Cse634 DATA MINING

SHORT MID 2 REVIEW

Professor Anita Wasilewska Computer Science Department Stony Brook University

Association and Genetic Algorithms

- Describe the Apriori Algorithm and Association Analysis
- Describe all types of Association Rules and methods of obtaining them
- Discuss types of Association Analysis applications
- Describe classification by Association and compare it with the classification by Decision Trees or Neural Network
- Discuss types of Classification by Association applications

Association and Genetic Algorithms

- Describe principles of Genetic Algorithms
- Give examples of chromosomes encoding
- Describe **GA** operators and parameters
- Describe the role of fitness function
- Describe GA Reproduction Cycle
- Discuss types of **GA** applications
- Compare classification by GA with NN and DT classifications

The Apriori Algorithm

• Apriori Algorithm

The algorithm iteratively **finds** frequent itemsets with cardinality from 1 to *k* (k-itemset)

Key Concepts:

- Frequent Itemsets
- Apriori Property
- As the next step in the Apriori Process we use the frequent itemsets to generate association rules

The Apriori Algorithm: Basics

Key Concepts:

Frequent Itemsets

- The sets of item which has minimum support (denoted by L_i for ith-Itemset)
- Apriori Property
- Any subset of frequent itemset must be frequent
- Join Operation
- To find L_k, a set of candidate k-itemsets is generated by joining L_{k-1} with itself.

The Apriori Algorithm : Pseudo code

- Join Step: C_k is generated by **joining** L_{k-1} with itself
- Prune Step: Any (k-1)-itemset that is not frequent cannot be a subset of a frequent k-itemset
- Pseudo-code:

 C_k : Candidate itemset of size k L_k : frequent itemset of size k

 $L_{1} = \{ \text{frequent items} \}; \\ \text{for } (k = 1; L_{k} \mid = \emptyset; k++) \text{ do begin} \\ C_{k+1} = \text{candidates generated from } L_{k}; \\ \text{for each transaction } t \text{ in database do} \\ \text{increment the count of all candidates in } C_{k+1} \\ \text{that are contained in } t \\ L_{k+1} = \text{candidates in } C_{k+1} \text{ with min_support} \\ \text{end} \\ \text{return } \cup_{k} L_{k}; \end{cases}$

Methods to Improve Apriori's Efficiency

- Hash-based itemset counting:
- A *k*-itemset whose corresponding hashing bucket count is below the threshold cannot be frequent.

- Transaction reduction:
- A transaction that does not contain any frequent k-itemset is useless in subsequent scans

- Partitioning:
- Any itemset that is potentially frequent in DB must be frequent in at least one of the partitions of DB.

Methods to Improve Apriori's Efficiency

• Sampling:

- mining on a subset of given data,
- lower support threshold
- add a method to determine the completeness

- Dynamic itemset counting:
- add new candidate itemsets only when all of their subsets are estimated to be frequent

Mining Frequent Patterns Without Candidate Generation

- **Compress** a large database into a compact,
- Frequent-Pattern tree (FP-tree) structure
 - highly condensed, but complete for frequent pattern mining
 - avoid costly database scans
- Develop an efficient, FP-tree-based frequent pattern mining method
 - A divide-and-conquer methodology: decompose mining tasks into smaller ones
 - Avoid candidate generation:

sub-database test only!

Why Frequent Pattern Growth Method?

- Performance study shows
 - FP-growth is an order of magnitude faster than Apriori, and is also faster than tree-projection
- Reasoning
 - No candidate generation, no candidate test
 - Use **compact** data structure
 - Eliminate repeated database scan
 - Basic **operation** is **counting** and **FP-tree** building

Association Analysis: Basic Concepts

• **Given: a** database of transactions, where each transaction is a list of items

- Find: <u>all rules that associate the presence of</u> one set of items with that of another set of items
- Example

98% of people who purchase tires and auto accessories also get automotive services done

Appriori Process: Rules Generation

- Appriori Algorithm stops after the First Step
- Second Step in the Appriori Proces (item-sets generation AND rules generation) is the rules generation:
- We calculate, from the frequent item-sets a set of the strong rules
- Strong rules: rules with at least minimum support (low) and minimum confidence (high)
- Apriori Process is then finished .

Apriori Process Rules Generation

- The Apriori Process problem is:
- How do we form the association rules
 A =>B from the frequent item sets?

 Remember: A, B are disjoint subsets of the set
 I of items in general, and of the set 2frequent, 3-frequent item sets etc, ... as generated by the Apriori Algorithm

Association Rules

• Rule **general** form:

"Body \rightarrow Head [support, confidence]" Rule **Predicate** form: buys(x, "diapers") \rightarrow buys(x, "beer") [0.5%, 60%] major(x, "CS") ^ takes(x, "DB") \rightarrow grade(x, "A") [1%, 75%]

Rule **Attribute** form:

Diapers \rightarrow beer [1%, 75%]

Apriori Process

- Given a data base D of TRANSACTIONS
- Goal: Find Association Rules
- We follow the **steps**
- **STEP 1**: **Count** occurrences of items in **D**
- **STEP2:** Fix Minimum support (usually low)
- **STEP 3:** Calculate all **frequent k-item** sets
- STEP 4: STOP when there is no more frequent item sets
- This is the END of Apriori Algorithm phase

- Rules Generation phase
- **STEP 5:** Fix the minimum confidence (usually high)
- STEP 6: Generate strong rules (support >min support and confidence> min confidence)
- END of rules generation phase
- END of the Apriori Process

Generate requent i-item Sets

- How to generate all frequent i-item sets
- FIRST: Calculate frequent 1-item sets
- SECOND: use the frequent (i-1)-item sets to generate all i-item set candidates
- THIRD : use Apriori Principle to PRUNE the candidates set
- FOUR: Evaluate the count of the pruned set and list the frequent i-item sets

FIVE: repeat the procedure and STOP when there is no more frequent item sets

Mining Association Rules in Large Databases

- Mining single-dimensional association rules from transactional databases
- Mining multi-dimensional association rules from transactional databases and data bases (warehouse)
- Mining multilevel association rules from transactional databases

Single and Multidimensional Rules

- Single-dimensional rules:
- buys(X, "milk") ⇒ buys(X, "bread")
- Multi-dimensional rules: Involve 2 or more dimensions or predicates
 - Inter-dimension association rules (*no repeated predicates*)

 age(X, "19-25") ∧ occupation(X, "student") ⇒ buys(X, "coke") Multi-Dimensional Association Rules

Hybrid-dimension association rules (repeated predicates)

 age(X, "19-25") ∧ buys(X, "popcorn") ⇒ buys(X, "coke")

- Categorical (qualitative) Attributes
 - finite number of possible values, no ordering among values
- Quantitative Attributes
 - numeric, implicit ordering among values

Mining Multi-Dimensional Association

- Categorical Attributes:
- finite number of possible values, no ordering among values
- Quantitative Attributes:
- Numeric, implicit ordering among values
- Discretization, clustering:
- Numeric values are replaced by ranges or names

Mining Multi-Level Associations

- A top down, progressive deepening approach:
 - First find high-level strong rules:
 - milk → bread [20%, 60%] Then find their lower-level "weaker" rules: 2% milk \rightarrow wheat bread [6%, 50%]
- Variations at mining multiple-level association rules.
 - Level-crossed association rules:

2% milk → Wonder wheat bread

 Association rules with multiple, alternative hierarchies:

2% milk → Wonder bread

Problem: Classification by Association

1. Use TRAIN data to find the set of classification rules using the Apriori Algorithm

2. **Test** the rules with the TEST Data

Use 2 different testing Method of your choice and compare the results TRAIN DATA

Record	A1	A2	С
1	1	1	1
2	0	0	0
3	0	1	0
4	0	0	0
5	1	1	1
6	1	1	0
7	0	0	0
8	1	0	1

Transactional Data and Support calculations

	l1 (A1 =0)	l2(A1 = 1)	I3(A2 = 0)	I4(A2= 1)	15(C=0)	l6(C=1)
1		+		+		+
2	+		+		+	
3	+			+	+	
4	+		+		+	
5		+		+		+
6		+		+	+	
7	+		+		+	
8		+	+			+
Count	4	4	4	4	5	3

Let the minimum support count = 3

L1:

ltem sçet	Support Count
11	4
12	4
13	4
14	4
15	5
16	3

Candidate two item sets :

Item Set	Support Count
1,2	0
1,3	3
1,4	1
1,5	4
1,6	0
2,3	1
2,4	3
2,5	1
2,6	0
3,4	3
3,5	1
3,6	2
4,5	2
4,6	0

Classification by Association

Frequent 2 item set :

Item Set	Support Count
1,3	3
1,5	4
2,4	3
2,6	3
3,5	3

Classification by Association

Candidate 3 item set :

Item Set	Support Count
1,3,5	3
2,4,6	1

Classification by Association

Frequent 3 item Set :

١	Item set	Support Count
	1,3,5	3

$L = \{(1,5), (2,6), (3,5), (1,3,5)\}$

This is the set used to find the classification rules by association Write Rules in **PREDICATE form**

Don't forget to FIX and calculate Confidence and Support!

Testing :

Record	A1	A2	Test Data Class	Rules assigned class	Correctly classified
1	1	1	1	1	Yes
2	1	0	0	?	No
3	0	0	1	0	No
4	1	0	0	0	Yes

Predictive accuracy = 2/4 * 100 = 50 %