Introduction To Genetic Algorithms

Cse634
DATA MINING

Professor Anita Wasilewska
Computer Science Department
Stony Brook University
Overview

• **Introduction** To Genetic Algorithms (GA)

• **GA Operators and Parameters**

• **Genetic Algorithms To Solve** The Traveling Salesman Problem (TSP)

• **Summary**
History Of Genetic Algorithms

• “Evolutionary Computing” was introduced in the 1960s by I. Rechenberg

• John Holland wrote the first book on Genetic Algorithms ‘Adaptation in Natural and Artificial Systems’ in 1975

• In 1992 John Koza used genetic algorithm to evolve programs to perform certain tasks

• He called his method “Genetic Programming”
What Are Genetic Algorithms?

• What exactly are Genetic Algorithms?
• As the name suggests, Genetic Algorithms borrow their basic working principle from natural genetics

Genetic Algorithms are search and optimization techniques based on Darwin’s Principle of Natural Selection
Darwin’s Principle Of Natural Selection

• IF there are organisms that reproduce, and
• IF offsprings inherit traits from their progenitors, and
• IF there is variability of traits, and
• IF the environment cannot support all members of a growing population,
• THEN those members of the population with less-adaptive traits (determined by the environment) will die out, and
• THEN those members with more-adaptive traits (determined by the environment) will thrive

The result is the evolution of species
Basic Idea of Principle of Natural Selection

“Select The Best, Discard The Rest”
An Example of Natural Selection

• Giraffes have long necks

Giraffes with slightly longer necks could feed on leaves of higher branches when all lower ones had been eaten off
→ They had a better chance of survival.
→ Favorable characteristic propagated through generations of giraffes.
→ Now, evolved species has long necks.

NOTE: Longer necks may have been a deviant characteristic (mutation) initially but since it was favorable, was propagated over generations. Now an established trait.

So, some mutations are beneficial
Evolution Through Natural Selection

Initial Population Of Animals

Struggle For Existence - Survival Of the Fittest

Surviving Individuals Reproduce, Propagate Favorable Characteristics

Millions Of Years

Evolved Species
(Favorable Characteristic Now A Trait Of Species)
Genetic Algorithms implement Optimization Strategies by simulating evolution of species through natural selection
Working Mechanism Of GA

Begin

Initialize population

Evaluate Solutions

T = 0

Optimum Solution?

Y

T = T + 1

Stop

N

Selection

Crossover

Mutation
Simple Genetic Algorithm

Simple_Genetic_Algorithm()
{
 Initialize the Population;
 Calculate Fitness Function;

 While(Fitness Value != Optimal Value)
 {
 Selection;//Natural Selection, Survival Of Fittest
 Crossover;//Reproduction, Propagate favorable characteristics
 Mutation;//Mutation
 Calculate Fitness Function;
 }
}
Nature to Computer Mapping

<table>
<thead>
<tr>
<th>Nature</th>
<th>Computer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population</td>
<td>Set of solutions.</td>
</tr>
<tr>
<td>Individual</td>
<td>Solution to a problem.</td>
</tr>
<tr>
<td>Fitness</td>
<td>Quality of a solution.</td>
</tr>
<tr>
<td>Chromosome</td>
<td>Encoding for a Solution.</td>
</tr>
<tr>
<td>Gene</td>
<td>Part of the encoding of a solution.</td>
</tr>
<tr>
<td>Reproduction</td>
<td>Crossover</td>
</tr>
</tbody>
</table>
GA Operators and Parameters
Encoding

ENCODING is a process of representing the solution in the form of a string that conveys the necessary information.

- Just as in a chromosome, each gene controls a particular characteristic of the individual, similarly, each bit in the string represents a characteristic of the solution.
Encoding Methods

- **Binary Encoding** – Most common method of encoding.
- **Chromosomes** are strings of 1s and 0s and each **position** in the chromosome **represents** a particular **characteristic** of the problem.

<table>
<thead>
<tr>
<th>Chromosome A</th>
<th>10110010110011100101</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chromosome B</td>
<td>11111110000000011111</td>
</tr>
</tbody>
</table>
Encoding Methods

• **Permutation Encoding** — Useful in ordering problems such as the Traveling Salesman Problem (TSP)

 • In TSP every chromosome is a string of numbers, each of which represents a city to be visited.

<table>
<thead>
<tr>
<th>Chromosome A</th>
<th>1 5 3 2 6 4 7 9 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chromosome B</td>
<td>8 5 6 7 2 3 1 4 9</td>
</tr>
</tbody>
</table>
Encoding Methods

- **Value Encoding** — Used in problems where complicated values, such as real numbers, are used and where binary encoding would not suffice.

 Good for some problems, but often necessary to develop some specific crossover and mutation techniques for these chromosomes.

<table>
<thead>
<tr>
<th>Chromosome A</th>
<th>1.235</th>
<th>5.323</th>
<th>0.454</th>
<th>2.321</th>
<th>2.454</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chromosome B</td>
<td>(left), (back), (left), (right), (forward)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Encoding Methods

- **Tree Encoding** – this encoding is used mainly for evolving programs or expressions, i.e., for Genetic Programming, or Classification

- **Tree Encoding** - every chromosome is a tree of some objects, such as values/arithmetic operators or commands in a programming language or a rule

-
 (+x(/5y))

- (do_until step wall)
Genetic Algorithm Operations

Initialization
Selection
Recombination
Reproduction
Termination
Initialization

Individual solutions are randomly generated to form an initial population

- Traditionally, the population is generated randomly,
- covering the entire range of possible solutions (the search space)
A fitness function quantifies the optimality of a solution (chromosome) so that that particular solution may be ranked against all the other solutions.

- A fitness value is assigned to each solution depending on how close it actually is to solving the problem.

- Ideal fitness function correlates closely to goal and is quickly computable.

- In TSP, $f(x)$ is the sum of distances between the cities in solution.

- The lesser the value, the fitter the solution is.
Recombination

Recombination is a process that determines which solutions are to be preserved and allowed to reproduce and which ones deserve to die out.

- The primary objective of the recombination operator is to emphasize the good solutions and eliminate the bad solutions in a population, while keeping the population size constant.

- “Selects The Best, Discards The Rest”

- “Recombination” is different from “Reproduction”
Recombination

- Identify the **good** solutions in a population.
- Make **multiple** copies of the good solutions.
- Eliminate **bad** solutions from the population so that **multiple copies** of **good solutions** can be **placed** in the population.
Selection Methods

There are many different techniques which a genetic algorithm can use to select the individuals to be copied over into the next generation.

Listed are some of the most commonly used:

- Roulette-Wheel Selection
- Tournament Selection
- Elitist Selection
- Rank Selection
- Hierarchical Selection
Roulette Wheel Selection

• Each current string in the population has a slot assigned to it which is in proportion to its fitness

• We spin the weighted roulette wheel thus defined n times (where n is the total number of solutions)

• Each time Roulette Wheel stops, the string corresponding to that slot is created

Strings that are fitter are assigned a larger slot and hence have a better chance of appearing in the new population
Example Of Roulette Wheel Selection

\[\text{Prob}_i = \frac{f(i)}{\sum_i f(i)} \]

<table>
<thead>
<tr>
<th>No.</th>
<th>Initial Population</th>
<th>Fitness f(i)</th>
<th>% of Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>01101</td>
<td>169</td>
<td>14.4</td>
</tr>
<tr>
<td>2</td>
<td>11000</td>
<td>576</td>
<td>49.2</td>
</tr>
<tr>
<td>3</td>
<td>01000</td>
<td>64</td>
<td>5.5</td>
</tr>
<tr>
<td>4</td>
<td>10011</td>
<td>361</td>
<td>30.9</td>
</tr>
<tr>
<td>Total</td>
<td>(\sum_i f(i))</td>
<td>1170</td>
<td>100.0</td>
</tr>
</tbody>
</table>
Roulette Wheel For Example

We spin 4 times
Tournament Selection

GA runs a "tournament" among a few individuals chosen at random from the population and selects the winner (the one with the best fitness) for crossover.

Two chromosomes are picked out of the pool, their fitness is compared, and the better is permitted to reproduce.

- Deterministic tournament selection selects the best individual in each tournament.
- Independent of Fitness function.

ADVANTAGE: Decreases computing time, Works on parallel architecture.
Tournament Selection (Pseudo Code)

TS_Procedure_nonDeterministic
{
1. choose \(k \) (the tournament size) individuals from the population at random

2. choose the best individual from pool/tournament with probability \(p \)

3. choose the second best individual with probability \(p \cdot (1-p) \)

4. choose the third best individual with probability \(p \cdot (1-p)^2 \)

and so on...
}

Reference: wikipedia
Hierarchical Selection

Individuals go through multiple rounds of selection each generation.

Lower-level evaluations are faster and less discriminating.

Those that survive to higher levels are evaluated more rigorously.

ADVANTAGE: Efficient usage of computing time by weeding out non-promising candidate chromosomes.
Rank Selection

Rank selection first ranks the population and then every chromosome receives fitness from this ranking.

Selection is based on this ranking rather than absolute differences in fitness.

The worst will have fitness 1, second worst will have fitness 2, etc... and the best will have fitness N. (where N is the number of chromosomes in population)

ADVANTAGE: Preserves genetic diversity (by preventing dominance of “fitter” chromosomes)
Reproduction

GA Reproduction operators:

- Crossover
- Mutation
- Elitism
Crossover is a GA operator in the process in which two chromosomes (strings) combine their genetic material (bits) to produce a new offspring which possesses both their characteristics.

- The two chromosomes are picked from the mating pool to crossover to produce a new offspring.

We also introduce a crossover probability to indicate a ratio of how many chromosome will be picked for crossover.

They are usually picked by following selection criteria. The method chosen for crossover depends on a chosen crossover encoding method.
Crossover Methods

- **Single Point Crossover** - a random point is chosen on the individual chromosomes (strings) and the genetic material is exchanged at this point.

![Diagram of Single Point Crossover](image-url)
Crossover Methods

- **Single Point Crossover**

<table>
<thead>
<tr>
<th></th>
<th>11011</th>
<th>00100110110</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chromosome 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chromosome 2</td>
<td>11011</td>
<td>11000011110</td>
</tr>
<tr>
<td>Offspring 1</td>
<td>11011</td>
<td>11000011110</td>
</tr>
<tr>
<td>Offspring 2</td>
<td>11011</td>
<td>00100110110</td>
</tr>
</tbody>
</table>
Crossover Methods

- **Two-Point Crossover** - two random points are chosen on the individual chromosomes (strings) and the genetic material is exchanged at these points.

<table>
<thead>
<tr>
<th>Chromosome 1</th>
<th>11011</th>
<th>00100</th>
<th>110110</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chromosome 2</td>
<td>10101</td>
<td>11000</td>
<td>011110</td>
</tr>
<tr>
<td>Offspring 1</td>
<td>10101</td>
<td>00100</td>
<td>011110</td>
</tr>
<tr>
<td>Offspring 2</td>
<td>11011</td>
<td>11000</td>
<td>110110</td>
</tr>
</tbody>
</table>

NOTE: These chromosomes are different from the last example.
Crossover Methods

- **Uniform Crossover**: each gene (bit) is selected randomly from one of the corresponding genes of the parent chromosomes

<table>
<thead>
<tr>
<th>Chromosome1</th>
<th>11011</th>
<th>00100</th>
<th>110110</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chromosome 2</td>
<td>10101</td>
<td>11000</td>
<td>011110</td>
</tr>
<tr>
<td>Offspring</td>
<td>10111</td>
<td>00000</td>
<td>110110</td>
</tr>
</tbody>
</table>

NOTE: Uniform Crossover yields **ONLY 1 offspring**
Crossover:
picking “+” subtree and leftmost “x” as crossover points
Crossover

- **Crossover** between 2 good solutions
- **MAY NOT ALWAYS** yield a better or as good a solution

- Since parents are good, probability of the child being good is high

- If offspring is not good (poor solution), it will be removed in the next iteration during *Selection*
Elitism

Elitism is a method in which copies the best chromosome are added to the new offspring population before crossover and mutation.

- When creating a new population by crossover or mutation the best chromosome might be lost.

- Elitism lets GA to retain some number of the best individuals at each generation.

- It has been found that elitism significantly improves performance.
Mutation

Mutation is the process by which a string is deliberately changed so as to maintain diversity in the population set.

We saw in the giraffes’ example, that mutations could be beneficial.

Mutation Probability (or Ratio) is a measure of the likeness that random elements of a chromosome will be changed.

Example

Let a chromosome be encoded as a binary string of length 100.

1% mutation probability means that 1 out of 100 bits (on average) picked at random will be changed.
Mutation

A common method of implementing the mutation operator involves generating a random variable for each bit in a sequence. This random variable tells a particular bit will be modified.
Example of Mutation

- For chromosomes using Binary Encoding, randomly selected bits are inverted

<table>
<thead>
<tr>
<th>Offspring</th>
<th>11011 00100 110110</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mutated Offspring</td>
<td>11010 00100 100110</td>
</tr>
</tbody>
</table>

NOTE: The number of bits to be inverted depends on the Mutation Probability
Crossover vs Mutation

Exploration: Discovering promising areas in the search space, i.e. gaining information on the problem

Exploitation: Optimising within a promising area, i.e. using information

There is co-operation AND competition between them

Crossover is explorative, it makes a big jump to an area somewhere “in between” two (parent) areas

Mutation is exploitative, it creates random small diversions, thereby staying near (in the area of) the parent
Simple Genetic Algorithm (Reproduction Cycle)

Select parents for the mating pool
(size of mating pool = population size)

Shuffle the mating pool
For each consecutive pair apply crossover with probability P_c ,
otherwise copy parents
For each offspring apply mutation (bit-flip with probability P_m
independently for each bit)

Replace the whole population with the resulting offsprings
One generation of a genetic algorithm, consisting of - from top to bottom - selection, crossover, and mutation stages.
Genetic Algorithm Short

- **INITIALIZATION**

- At the beginning of a run of a Genetic Algorithm an **INITIAL POPULATION** of random chromosomes is created

- The **INITIAL POPULATION** depends on the nature of the problem, but typically contains several hundreds or thousands of possible chromosomes (possible solutions)

- Often the **INITIAL POPULATION** covers the entire range of possible solutions (the search space)

- Sometimes the solutions (chromosomes) may be "seeded" in areas where optimal solutions are likely to be found
Basic Genetic Algorithm

Assume that there are \(N \) chromosomes in the INITIAL POPULATION

REPRODUCTION CYCLE

1. **Test** each chromosome to see how good it is, i.e. assign a *fitness score* accordingly
2. **Select two members** from the current population

The **chance** of being **selected** is proportional to the chromosomes fitness

Roulette wheel selection is a commonly used method
Basic Genetic Algorithm

3. Perform CROSSOVER on the selected pair
4. Apply MUTATION to each offspring
5. Repeat steps 2, 3, 4 until a new population of N chromosomes has been created, i.e. we keep the population size constant

The REPRODUCTION CYCLE is repeated until a TERMINATION CONDITIONS has been reached
Termination Conditions

• Common **TERMINATION CONDITIONS** are:
 • A **solution** is **found** that satisfies problem **criteria**
 • Fixed **number** of generations is **reached**
 • Allocated **budget** (computation time/money) is **reached**
 • The highest ranking solution's **fitness** has **reached a plateau**
 • Manual **inspection**
 • **Combinations** of the above
GA Short Overview

• SELECTION
• During each successive generation, a portion of the existing population is selected through a fitness-based process measured by a fitness function
• The fitness function is always problem dependent
• For each new chromosome (solution) to be produced, a pair of "parent” chromosomes is selected from the pool selected previously
Genetic Algorithm Short Overview

• REPRODUCTION CYCLE
• The new chromosome (solution) is produced by applying operations of crossover and mutation
• New parents are selected for each new child, and
• the process continues until a new population of chromosomes (solutions) of appropriate constant size is generated
• It is possible to use other operators such as regrouping, colonization-extinction, or migration
Parameters

• Parameters such as the crossover probability, mutation probability and population size are used (and tuned) to find reasonable settings for the problem

• A very small mutation rate may lead to **genetic drift**

• A recombination rate that is **too high** may lead to **premature convergence** of the genetic algorithm

• A **mutation rate** that is **too high** may lead to loss of good solutions, unless we employ the **elitist selection**
Genetic Algorithms To Solve The Traveling Salesman Problem (TSP)
Traveling Salesman Problem

We are given a set of cities and a symmetric distance matrix that indicates the cost of travel from each city to every other city. The goal is to find the shortest circular tour, visiting every city exactly once, so as to minimize the total travel cost, which includes the cost of traveling from the last city back to the first city.
Encoding

• We represent every city with an integer

• Consider 6 Indian cities –
 Mumbai, Nagpur, Calcutta, Delhi, Bangalore and Chennai and assign a number to each.

 Mumbai 1 →
 Nagpur 2 →
 Calcutta 3 →
 Delhi 4 →
 Bangalore 5 →
 Chennai 6 →
Encoding

• Thus a path would be represented as a sequence of integers from 1 to 6

• The path [1 2 3 4 5 6] represents a path from Mumbai to Nagpur, Nagpur to Calcutta, Calcutta to Delhi, Delhi to Bangalore, Bangalore to Chennai, and finally from Chennai to Mumbai

• This is an example of Permutation Encoding as the position of the elements determines the fitness of the solution.
Fitness Function

- The fitness function is be the total cost of the tour represented by each chromosome.

The fitness function is calculated as the sum of the distances traversed in each travel segment.

The Lesser The Sum, The Fitter The Solution Represented By That Chromosome
Distance/Cost Matrix For TSP

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>863</td>
<td>1987</td>
<td>1407</td>
<td>998</td>
<td>1369</td>
</tr>
<tr>
<td>2</td>
<td>863</td>
<td>0</td>
<td>1124</td>
<td>1012</td>
<td>1049</td>
<td>1083</td>
</tr>
<tr>
<td>3</td>
<td>1987</td>
<td>1124</td>
<td>0</td>
<td>1461</td>
<td>1881</td>
<td>1676</td>
</tr>
<tr>
<td>4</td>
<td>1407</td>
<td>1012</td>
<td>1461</td>
<td>0</td>
<td>2061</td>
<td>2095</td>
</tr>
<tr>
<td>5</td>
<td>998</td>
<td>1049</td>
<td>1881</td>
<td>2061</td>
<td>0</td>
<td>331</td>
</tr>
<tr>
<td>6</td>
<td>1369</td>
<td>1083</td>
<td>1676</td>
<td>2095</td>
<td>331</td>
<td>0</td>
</tr>
</tbody>
</table>

Cost matrix for six city example.

Distances in Kilometers
Fitness Function

- So, for a chromosome [4 1 3 2 5 6], the total cost of travel or fitness will be calculated as shown below:

 \[
 \text{Fitness} = 1407 + 1987 + 1124 + 1049 + 331 + 2095 = 7993 \text{ km}
 \]

- Since our objective is to \textbf{Minimize the distance}, the lesser the total distance, the \textbf{fitter the solution}.
Selection Operator

We use Tournament Selection

As the name suggests tournaments are played between two solutions and the better solution is chosen and placed in the mating pool

Two other solutions are picked again and another slot in the mating pool is filled up with the better solution
Tournament

Mating Pool

```
4 1 3 2 5 6
4 3 2 1 5 6
3 6 4 1 2 5
4 1 3 2 5 6
6 3 4 5 2 1
4 3 2 1 5 6
5 2 6 4 3 1
2 6 3 4 5 1
4 3 2 1 5 6
5 2 6 4 3 1
2 6 3 4 5 1
```

```
7993
4 1 3 2 5 6
6872
4 3 2 1 5 6
8971
3 6 4 1 2 5
7993
4 1 3 2 5 6
8673
5 2 6 4 3 1
8142
2 6 3 4 5 1
6872
4 3 2 1 5 6
8673
5 2 6 4 3 1
8142
2 6 3 4 5 1
6872
4 3 2 1 5 6
8479
5 2 6 4 3 1
8142
2 6 3 4 5 1
```
Why we cannot use single-point crossover:

- **Single point crossover** method randomly selects a crossover point in the string and swaps the substrings.
- This may produce some **invalid offsprings** as shown below.

![Crossover Diagram]

4 1 3 2 5 6 → 4 1 3 1 5 6
↓ ↓
4 3 2 1 5 6 → 4 3 2 2 5 6
Crossover Operator

• We use the Enhanced Edge Recombination operator (T.Starkweather, et al, 'A Comparison of Genetic Sequencing Operators, International Conference of GAs, 1991)

• This operator is different from other genetic sequencing operators in that it emphasizes adjacency information instead of the order or position of items in the sequence.

• The algorithm for the Edge-Recombination Operator involves constructing an Edge Table first
The **Edge Table** is an *adjacency table* that lists links *into* and *out of* a city found in the two *parent sequences*.

If an item is **already** in the *edge table* and we are trying to insert it again, that element of a sequence must be a *common edge* and is **represented** by inverting it's sign.
Finding The Edge Table

Parent 1

Parent 2

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>-3</td>
<td>5</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>-2</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>-6</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>2</td>
<td>-6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>-5</td>
<td>-4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Enhanced Edge Recombination Algorithm

1. Choose the initial city from one of the two parent tours. (It can be chosen randomly as according to criteria outlined in step 4). This is the current city.

2. Remove all occurrences of the current city from the left hand side of the edge table. (These can be found by referring to the edge-list for the current city).

3. If the current city has entries in it's edge-list, go to step 4 otherwise go to step 5.

4. Determine which of the cities in the edge-list of the current city has the fewest entries in it's own edge-list. The city with fewest entries becomes the current city. In case a negative integer is present, it is given preference. Ties are broken randomly. Go to step 2.

5. If there are no remaining unvisited cities, then stop.

6. Otherwise, randomly choose an unvisited city and go to step 2.
Example Of Enhanced Edge Recombination Operator

Step 1

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>-3</td>
<td>5</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>-2</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>-6</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>2</td>
<td>-6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>-5</td>
<td>-4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Step 2

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>3</th>
<th>2</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>-3</td>
<td>5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>-6</td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>2</td>
<td>-6</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>-5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example Of Enhanced Edge Recombination Operator

Step 3

\[
\begin{array}{cccc}
1 & 3 & 2 & 5 \\
2 & -3 & 5 & 1 \\
3 & 1 & -2 & \\
4 & 1 & 3 & \\
5 & 3 & 2 & \\
6 & -5 & & \\
\end{array}
\]

\[
[4 \ 6 \ 5]
\]

Step 4

\[
\begin{array}{cccc}
1 & 3 & 2 & \\
2 & -3 & 1 & \\
3 & 1 & -2 & \\
4 & 1 & 3 & \\
5 & 3 & 2 & \\
6 & & & \\
\end{array}
\]

\[
[4 \ 6 \ 5 \ 1]
\]
Example Of Enhanced Edge Recombination Operator

Step 5

Step 6
Mutation Operator

- The **mutation operator** induces a change in the solution, so as to maintain diversity in the population and prevent **Premature Convergence**

- We **mutate the string** by randomly selecting any two cities and interchanging their positions in the solution, thus giving rise to a new tour.

```
4 1 3 2 5 6
```

```
4 5 3 2 1 6
```
Input To Program

<table>
<thead>
<tr>
<th>Travelling Salesman Problem using Genetic Algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enter population size</td>
</tr>
<tr>
<td>Enter number of cities</td>
</tr>
<tr>
<td>Enter maximum generations</td>
</tr>
<tr>
<td>Enter mutation probability</td>
</tr>
</tbody>
</table>
Initial Output For 20 cities: Distance = 34985 km
Initial Population
Final Output For 20 cities : Distance=13170 km
Generation 4786
Advantages Of GA

GAs search for the function **optimum** starting from a **population of points** of the function domain, not a single one.

This characteristic suggests that **GAs** are **global search methods**.

- They can, in fact, **climb many peaks in parallel**, reducing the probability of finding **local minima**, which is one of the **drawbacks** of traditional **optimization methods**.
Advantages of GA

GAs only use the information about the objective function

GAs do not require knowledge of any other auxiliary information

They allow a number of problems to be solved without the need to formulate restrictive assumptions

For this reason, GAs are often called blind search methods
Advantages of GA

- GAs can be easily implemented on parallel machines
- Since in real-world design optimization problems, most computational time is spent in evaluating a solution, with multiple processors all solutions in a population can be evaluated in a distributed manner

This reduces substantially the overall computational time
Some References

WEBSITES

• www.iitk.ac.in/kangal
• www.math.princeton.edu
• www.genetic-programming.com
• www.garage.cse.msu.edu
• www.aic.nre.navy.mie/galist