Cse634
DATA MINING

SHORT MID 2 REVIEW

Professor Anita Wasilewska
Computer Science Department
Stony Brook University
Association and Genetic Algorithms

• Describe the Apriori Algorithm and Association Analysis
• Describe all types of Association Rules and methods of obtaining them
• Discuss types of Association Analysis applications
• Describe classification by Association and compare it with the classification by Decision Trees or Neural Network
• Discuss types of Classification by Association applications
Association and Genetic Algorithms

- Describe principles of Genetic Algorithms
- Give examples of chromosomes encoding
- Describe GA operators and parameters
- Describe the role of fitness function
- Describe GA Reproduction Cycle
- Discuss types of GA applications
- Compare classification by GA with NN and DT classifications
The Apriori Algorithm

- Apriori Algorithm

The algorithm Iteratively **finds** frequent itemsets with cardinality from 1 to k (k-itemset)

Key Concepts:
- Frequent Itemsets
- Apriori Property

- As the next step in the **Apriori Process**

 we use the frequent itemsets to generate association rules
The Apriori Algorithm: Basics

Key Concepts:
Frequent Itemsets
• The sets of item which has minimum support (denoted by \(L_i \) for \(i^{th} \)-Itemset)

• Apriori Property
• Any subset of frequent itemset must be frequent

• Join Operation
• To find \(L_k \), a set of candidate \(k \)-itemsets is generated by joining \(L_{k-1} \) with itself.
The Apriori Algorithm: Pseudo code

• Join Step: \(C_k \) is generated by joining \(L_{k-1} \) with itself
• Prune Step: Any \((k-1)\)-itemset that is not frequent cannot be a subset of a frequent \(k \)-itemset

• Pseudo-code:
 \(C_k \): Candidate itemset of size \(k \)
 \(L_k \): frequent itemset of size \(k \)

\[
L_1 = \{\text{frequent items}\}; \\
\text{for } (k = 1; L_k \neq \emptyset; k++) \text{ do begin} \\
\quad C_{k+1} = \text{candidates generated from } L_k; \\
\quad \text{for each transaction } t \text{ in database do} \\
\quad \quad \text{increment the count of all candidates in } C_{k+1} \\
\quad \quad \quad \text{that are contained in } t \\
\quad L_{k+1} = \text{candidates in } C_{k+1} \text{ with min_support} \\
\text{end} \\
\text{return } \bigcup_k L_k;
\]
Methods to Improve Apriori’s Efficiency

• Hash-based itemset counting:
 • A k-itemset whose corresponding hashing bucket count is below the threshold cannot be frequent.

• Transaction reduction:
 • A transaction that does not contain any frequent k-itemset is useless in subsequent scans

• Partitioning:
 • Any itemset that is potentially frequent in DB must be frequent in at least one of the partitions of DB.
Methods to Improve Apriori’s Efficiency

• **Sampling:**
 - mining on a *subset* of given data,
 - *lower* support threshold
 - add a method to determine the *completeness*

• **Dynamic itemset counting:**
 - add new candidate *itemsets only* when all of their *subsets* are estimated to be *frequent*
Mining Frequent Patterns
Without Candidate Generation

• **Compress** a large database into a compact,
• **Frequent-Pattern tree (FP-tree) structure**
 – *highly condensed*, but complete for frequent pattern mining
 – *avoid costly database scans*
• **Develop** an **efficient, FP-tree-based** frequent pattern mining method
 – A divide-and-conquer methodology: decompose mining tasks into smaller ones
 – **Avoid candidate generation:**
 sub-database test only!
Why Frequent Pattern Growth Method?

• Performance study shows
 – FP-growth is an order of magnitude faster than Apriori, and is also faster than tree-projection

• Reasoning
 – No candidate generation, no candidate test
 – Use compact data structure
 – Eliminate repeated database scan
 – Basic operation is counting and FP-tree building
Association Analysis: Basic Concepts

• **Given:** a database of transactions, where each transaction is a list of items

• **Find:** all rules that associate the presence of one set of items with that of another set of items

• **Example**

 98% of people who purchase tires and auto accessories also get automotive services done
Appriori Process: Rules Generation

• **Appriori Algorithm** stops after the First Step
• Second Step in the **Appriori Process** (item-sets generation AND rules generation) is the rules generation:
 • We calculate, from the frequent item-sets a set of the **strong rules**
 • **Strong rules**: rules with at least minimum support (low) and minimum confidence (high)
• **Apriori Process** is then finished.
Apriori Process
Rules Generation

• The Apriori Process problem is:
• How do we form the association rules (A => B) from the frequent item sets?

• Remember: A, B are disjoint subsets of the set I of items in general, and of the set 2-frequent, 3-frequent item sets etc, ... as generated by the Apriori Algorithm
Association Rules

- **Rule general form:**

 “Body \rightarrow Head [support, confidence]”

- **Rule Predicate form:**

 buys(x, “diapers”) \rightarrow buys(x, “beer”)
 [0.5%, 60%]

 major(x, “CS”) \land takes(x, “DB”) \rightarrow grade(x, “A”)
 [1%, 75%]

- **Rule Attribute form:**

 Diapers \rightarrow beer [1%, 75%]
Apriori Process

- Given a **data base D** of TRANSACTIONS
- **Goal:** Find Association Rules
- We follow the **steps**
- **STEP 1:** **Count** occurrences of items in D
- **STEP 2:** Fix Minimum support (usually **low**)
- **STEP 3:** Calculate frequent 1-item sets
- **STEP 4:** Calculate frequent 2-item sets, etc..
- **STEP 5:** Calculate frequent k-item sets
- **STOP** when **there is no more frequent item** sets
- This is the **end of Apriori Algorithm** phase
Apriori Process

• **How to** generate all frequent i-item sets
• **FIRST:** use the frequent (i-1)-item sets to **generate** all i-item set **candidates**
• **SECOND:** use **Apriori Principle** to **prune** the candidates set
• **THIRD:** **Evaluate** the count of the pruned set
• **FOUR:** list the frequent i-item sets
• **STEP 6:** repeat the procedure and
• **STOP** when there is no more frequent item sets
• **END** of Apriori Algorithm
Apriori Process

- **Apriori Process Steps:**

- **STEP 7:** Fix the *minimum* confidence (usually *high*)

- **STEP 8:** Generate *strong rules* (support > min support and confidence > min confidence)

- **END** of rules generation phase

- **END** of the *Apriori Process*
Mining Association Rules in Large Databases

- Mining **single-dimensional** association rules from transactional databases

- Mining **multi-dimensional** association rules from transactional databases and data bases (warehouse)

- Mining **multilevel association rules** from transactional databases
Single and Multidimensional Rules

• Single-dimensional rules:

 • buys(X, “milk”) \(\Rightarrow\) buys(X, “bread”)

• Multi-dimensional rules: Involve 2 or more dimensions or predicates

 – Inter-dimension association rules (no repeated predicates)

 • age(X,”19-25”) \(\land\) occupation(X,”student”) \(\Rightarrow\) buys(X,”coke”)
Multi-Dimensional Association Rules

Hybrid-dimension association rules (repeated predicates)

- \[\text{age}(X, "19-25") \land \text{buys}(X, "popcorn") \Rightarrow \text{buys}(X, "coke") \]

- **Categorical (qualitative) Attributes**
 - finite number of possible values, no ordering among values

- **Quantitative Attributes**
 - numeric, implicit ordering among values
Mining Multi-Dimensional Association

• Categorical Attributes:
 • finite number of possible values, no ordering among values

• Quantitative Attributes:
 • Numeric, implicit ordering among values
 • Discretization, clustering:
 • Numeric values are replaced by ranges or names

• In relational database
 • finding all frequent k-predicate sets will require k or $k+1$ table scans
Mining Multi-Level Associations

• A top_down, progressive deepening approach:
 – First find high-level strong rules:
 \[\text{milk} \rightarrow \text{bread} \ [20\%, \ 60\%] \]
 – Then find their lower-level “weaker” rules:
 \[2\% \text{ milk} \rightarrow \text{wheat bread} \ [6\%, \ 50\%] \]

• Variations at mining multiple-level association rules.
 – Level-crossed association rules:
 \[2\% \text{ milk} \rightarrow \text{Wonder wheat bread} \]
 – Association rules with multiple, alternative hierarchies:
 \[2\% \text{ milk} \rightarrow \text{Wonder bread} \]
Problem: Classification by Association

1. Use TRAIN data to find the set of classification rules using the Apriori Algorithm
2. Test the rules with the TEST Data
 Use 2 different testing Method of your choice and compare the results

<table>
<thead>
<tr>
<th>Record</th>
<th>A1</th>
<th>A2</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Transactional Data and Support calculations

<table>
<thead>
<tr>
<th></th>
<th>I1 (A1 = 0)</th>
<th>I2 (A1 = 1)</th>
<th>I3 (A2 = 0)</th>
<th>I4 (A2 = 1)</th>
<th>I5 (C=0)</th>
<th>I6 (C=1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>2</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>3</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Count</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>3</td>
</tr>
</tbody>
</table>
Let the **minimum support count** = 3

L1:

<table>
<thead>
<tr>
<th>Item set</th>
<th>Support Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>I1</td>
<td>4</td>
</tr>
<tr>
<td>I2</td>
<td>4</td>
</tr>
<tr>
<td>I3</td>
<td>4</td>
</tr>
<tr>
<td>I4</td>
<td>4</td>
</tr>
<tr>
<td>I5</td>
<td>5</td>
</tr>
<tr>
<td>I6</td>
<td>3</td>
</tr>
</tbody>
</table>
Candidate two item sets:

<table>
<thead>
<tr>
<th>Item Set</th>
<th>Support Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,2</td>
<td>0</td>
</tr>
<tr>
<td>1,3</td>
<td>3</td>
</tr>
<tr>
<td>1,4</td>
<td>1</td>
</tr>
<tr>
<td>1,5</td>
<td>4</td>
</tr>
<tr>
<td>1,6</td>
<td>0</td>
</tr>
<tr>
<td>2,3</td>
<td>1</td>
</tr>
<tr>
<td>2,4</td>
<td>3</td>
</tr>
<tr>
<td>2,5</td>
<td>1</td>
</tr>
<tr>
<td>2,6</td>
<td>0</td>
</tr>
<tr>
<td>3,4</td>
<td>3</td>
</tr>
<tr>
<td>3,5</td>
<td>1</td>
</tr>
<tr>
<td>3,6</td>
<td>2</td>
</tr>
<tr>
<td>4,5</td>
<td>2</td>
</tr>
<tr>
<td>4,6</td>
<td>0</td>
</tr>
</tbody>
</table>
Classification by Association

Frequent 2 item set:

<table>
<thead>
<tr>
<th>Item Set</th>
<th>Support Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,3</td>
<td>3</td>
</tr>
<tr>
<td>1,5</td>
<td>4</td>
</tr>
<tr>
<td>2,4</td>
<td>3</td>
</tr>
<tr>
<td>2,6</td>
<td>3</td>
</tr>
<tr>
<td>3,5</td>
<td>3</td>
</tr>
</tbody>
</table>
Classification by Association

Candidate 3 item set:

<table>
<thead>
<tr>
<th>Item Set</th>
<th>Support Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,3,5</td>
<td>3</td>
</tr>
<tr>
<td>2,4,6</td>
<td>1</td>
</tr>
</tbody>
</table>
Classification by Association

Frequent 3 item Set:

<table>
<thead>
<tr>
<th>Item set</th>
<th>Support Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,3,5</td>
<td>3</td>
</tr>
</tbody>
</table>

$L = \{(1,5),(2,6),(3,5),(1,3,5)\}$

This is the set used to find the classification rules by association

Write Rules in **PREDICATE** form

Don’t forget to FIX and calculate Confidence and Support!
Testing:

<table>
<thead>
<tr>
<th>Record</th>
<th>A1</th>
<th>A2</th>
<th>Test Data Class</th>
<th>Rules assigned class</th>
<th>Correctly classified</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Yes</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>?</td>
<td>No</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>No</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Predictive accuracy = \(\frac{2}{4} \times 100 = 50\% \)