., Clearwater, Florida

Link: http://nas.cl.uh.edu/boetticher/ML_DataMining/mahfoud96financial.pdf
Forecasting Individual Stock Performance

- **GOAL:** using historical data of a stock, predict relative return for a quarter

Example: If **IBM** stock is up 5% after one quarter and the S&P 500 index is up 3% over the same period, then **IBM**’s relative return is +2%

-The Implementation Example consists of 15 attributes of a stock at specific points in time and the relative return for the stock over the subsequent 12 week time period.

- 200 to 600 (records) examples were utilized depending on the experiment and the data available for a particular stock

GOAL: Combination of rules is required to model relationships among financial variables

Example: **Rule-1:** IF [P/E > 30] THEN Sell

Rule-2: IF [P/E < 40 and Growth Rate > 40%] THEN Buy
Preliminary Experiments

- For Preliminary set of experiments, to predict the return, relative to the market, a Madcap stock was randomly selected from the S&P 400.
- 331 examples (records) present in the database of examples of stock X.
- 70% of examples (records) were used as a training set for the GA.
- 20% of the examples (records) were used as a stopping set, to decide which population is best.
- 10% of the examples (records) were used to measure performance.
- A sample rule that the GA generated in one of the experiments:
 IF [Earning Surprise Expectation > 10% and Volatility > 7%] and [...]
 THEN Prediction = Up.
- Same set of experiments were used using Neural Network with one layer of hidden nodes using Backpropagation algorithm with the same training, stopping and test sets as that of GA experiment.
Observations on the Results

• The **GA** correctly predicts the direction of stock relative to the market 47.6% of the time and incorrectly predicts the 6.6% of time and produces no prediction 45%

• Over **half of the time** (47.6% + 6.6%), the **GA** makes a prediction

• When it **does make a prediction**, **GA** is correct 87.8% of the time

• The **Neural Network correctly predicts** the direction relative to the market 79.2% of the time and incorrectly predicts direction 15.8% of the time.

• When it **does make a prediction**, the **NN** is correct 83.4%
Comparison with Neural Networks

- **Advantage** of GA’s over NN’s:
 1. GA has ability to output *comprehensible rules*
 2. GA provides rough explanation of the concepts learned by black-box approaches such as NN’s
 3. GA learns rules that are *subsequently used* in a formal expert system
- **3. GA** makes no prediction when data is uncertain as opposed to Neural Network