Genetic Algorithms Overview and Examples

Cse634
DATA MINING

Professor Anita Wasilewska
Computer Science Department
Stony Brook University
Genetic Algorithm Short Overview

- **INITIALIZATION**

- At the beginning of a run of a Genetic Algorithm an **INITIAL POPULATION** of *random* chromosomes is created.

- The **INITIAL POPULATION** depends on the nature of the problem, but typically contains several hundreds or thousands of possible chromosomes (possible solutions).

- Often the **INITIAL POPULATION** covers the entire range of possible solutions (*the search space)*.

- Sometimes the solutions (chromosomes) may be "seeded" in areas where optimal solutions are likely to be found.
GA Short Overview

- **SELECTION**
- During each successive generation, a portion of the existing population is selected through a *fitness-based* process measured by a *fitness function*
- The fitness function is always problem dependent
- For each new chromosome (solution) to be produced, a pair of "parent" chromosomes is selected from the pool selected previously
GA Short Overview

• The new chromosome (solution) is produced by applying operators of crossover and mutation.

• New parents are selected for each new child, and

• the process continues until a new population of chromosomes (solutions) of appropriate constant size is generated.

• It is possible to use other operators such as regrouping, colonization-extinction, or migration.
Parameters

• Crossover probability, mutation probability and population size are used often (and tuned) to find reasonable settings for the problem.

• A very small mutation rate may lead to genetic drift.

• A recombination rate that is too high may lead to premature convergence of the genetic algorithm.

• A mutation rate that is too high may lead to loss of good solutions, unless we employ the elitist selection.
One generation of a genetic algorithm, consisting of - from top to bottom - selection, crossover, and mutation stages.
Example: Genetic Programming

A program in C

• int foo (int time)
 {
 int temp1, temp2;
 if (time > 10)
 temp1 = 3;
 else
 temp1 = 4;
 temp2 = temp1 + 1 + 2;
 return (temp2);
 }

• Equivalent expression (similar to a classification rule in data mining):

 (+ 1 2 (IF (> TIME 10) 3 4))
Program tree

\[
(+
 1
 2
 (IF
 (>
 TIME
 10)
 3
 4))
\]
Given data

<table>
<thead>
<tr>
<th>Input: Independent variable X</th>
<th>Output: Dependent variable Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>-0.80</td>
<td>0.84</td>
</tr>
<tr>
<td>-0.60</td>
<td>0.76</td>
</tr>
<tr>
<td>-0.40</td>
<td>0.76</td>
</tr>
<tr>
<td>-0.20</td>
<td>0.84</td>
</tr>
<tr>
<td>0.00</td>
<td>1.00</td>
</tr>
<tr>
<td>0.20</td>
<td>1.24</td>
</tr>
<tr>
<td>0.40</td>
<td>1.56</td>
</tr>
<tr>
<td>0.60</td>
<td>1.96</td>
</tr>
<tr>
<td>0.80</td>
<td>2.44</td>
</tr>
<tr>
<td>1.00</td>
<td>3.00</td>
</tr>
</tbody>
</table>

Citation: www.genetic-programming.com/c2003lecture1modified.ppt
Problem description

<table>
<thead>
<tr>
<th></th>
<th>Objective:</th>
<th>Find a computer program with one input (independent variable x) whose output Y equals the given data</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Terminal set:</td>
<td>$T = {X, \text{Random-Constants}}$</td>
</tr>
<tr>
<td>2</td>
<td>Function set:</td>
<td>$F = {+, -, *, /}$</td>
</tr>
<tr>
<td>3</td>
<td>Initial population:</td>
<td>Randomly created individuals from elements in T and F.</td>
</tr>
<tr>
<td>4</td>
<td>Fitness:</td>
<td>$</td>
</tr>
<tr>
<td>5</td>
<td>Termination:</td>
<td>An individual emerges whose sum of absolute errors (the value of its fitness function) is less than 0.1</td>
</tr>
</tbody>
</table>

Citation: www.genetic-programming.com/c2003lecture1modified.ppt
Generation 0

Population of 4 randomly created individuals

(a) \(x + 1 \)

(b) \(x^2 + 1 \)

(c) 2

(d) \(x \)

Citation: examples taken from: www.genetic-programming.com/c2003lecture1modified.ppt
Mutation:

picking “2” as mutation point

Citation: part of the pictures used as examples are taken from: www.genetic-programming.com/c2003lecture1modified.ppt
Crossover

Crossover:

picking “+” subtree and leftmost “x” as crossover points

Citation: example taken from: www.genetic-programming.com/c2003lecture1modified.ppt
Generation 1

Copy of (a)

Mutant of (c)
picking “2” as mutation point

First offspring of crossover of (a) and (b)
picking “+” of parent (a) and left-most “x” of parent (b) as crossover points

Second offspring of crossover of (a) and (b)
picking “+” of parent (a) and left-most “x” of parent (b) as crossover points

Citation: part of the examples is taken from: www.genetic-programming.com/c2003lecture1modified.ppt
| X | Y | $X+1$ | $|X+1-Y|$ | 1 | $|1-Y|$ | X | $|X-Y|$ | X^2+X+1 | $|X^2+X+1-\gamma|$ |
|------|------|-------|----------|----|-------|----|-------|----------------|------------------|
| -1.00 | 1.00 | 0 | 1 | 1 | 0 | -1.00 | 2 | 1 | 0 |
| -0.80 | 0.84 | 0.20 | 0.64 | 1 | 0.16 | -0.80 | 1.64 | 0.84 | 0 |
| -0.60 | 0.76 | 0.40 | 0.36 | 1 | 0.24 | -0.60 | 1.36 | 0.76 | 0 |
| -0.40 | 0.76 | 0.60 | 0.16 | 1 | 0.24 | -0.40 | 1.16 | 0.76 | 0 |
| -0.20 | 0.84 | 0.80 | 0.04 | 1 | 0.16 | -0.20 | 1.04 | 0.84 | 0 |
| 0.00 | 1.00 | 1.00 | 0 | 1 | 0 | 0.00 | 1 | 1 | 0 |
| 0.20 | 1.24 | 1.20 | 0.04 | 1 | 0.24 | 0.20 | 1.04 | 1.24 | 0 |
| 0.40 | 1.56 | 1.40 | 0.16 | 1 | 0.56 | 0.40 | 1.16 | 1.56 | 0 |
| 0.60 | 1.96 | 1.60 | 0.36 | 1 | 0.96 | 0.60 | 1.36 | 1.96 | 0 |
| 0.80 | 2.44 | 1.80 | 0.64 | 1 | 1.44 | 0.80 | 1.64 | 2.44 | 0 |
| 1.00 | 3.00 | 2.00 | 1 | 1 | 2 | 1.00 | 2 | 3 | 0 |

Fitness

: **4.40** **6.00** **15.40** **0.00**
Found!
Example: Classification

Classify customers based on number of children and salary:

<table>
<thead>
<tr>
<th>Parameter</th>
<th># of children (NOC)</th>
<th>Salary (S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain</td>
<td>0…10</td>
<td>0…500000</td>
</tr>
<tr>
<td>Syntax of atomic expression</td>
<td>NOC = x</td>
<td>S = x</td>
</tr>
<tr>
<td></td>
<td>NOC < x</td>
<td>S < x</td>
</tr>
<tr>
<td></td>
<td>NOC <= x</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NOC > x</td>
<td>S > x</td>
</tr>
<tr>
<td></td>
<td>NOC >= x</td>
<td></td>
</tr>
</tbody>
</table>
Classification Rules

- A classification rule is of the form

\[
\text{IF } \text{description} \text{ THEN } \text{class}=c_i
\]

Antecedent Consequence
• **Possible rule:**
 - If \((\text{NOC} = 2) \text{ AND } (S > 80000)\) then GOOD (customer)
Initial data table

<table>
<thead>
<tr>
<th>Nr. Crt.</th>
<th>Number of children (NOC)</th>
<th>Salary (S)</th>
<th>Type of customer (C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>> 80000</td>
<td>GOOD</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>> 30000</td>
<td>GOOD</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>= 50000</td>
<td>GOOD</td>
</tr>
<tr>
<td>4</td>
<td>> 2</td>
<td>< 10000</td>
<td>BAD</td>
</tr>
<tr>
<td>5</td>
<td>= 10</td>
<td>= 30000</td>
<td>BAD</td>
</tr>
<tr>
<td>6</td>
<td>= 5</td>
<td>< 30000</td>
<td>BAD</td>
</tr>
</tbody>
</table>
Initial data represented as rules

- Rule 1: If (NOC = 2) AND (S > 80000) then C = GOOD
- Rule 2: If (NOC = 1) AND (S > 30000) then C = GOOD
- Rule 3: If (NOC = 0) AND (S = 50000) then C = GOOD
- Rule 4: If (NOC > 2) AND (S < 10000) then C = BAD
- Rule 5: If (NOC = 10) AND (S = 30000) then C = BAD
- Rule 6: If (NOC = 5) AND (S < 30000) then C = BAD
Generation 0

• Population of 3 randomly created individuals:
 – If (NOC > 3) AND (S > 10000) then C = GOOD
 – If (NOC > 1) AND (S > 30000) then C = GOOD
 – If (NOC >= 0) AND (S < 40000) then C = GOOD

• We want to find a more general (if it is possible the most general) characteristic description for class GOOD

• We want to assign predicted class GOOD for all individuals
Generation 0

Individual 1

\[(\text{NOC} > 3) \text{ AND } (S > 10000)\]

Individual 2

\[(\text{NOC} > 1) \text{ AND } (S > 30000)\]

Individual 3

\[(\text{NOC} \geq 0) \text{ AND } (S < 40000)\]
Fitness function

• For a rule IF A THEN C

CF (Confidence factor) = $\frac{|A \cup C|}{|A|}$

|A| = number of records that satisfy A

|A \cup C| = number of records that satisfy A and are in predicted class C
Fitness function – Generation 0

Rule 1: If (NOC = 2) AND (S > 80000) then GOOD
Rule 2: If (NOC = 1) AND (S > 30000) then GOOD
Rule 3: If (NOC = 0) AND (S = 50000) then GOOD
Rule 4: If (NOC > 2) AND (S < 10000) then BAD
Rule 5: If (NOC = 10) AND (S = 30000) then BAD
Rule 6: If (NOC = 5) AND (S < 30000) then BAD

Fitness of Individual 1: If (NOC > 3) AND (S > 10000) then GOOD
 |A| = 2 (Rule 5 & 6), |AUC| = 0, CF = 0 / 2 = 0
Fitness of Individual 2: If (NOC > 1) AND (S > 30000) then GOOD
 |A| = 1 (Rule 1), |AUC| = 1, CF = 1 / 1 = 1 \(\text{Best in Gen 0} \)
Fitness of Individual 3: If (NOC >= 0) AND (S < 40000) then GOOD
 |A| = 4 (Rule 2 & 4 & 5 & 6), |AUC| = 1, CF = 1 / 4 = 0.25
(NOC >= 0) AND (S < 40000)
Crossover

(NOC > 1) AND (S > 30000)

(NOC > 1) AND (S < 40000)

(NOC >= 0) AND (S > 30000)

(NOC >= 0) AND (S < 40000)
Generation 1

Individual 1
\[(\text{NOC} > 1) \text{ AND } (\text{S} < 40000)\]

Individual 2
\[(\text{NOC} \geq 0) \text{ AND } (\text{S} > 30000)\]

Individual 3
\[(\text{NOC} > 0) \text{ AND } (\text{S} < 90000)\]
Fitness function – Generation 1

Rule 1: If (NOC = 2) AND (S > 80000) then GOOD
Rule 2: If (NOC = 1) AND (S > 30000) then GOOD
Rule 3: If (NOC = 0) AND (S = 50000) then GOOD
Rule 4: If (NOC > 2) AND (S < 10000) then BAD
Rule 5: If (NOC = 10) AND (S = 30000) then BAD
Rule 6: If (NOC = 5) AND (S < 30000) then BAD

Individual 1: If (NOC > 1) AND (S < 40000) then GOOD
|A| = 2 (Rule 4 & 5 & 6), |A&C| = 0, CF = 0 / 2 = 0

Individual 2: If (NOC >= 0) AND (S > 30000) then GOOD
|A| = 3 (Rule 1 & 2 & 3), |A&C| = 3, CF = 3 / 3 = 1

Individual 3: If (NOC > 0) AND (S < 90000) then GOOD
|A| = 5 (Rule 1 & 2 & 4 & 5 & 6), |A&C| = 1, CF = 1 / 5 = 0.2

Best in Gen 1
GA Rules Problem

- When GAs are used for optimization, the goal is typically to return a single value - the best solution found to date.

- The entire population ultimately converges to the neighborhood of a single solution.

- Sometimes GAs employ a special method called a niching method that makes them capable of finding and maintaining multiple rules.
APPLICATION EXAMPLE

Technical Document of

LBS Capital Management, Inc., Clearwater, Florida

Link: http://nas.cl.uh.edu/boetticher/ML_DataMining/mahfoud96financial.pdf
Forecasting Individual Stock Performance

- **GOAL:** using historical data of a stock, *predict* relative return for a quarter

Example: *If IBM stock is up 5%* after one quarter and the S&P 500 index is *up 3%* over the same period, *then IBM’s relative return is +2%*

-The Implementation Example consists of 15 attributes of a stock at specific points in time and the relative return for the stock over the subsequent 12 week time period.

- 200 to 600 (records) examples were utilized depending on the experiment and the data available for a particular stock

GOAL: Combination of rules is required to model relationships among financial variables

Example: **Rule-1:** IF [P/E > 30] THEN Sell

Rule-2: IF [P/E < 40 and Growth Rate > 40%] THEN Buy
Preliminary Experiments

• For **Preliminary set of experiments**, to *predict the return*, relative to the market, a Madcap stock was randomly selected from the S&P 400

• 331 examples (records) present in the database of examples of stock X

• 70% of examples (records) were used as a *training set* for the **GA**

• 20% of the examples (records) were used as a stopping set, to decide which population is best

• 10% of the examples (records) were used to measure performance

• **A sample rule** that the GA generated in one of the experiments:

 IF [Earning Surprise Expectation > 10\% and Volatility > 7\%] and […]

 THEN **Prediction = Up**

• Same set of experiments were used using **Neural Network** with one layer of hidden nodes using **Backpropagation algorithm** with the same training, stopping and test sets as that of **GA experiment**
Observations on the Results

- The **GA** correctly predicts the direction of stock relative to the market 47.6% of the time and incorrectly predicts the 6.6% of time and produces no prediction 45%

- Over **half of the time** (47.6% + 6.6%), the **GA** makes a prediction

- When it **does make a prediction**, **GA** is correct 87.8% of the time

- The **Neural Network correctly predicts** the direction relative to the market 79.2% of the time and incorrectly predicts direction 15.8% of the time.

- When it **does make a prediction**, the **NN** is correct 83.4%
Comparison with Neural Networks

• **Advantage of GA’s over NN’s:**
 1. GA has ability to output comprehensible rules
 2. GA provides rough explanation of the concepts learned by black-box approaches such as NN’s
 3. GA learns rules that are subsequently used in a formal expert system
• 3. GA makes no prediction when data is uncertain as opposed to Neural Network