

CLUSTERING

CSE 634 Data Mining Prof. Anita Wasilewska

REFERENCES

1. K-medoids:

https://www.coursera.org/learn/cluster-analysis/lecture/nJ0Sb/3-4-the-k-medoids-clustering-method

https://anuradhasrinivas.files.wordpress.com/2013/04/lesson8-clustering.pdf

2. K-means:

https://www.datascience.com/blog/k-means-clustering

https://en.wikipedia.org/wiki/Elbow_method_(clustering)

3. CLARA:

http://www.sthda.com/english/articles/27-partitioning-clustering-essentials/89-clara-clustering-

large-applications/

4. Book:

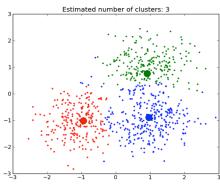
Data Mining Concepts and Techniques, Jiawei Han, Micheline Kamber ,Morgan Kaufman ,2011 Chapter : 10, Page: 445-454 PART 1

OVERVIEW

- ✤ What is clustering?
- Similarity Measures
- Requirements of good clustering algorithm
- ✤ K-mean clustering
- K-medoids clustering PAM
- K-medoids clustering CLARA
- Applications of K-means and K-medoids

WHAT IS CLUSTERING ?

- A way of grouping together data samples that are *similar* in some way - according to some criteria that you pick.
- ✤ A form of *unsupervised learning*
- It can also be called a method of *data exploration*.



SIMILARITY MEASURES

- A *good clustering* method will produce high quality clusters with
 1.high <u>intra-class</u> similarity
- 2.low inter-class similarity
 - The *quality* of a clustering result depends on:
- 1. similarity measure used by the method and its implementation.
- 2. its ability to discover some or all of the hidden patterns.

REQUIREMENTS OF GOOD CLUSTERING ALGORITHM

- Scalability
- Discovery of clusters with arbitrary shape
- Able to deal with noise and outliers
- Insensitive to order of input records
- High dimensionality
- Incorporation of user-specified constraints

CLUSTERING ALGORITHMS

1.K-Means

2.K-medoids

2.1 Basic K-medoids 2.2 PAM 2.3 CLARA

K-MEANS CLUSTERING

- First used by James Mcqueen in 1967
- Unsupervised Learning
- Goal : Find the groups in the given data where no of groups is denoted by K
- Groups made on Feature similarity
- Results expected:
 - Centroids used to label data
 - Labels for training data
- Uses : Behavioral segmentation, Inventory categorization, Sorting sensor measurements

K-MEANS PROCESS

✤ Input

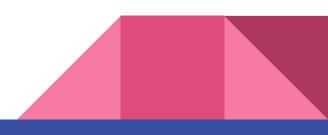
- ➤ Data set
- ➤ K i.e no of clusters

✤ Data Assignment Step

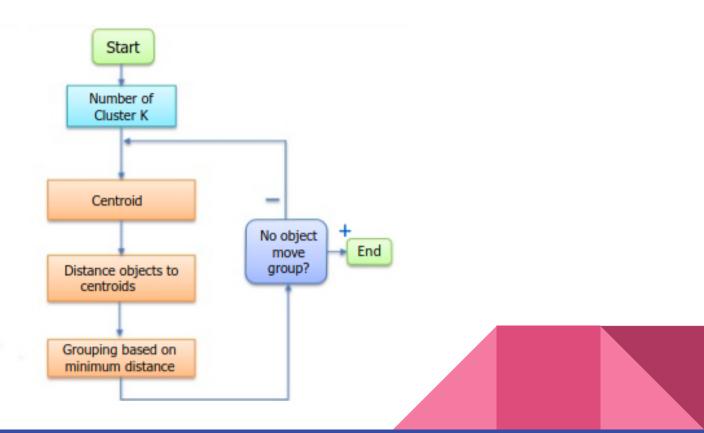
- Each centroid represents one cluster
- Each data point is assigned to its nearest cluster based on squared
 Euclidean distance

✤ <u>Centroid Update Step</u>

- Recompute the centroids by taking the mean of the data points assigned to that particular centroid
- The algorithms repeats the two steps until end condition is met:
 - > No change in clusters



K-MEANS PROCESS



K-MEANS ALGORITHM

Input : K (No of Clusters to form) and Input Data Set

Initialize: Randomly assign K cluster centroids μ_1 , μ_2 , $\mu_{K} \in \mathbb{R}^n$

Repeat{

for i = 1 to m

c⁽ⁱ⁾:=index(1 to K) of cluster centroid closest to x⁽ⁱ⁾(datapoint)

for k = 1 to K

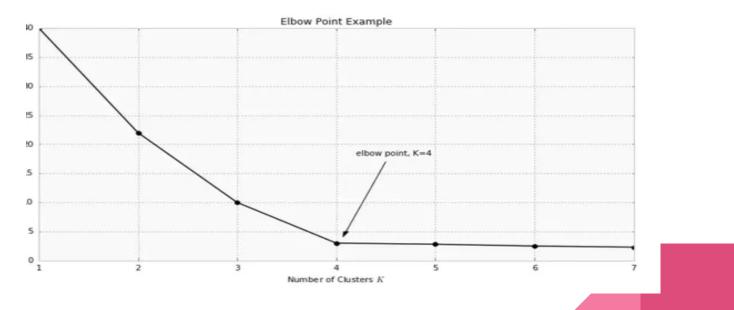
 μ_{K} :=average mean of points assigned to cluster K

} Stop when convergence criteria is meet.

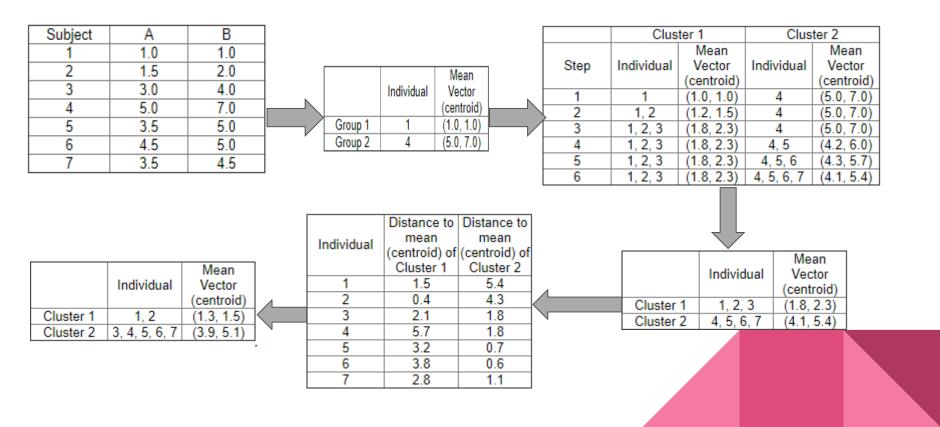
CHOOSING NUMBER OF CLUSTERS K

Elbow- Join method

> Metric used is mean distance between data points and their cluster centroid.

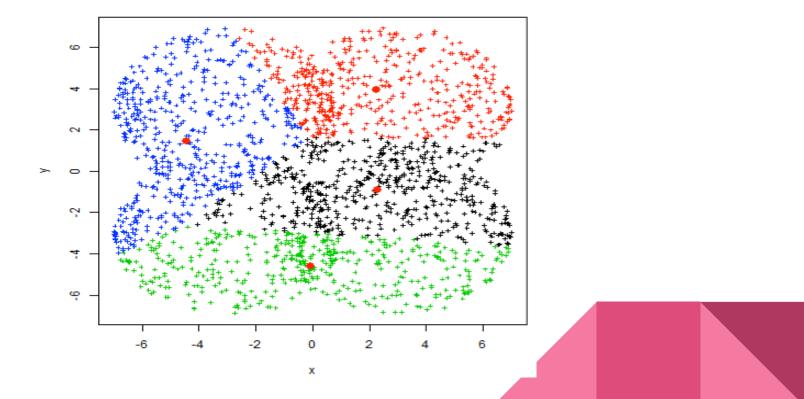


K-MEANS EXAMPLE



K-MEANS EXAMPLE

K Means Clustering



ADVANTAGES AND DISADVANTAGES

Advantages

- 1. Easyto implement.
- 2. With a large number of variables, K-Means may be computationally faster than hierarchical clustering (if K is small)

Disadvantages

- 1. Difficult to predict the number of clusters (K-Value).
- 2. Can converge on local minima
- 3. Sensitive to outliers

K-MEDOIDS CLUSTERING

The mean in k-means clustering is sensitive to outliers. Since an object with an extremely high value may substantially distort the distribution of data.

Hence we move to k-medoids.

Instead of taking mean of cluster we take the most centrally located point in cluster as it's center.

These are called medoids.

K-MEANS & K-MEDOIDS Clustering- Outliers Comparison

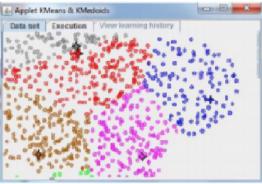


Fig.6 Outliers in K-Means

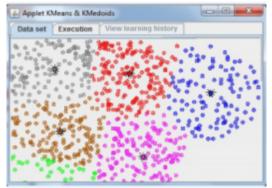
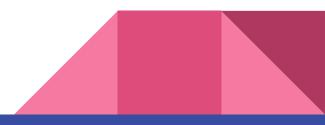


Fig.7 Outliers in K-Medoids



K-MEDOIDS - BASIC ALGORITHM

Input : Number of K (the clusters to form)

Initialize:

Select K points as the initial representative objects i.e initial K-medoids of our K clusters.

Repeat:

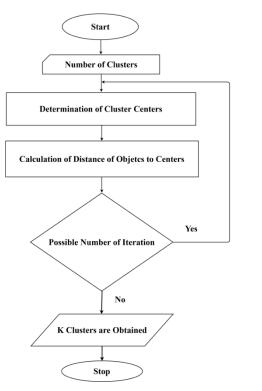
Assign each point to the cluster with the closest medoid m. Randomly select a non-representative object o_i Compute the total cost of **swapping** S, the medoid m with o_i If S < 0:

Swap m with o_i to form new set of medoids.

Stop when convergence criteria is meet.

https://www.coursera.org/learn/cluster-analysis/lecture/nJ0Sb/3-4-the-k-medoids-clustering-method

K-MEDOIDS - BASIC FIOWCHART



https://www.researchgate.net/figure/Flowchart-of-K-means-algorithm_fig1_314078156

K-MEDOIDS - PAM ALGORITHM

PAM stands for Partitioning Around Medoids.

GOAL: To find Clusters that have minimum average dissimilarity between objects that belong to same cluster.

ALGORITHM:

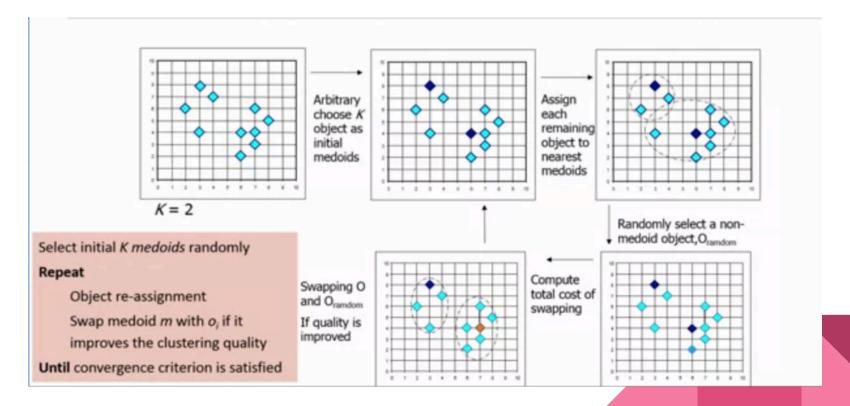
- 1. Start with initial set of medoids.
- 2. Iteratively replace one of the medoids with a non-medoid if it reduces total sum of SSE of resulting cluster.

SSE is calculated as below:

 $SSE(X) = \sum_{i=1}^{K} \sum_{x \in C_i} dist^2(m_i, x)$

Where k is number of clusters and x is a data point in cluster C_i and M_i is medoid of C_i

TYPICAL PAM EXAMPLE



https://www.coursera.org/learn/cluster-analysis/lecture/nJ0Sb/3-4-the-k-medoids-clustering-method

Data Objects

	A ₁	A ₂
O ₁	2	6
O ₂	3	4
O ₃	3	8
O ₄	4	7
O ₅	6	2
O ₆	6	4
O ₇	7	3
O ₈	7	4
O 9	8	5
O ₁₀	7	6

For K = 2

Randomly Select m1 = (3,4) and m2 =(7,4)

Using Manhattan as similarity metric we get,

C1 = (01, 02, 03, 04)

C2 = (05, 06, 07, 08, 09, 010)

Data	ı Obj∉	ects	Compute absolute error as follows,
	A ₁	A ₂	E = (01-02) + (03-02) + (04-02)
O ₁	2	6	
02	3	4	+
O ₃	3	8	(05-08) +(06-08)+(07-08) +(09-08) + (010-08)
O ₄	4	7	
O ₅	6	2	E = (3+4+4) + (3+1+1+2+2)
O ₆	6	4	
O ₇	7	3	Therefore,
O ₈	7	4	
O 9	8	5	E = 20
O ₁₀	7	6	

Data Objects				
	A ₁	A ₂		
O ₁	2	6		
O ₂	3	4		
O ₃	3	8		
O ₄	4	7		
O ₅	6	2		
O ₆	6	4		
O ₇	7	3		
O ₈	7	4		
O ₉	8	5		
O ₁₀	7	6		

Swapping o8 with o7

Compute absolute error as follows,

E = (01-02) + (03-02) + (04-02)

+

(05-07) +(06-07) +(08-07) +(09-07) + (010-07)

 $\mathsf{E} = (3+4+4) + (2+2+1+3+3)$

Therefore,

E = 22

Data Objects

	A ₁	A ₂
O ₁	2	6
O ₂	3	4
O ₃	3	8
O ₄	4	7
O ₅	6	2
O ₆	6	4
O ₇	7	3
O ₈	7	4
O 9	8	5
O ₁₀	7	6

Let's now calculate cost function S for this swap, S = E for (o2,07) - E for (o2, o8) S = 22-20Therefore S > 0,

This swap is undesirable.

ADVANTAGES and DISADVANTAGES of PAM

Advantages:

PAM is more flexible as it can use any similarity measure. PAM is more robust than k-means as it handles noise better.

Disadvantages:

PAM algorithm for K-medoid clustering works well for dataset but cannot scale well for large data set due to high computational overhead.

PAM COMPLEXITY : $O(k(n-k)^2)$ this is because we compute distance of n-k points with each k point, to decide in which cluster it will fall and after this we try to replace each of the medoid with a non medoid and find it's distance with n-k points.

To overcome this we make use of CLARA.

CLARA - CLUSTERING LARGE APPLICATIONS

- Improvement over PAM
- Finds medoids in a sample from the dataset

[Idea]: If the samples are sufficiently random, the medoids of the sample approximate the medoids of the dataset

[Heuristics]: 5 samples of size 40+2k gives satisfactory results

• Works well for large datasets (n=1000, k=10)

CLARA ALGORITHM

- 1. Split randomly the data sets in multiple subsets with fixed size (sampsize)
- Compute PAM algorithm on each subset and choose the corresponding k representative objects (medoids). Assign each observation of the entire data set to the closest medoid.
- 3. Calculate the mean (or the sum) of the dissimilarities of the observations to their closest medoid. This is used as a measure of the goodness of the clustering.
- 4. Retain the sub-dataset for which the mean (or sum) is minimal. A further analysis is carried out on the final partition.

http://www.sthda.com/english/articles/27-partitioning-clustering-essentials/89-clara-clustering-large-applications/

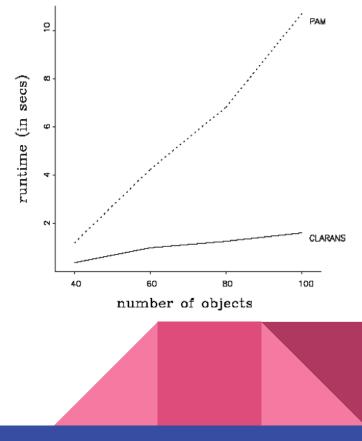
COMPARISON CLARA vs PAM

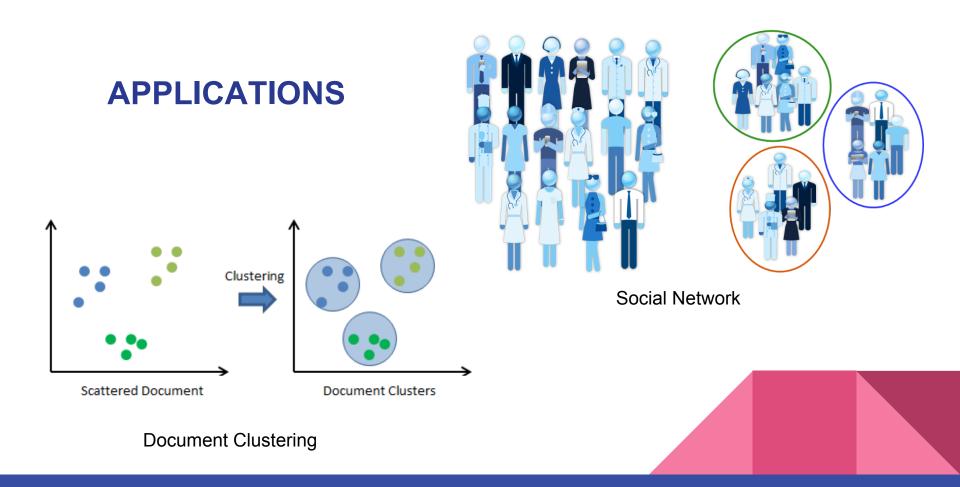
Strength:

- deals with larger data sets than PAM
- CLARA Outperforms PAM in terms of running time and quality of clustering

Weakness:

- Efficiency depends on the sample size
- A good clustering based on samples will not necessarily represent a good clustering of the whole





GENERAL APPLICATIONS OF CLUSTERING

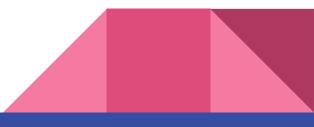
- 1. Recognition
- 2. Spatial Data Analysis
 - a. create thematic maps in GIS by clustering feature spaces
 - b. detect spatial clusters and explain them in spatial data mining
- 1. Image Processing
- 2. Economic Science (especially market research)
- 3. WWW
 - a. Document classification
 - b. Cluster Weblog data to discover groups of similar access patterns

PART 2

TRAFFIC ANOMALY DETECTION USING K-MEANS CLUSTERING

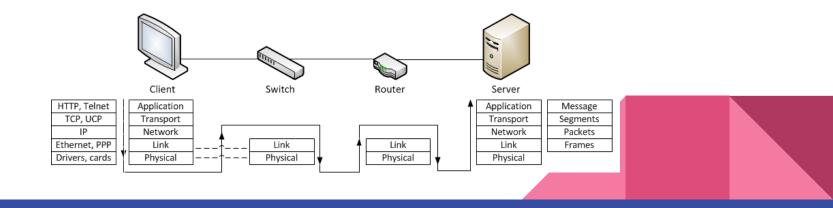
Authors: Gerhard Munz, Sa Li, Georg Carle, Computer Networks and Internet, Wilhelm Schickard Institute for Computer Science, University of Tuebingen, Germany

Published in GI/ITG Workshop MMBnet, 2007.



NETWORK DATA MINING

- Knowledge about monitoring data. Helps in determining dominant characteristics and outliers.
- Deployed to define rules or patterns that are typical for specific kinds of traffic helps to analyze new sets of monitoring data(labeling).



NOVEL NDM APPROACH

K-means clustering of monitoring data

Aggregate and transform flow records into datasets for equally spaced time intervals

- Raw Data and Extracted Features
 - > Total number of packets sent
 - \succ Total number of bytes sent
 - > Number of different source-destination pairs

- ✤ K-means Clustering
 - > Distance metric used is

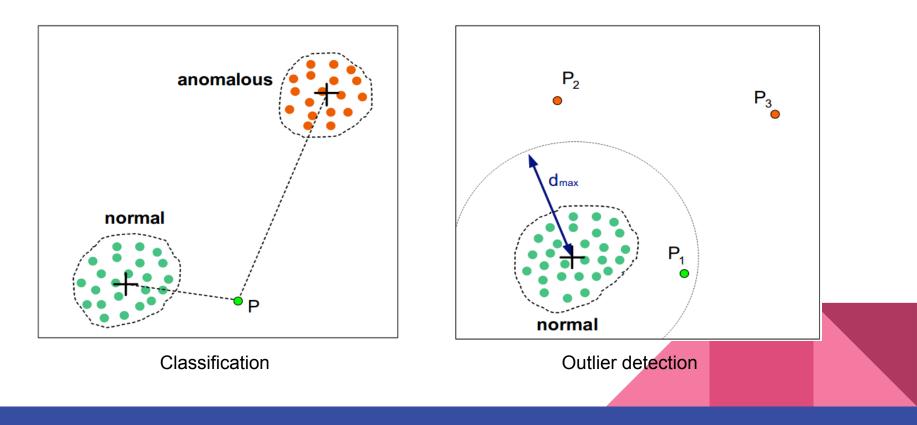
$$d(x,y) = \sqrt{\sum_{i=1}^{m} \left(\frac{x_i - y_i}{s_i}\right)^2}$$

 s_i is an empirical normalization

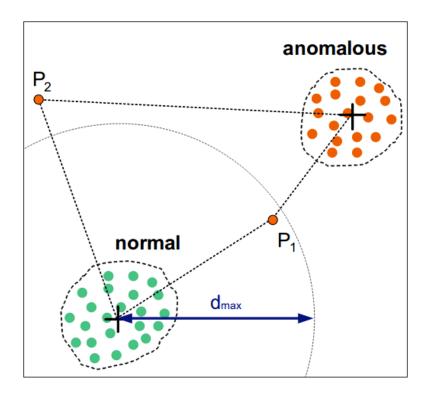
$$s_{packets} = s_{bytes} = 5$$
 $s_{src-dst} = 1.$



CLASSIFICATION AND OUTLIER DETECTION

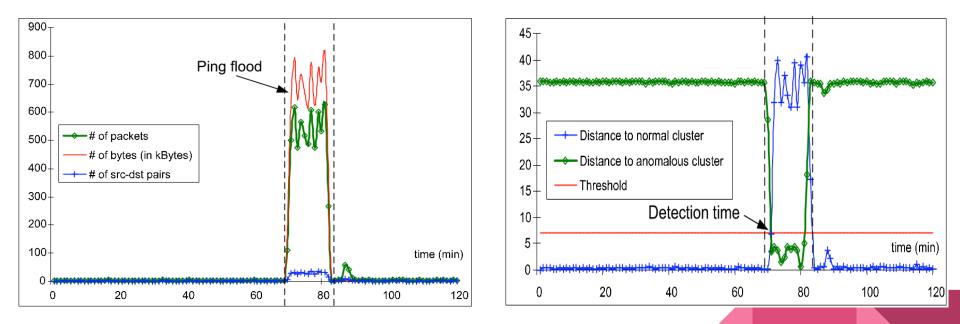


CLASSIFICATION AND OUTLIER DETECTION



Combined approach

RESULTS : PING FLOOD DETECTION



CONCLUSIONS

- The resulting cluster centroids can be used to detect anomalies in new on-line monitoring data with a small number of distance calculations.
- Applying the clustering algorithm separately for different services improves the detection quality.
- The algorithm is scalable.
- Optimum number of clusters K is difficult to decide.

