cse634
Data Mining

Chapter 6: Classification
Introduction

Professor Anita Wasilewska
Computer Science Department
Stony Brook University
Classification

• **PART 1:**
 - Classification = Supervised Learning
 - Building a Classifier

• **PART 2:** Classification Algorithms
 (Models, Basic Classifiers)

• **PART 3:** Classification by Association

• **PART 4:** Other Classification Methods
Part 1: Classification

Introduction

• Supervised learning = Classification
• Data format: training and test data
• Class definitions and class descriptions
• Rules learned: characteristic and discriminant
• Classification process = building a classifier
Part 1: Classification

- Supervised learning = Classification
- Building a Classifier: Training and Testing
- Evaluating predictive accuracy
- the most common methods
- Unsupervised learning = Clustering
Classification Algorithms
(Models, Basic Classifiers)

Part 2:
• Decision Trees (ID3, C4.5) – descriptive
• Neural Networks - statistical
• Bayesian Networks - statistical
• Rough Sets - descriptive
• Genetic Algorithms – descriptive or statistical- but mainly an optimization method

Part 3: Classification by Association - descriptive
Part 3: Other Classification Methods

- **k-nearest** neighbor classifier
- Case-based reasoning
- **Support Vector Machines**
- **Fuzzy** sets approaches
Classification Data Format

- Classification Data Format:
- A data table with key attribute removed
- A special attribute, called a class attribute must be distinguished
- The values of the class attribute are called class labels
- The class labels are discrete-valued and unordered.
- Class attributes are categorical in that each value serves as a category, or a class
Classification Data Format

• The records in the classification data are called data tuples with their associated class labels

• It means that we distinguish in a record its attribute part and class part

• The attribute part is called data tuple, or attribute vector, data vector, sample, example, instance, data point (with associate label)
Classification Data Example

- **Example:** Data Table with class attribute C

<table>
<thead>
<tr>
<th>Rec</th>
<th>a1</th>
<th>a2</th>
<th>a3</th>
<th>a4</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>o1</td>
<td>1</td>
<td>1</td>
<td>m</td>
<td>g</td>
<td>c1</td>
</tr>
<tr>
<td>o2</td>
<td>0</td>
<td>1</td>
<td>v</td>
<td>g</td>
<td>c2</td>
</tr>
<tr>
<td>o3</td>
<td>1</td>
<td>0</td>
<td>m</td>
<td>b</td>
<td>c1</td>
</tr>
</tbody>
</table>

- **This data** consists of *tuples* (examples, instances):
 - o1 = (1, 1, m, g) with the **class label** c1
 - o2 = (0, 1, v, g) with the **class label** c2
 - o3 = (1, 0, m, b) with the **class label** c1
Classification Data 1

- **Classification Data Format:** a data table with key attribute removed.
- **Special attribute**, called a **class attribute** is: **buys_computer**

<table>
<thead>
<tr>
<th>age</th>
<th>income</th>
<th>student</th>
<th>credit_rating</th>
<th>buys_computer</th>
</tr>
</thead>
<tbody>
<tr>
<td><=30</td>
<td>high</td>
<td>no</td>
<td>fair</td>
<td>no</td>
</tr>
<tr>
<td><=30</td>
<td>high</td>
<td>no</td>
<td>excellent</td>
<td>no</td>
</tr>
<tr>
<td>30...40</td>
<td>high</td>
<td>no</td>
<td>fair</td>
<td>yes</td>
</tr>
<tr>
<td>>40</td>
<td>medium</td>
<td>no</td>
<td>fair</td>
<td>yes</td>
</tr>
<tr>
<td>>40</td>
<td>low</td>
<td>yes</td>
<td>fair</td>
<td>yes</td>
</tr>
<tr>
<td>>40</td>
<td>low</td>
<td>yes</td>
<td>excellent</td>
<td>no</td>
</tr>
<tr>
<td>31...40</td>
<td>low</td>
<td>yes</td>
<td>excellent</td>
<td>yes</td>
</tr>
<tr>
<td><=30</td>
<td>medium</td>
<td>no</td>
<td>fair</td>
<td>no</td>
</tr>
<tr>
<td><=30</td>
<td>low</td>
<td>yes</td>
<td>fair</td>
<td>yes</td>
</tr>
<tr>
<td>>40</td>
<td>medium</td>
<td>yes</td>
<td>fair</td>
<td>yes</td>
</tr>
<tr>
<td><=30</td>
<td>medium</td>
<td>yes</td>
<td>excellent</td>
<td>yes</td>
</tr>
<tr>
<td>31...40</td>
<td>medium</td>
<td>no</td>
<td>excellent</td>
<td>yes</td>
</tr>
<tr>
<td>31...40</td>
<td>high</td>
<td>yes</td>
<td>fair</td>
<td>yes</td>
</tr>
<tr>
<td>>40</td>
<td>medium</td>
<td>no</td>
<td>excellent</td>
<td>no</td>
</tr>
</tbody>
</table>
Classification Data 2
(with objects)

<table>
<thead>
<tr>
<th>rec</th>
<th>Age</th>
<th>Income</th>
<th>Student</th>
<th>Credit_rating</th>
<th>Buys_computer</th>
</tr>
</thead>
<tbody>
<tr>
<td>r1</td>
<td><=30</td>
<td>High</td>
<td>No</td>
<td>Fair</td>
<td>No</td>
</tr>
<tr>
<td>r2</td>
<td><=30</td>
<td>High</td>
<td>No</td>
<td>Excellent</td>
<td>No</td>
</tr>
<tr>
<td>r3</td>
<td>31...40</td>
<td>High</td>
<td>No</td>
<td>Fair</td>
<td>Yes</td>
</tr>
<tr>
<td>r4</td>
<td>>40</td>
<td>Medium</td>
<td>No</td>
<td>Fair</td>
<td>Yes</td>
</tr>
<tr>
<td>r5</td>
<td>>40</td>
<td>Low</td>
<td>Yes</td>
<td>Fair</td>
<td>Yes</td>
</tr>
<tr>
<td>r6</td>
<td>>40</td>
<td>Low</td>
<td>Yes</td>
<td>Excellent</td>
<td>No</td>
</tr>
<tr>
<td>r7</td>
<td>31...40</td>
<td>Low</td>
<td>Yes</td>
<td>Excellent</td>
<td>Yes</td>
</tr>
<tr>
<td>r8</td>
<td><=30</td>
<td>Medium</td>
<td>No</td>
<td>Fair</td>
<td>No</td>
</tr>
<tr>
<td>r9</td>
<td><=30</td>
<td>Low</td>
<td>Yes</td>
<td>Fair</td>
<td>Yes</td>
</tr>
<tr>
<td>r10</td>
<td>>40</td>
<td>Medium</td>
<td>Yes</td>
<td>Fair</td>
<td>Yes</td>
</tr>
<tr>
<td>r11</td>
<td><=30</td>
<td>Medium</td>
<td>Yes</td>
<td>Excellent</td>
<td>Yes</td>
</tr>
<tr>
<td>r12</td>
<td>31...40</td>
<td>Medium</td>
<td>No</td>
<td>Excellent</td>
<td>Yes</td>
</tr>
<tr>
<td>r13</td>
<td>31...40</td>
<td>High</td>
<td>Yes</td>
<td>Fair</td>
<td>Yes</td>
</tr>
<tr>
<td>r14</td>
<td>>40</td>
<td>Medium</td>
<td>No</td>
<td>Excellent</td>
<td>No</td>
</tr>
</tbody>
</table>
Class definitions

- **Syntactically** a class C is defined by the class attribute c and its value v.

- **Semantically** a class is defined as a subset of records.

- A description of a class C defined by the class attribute c and its value v is written as: $c = v$.
Classes Definition

• Given a class attribute C with attribute class values $c_1, c_2, \cdots c_k$

• Semantically, classes $C_1, C_2, \cdots C_k$ defined by the class values $c_1, c_2, \cdots c_k$

are sets of all records for which the class attribute C has a value c_i, respectively, i.e.

$C_1 = \{ r : C = c_1 \}$, \hspace{1cm} $C_2 = \{ r : C = c_2 \}$, \hspace{1cm}
Class and Class Description

- Example:
 Set of records $C = \{ r1, r2, r6, r8, r14 \}$ of the classification Data 2 on the previous slide is a class defined by the class attribute buys_computer and its value no.

The class $C = \{ r1, r2, r6, r8, r14 \}$ description is: buys_computer= no because $C = \{ r: \text{buys_computer}=\text{no} \}$.

$C = \{ r1, r2, r6, r8, r14 \}$ is a class defined by the class description buys_computer= no.
Class characteristics

Characteristics of a class \(C = \{ r : c = v \} \) is a set of a non-class attributes \(a_1, a_2, \ldots, a_k \) and their respective values \(v_1, v_2, \ldots, v_k \) such that the intersection of the set of all records for which \(a_1 = v_1 \) & \(a_2 = v_2 \) & \(\ldots \) \(a_k = v_k \) with the set \(C \) is not empty.

Characteristics of the class \(C \) are written as

\[a_1 = v_1 \ & a_2 = v_2 \ & \ldots \ & a_k = v_k \]
REMARK

A class C can have many characteristics, i.e. many characteristic descriptions.

Different classes can have (and often have) the same characteristics.
Characteristic Descriptions

Definition:
A formula \(a_1=v_1 & a_2=v_2 & \ldots & a_k=v_k \) is called a characteristic description for a class \(C=\{ r: c=v \} \) if and only if
\[
\{ r: a_1=v_1 & a_2=v_2 & \ldots & a_k=v_k \} \land C \neq \text{empty set}
\]
i.e.
\[
\{ r: a_1=v_1 & a_2=v_2 & \ldots & a_k=v_k \} \land \{ r: c=v \} = \text{not empty set}
\]
Characteristic Descriptions

Example: given classification Data 1, 2

- Some of the characteristic descriptions of the class C with description: $\text{buys_computer=\ no}$ are

- $\text{Age=\leq\ 30 \& income=high \& student=\no \& credit_rating=fair}$
- $\text{Age=>40\& income=medium \& student=\no \& credit_rating=excellent}$
- $\text{Age=>40\& income=medium}$
- Age=\leq\ 30
- $\text{student=\no \& credit_rating=excellent}$
Characteristic Descriptions

• A formula
• *Income=low* is a characteristic description of the class *C1* with description:
 buys_computer= yes
and of the class *C2* with description:
 buys_computer= no

• A formula
• *Age<=30 & Income=low* is NOT a characteristic description
 of the class *C2* = \{ *r*: *buys_computer*=no \}
because:
\{ *r*: *Age<=30 & Income=low* \} \& \{ *r*: *buys_computer*=no \} = \emptyset
Characteristic Formula

Any formula of a form

IF class description THEN characteristics

is called a characteristic formula

Example: given classification Data 1, 2

• IF buys_computer= no THEN income = low & student=yes & credit=excellent
• IF buys_computer= no THEN income = low & credit=fair
Characteristic Rule

• A characteristic formula:

IF class description THEN characteristics is called a characteristic rule (for a given database) if and only if it is TRUE in the given database, i.e.

\{r: class description\} \(\land\) \{r: characteristics\} = not emptyset
Classification Data Format: a data table with key attribute removed.

Special attribute, called a class attribute is **buys_computer**

<table>
<thead>
<tr>
<th>age</th>
<th>income</th>
<th>student</th>
<th>credit_rating</th>
<th>buys_computer</th>
</tr>
</thead>
<tbody>
<tr>
<td><=30</td>
<td>high</td>
<td>no</td>
<td>fair</td>
<td>no</td>
</tr>
<tr>
<td><=30</td>
<td>high</td>
<td>no</td>
<td>excellent</td>
<td>no</td>
</tr>
<tr>
<td>30...40</td>
<td>high</td>
<td>no</td>
<td>fair</td>
<td>yes</td>
</tr>
<tr>
<td>>40</td>
<td>medium</td>
<td>no</td>
<td>fair</td>
<td>yes</td>
</tr>
<tr>
<td>>40</td>
<td>low</td>
<td>yes</td>
<td>fair</td>
<td>yes</td>
</tr>
<tr>
<td>>40</td>
<td>low</td>
<td>yes</td>
<td>excellent</td>
<td>no</td>
</tr>
<tr>
<td>31...40</td>
<td>low</td>
<td>yes</td>
<td>excellent</td>
<td>yes</td>
</tr>
<tr>
<td><=30</td>
<td>medium</td>
<td>no</td>
<td>fair</td>
<td>no</td>
</tr>
<tr>
<td><=30</td>
<td>low</td>
<td>yes</td>
<td>fair</td>
<td>yes</td>
</tr>
<tr>
<td>>40</td>
<td>medium</td>
<td>yes</td>
<td>fair</td>
<td>yes</td>
</tr>
<tr>
<td><=30</td>
<td>medium</td>
<td>yes</td>
<td>excellent</td>
<td>yes</td>
</tr>
<tr>
<td>31...40</td>
<td>medium</td>
<td>no</td>
<td>excellent</td>
<td>yes</td>
</tr>
<tr>
<td>31...40</td>
<td>high</td>
<td>yes</td>
<td>fair</td>
<td>yes</td>
</tr>
<tr>
<td>>40</td>
<td>medium</td>
<td>no</td>
<td>excellent</td>
<td>no</td>
</tr>
</tbody>
</table>
Characteristic Rule

EXAMPLE: given classification Data 1, 2

The formula

- **IF** buys_computer= no **THEN** income = low & student=yes & credit=excellent

Is a characteristic rule for our database because

\[\{ r: \text{buys_computer}= \text{no} \} = \{ r1, r2, r6, r8, r16 \} \]

\[\{ r: \text{income} = \text{low} \& \text{student}=\text{yes} \& \text{credit}=\text{excellent} \} = \{ r6, r7 \} \]

and

\[\{ r1, r2, r6, r8, r16 \} \setminus \{ r6, r7 \} = \text{not empty set} \]
EXAMPLE: given classification Data 1, 2

The formula

- IF buys_computer = no THEN income = low & credit = fair

IS NOT a characteristic rule for our database because

\{ r: \text{buys_computer= no} \} = \{r1, r2, r6, r8, r16\}
\{ r: \text{income = low & credit=fair} \} = \{r5, r9\}

and

\{r1, r2, r6, r8, r16\} \cap \{r5, r9\} = \text{empty set}
Discrimination

- **Discrimination** is the process which aim is to **find rules** that allow us to **discriminate** the objects (records) belonging to a **given class** from the rest of records (classes)

 \[
 \text{If characteristics then class}
 \]

- Example: given classification Data 1, 2
 - **If** Age=\(\leq 30\) & income=high & student=no & credit_rating=fair **then** buys_computer= no
Discriminant Formula

Discriminant Formula Definition

A discriminant formula is any formula

If characteristics then class

- Example: given classification Data 1, 2

- IF Age=>40 & inc=low THEN buys_comp= no
Discriminant Rule

• Discriminant Rule Definition
• A discriminant formula

If characteristics then class

is a DISCRIMINANT RULE (in a given database)

If and only if

1. \{r: \text{characteristic}\} is a non empty set
2. \{r: \text{characteristic}\} ⊐ \{r: \text{class}\}
Discriminant Rule

• Example: given classification Data 1, 2
• A discriminant formula

IF Age=>40 & inc=low **THEN** buys_comp= no

is NOT a discriminant rule in our data base

because

\{r: \text{Age}=>40 & \text{inc}=\text{low}\} = \{r5, r6\} \text{ is not a subset of the set } \{r : \text{buys}_\text{comp}= \text{no}\} = \{r1,r2,r6,r8,r14\}
Characteristic and discriminant rules

• The **inverse** implication to the **characteristic rule** is usually **NOT** a discriminant rule

• **Example:** the inverse implication to the **characteristic rule**:

 • *If* buys_computer = no *then* income = low & student=yes & credit=excellent *is*

 • *If* income = low & student=yes & credit=excellent *then* buys_computer= no

• The above rule is **NOT** a **discriminant rule** as it can’t discriminate **between classes** with description buys_computer= no

• and buys_computer= yes

• (see records r7 and r8 in our Data 2)
Supervised Learning Goal (1)

• Given a data set and a class C defined in a given classification dataset

• **Supervised Learning Goal** is to

• **FIND** a minimal set (or as small as possible set) of characteristic and/or discriminant rules,

• **or other descriptions** of the class C, or of (all) other classes

• When we find **RULES** we talk about

• The **Descriptive Supervised Learning**
Supervised Learning Goal (2)

• We also want the found rules to involve as few attributes as it is possible.

It means that we want the rules to have as short as possible length of the descriptions.
Supervised Learning

• The process of **CREATING** (learning) discriminant and/or characteristic rules, or other descriptions and **TESTING** them is called a **supervised learning process**

• When the **process** (look at the Learning process slide) is **finished** we say that the **classification** has been **learned** and **tested** from examples (records in the classification dataset)

• It is called **supervised learning** because **we know the class labels** of all data **examples**
The Learning Process (LP)

1. **SELECTION**
 - Data

2. **CLEANING**
 - Target data
 - Processed Data

3. **Preprocessing**
 - Transformed data

4. **LEARNING**
 - Rules or Descriptions

5. **TESTING AND EVALUATION**
 - Knowledge
Classification Data 1

- **Classification Data Format:** A data table with **key attribute removed**.
- **Special attribute**, called a **class attribute** is **buys_computer**

<table>
<thead>
<tr>
<th>age</th>
<th>income</th>
<th>student</th>
<th>credit_rating</th>
<th>buys_computer</th>
</tr>
</thead>
<tbody>
<tr>
<td><=30</td>
<td>high</td>
<td>no</td>
<td>fair</td>
<td>no</td>
</tr>
<tr>
<td><=30</td>
<td>high</td>
<td>no</td>
<td>excellent</td>
<td>no</td>
</tr>
<tr>
<td>30...40</td>
<td>high</td>
<td>no</td>
<td>fair</td>
<td>yes</td>
</tr>
<tr>
<td>>40</td>
<td>medium</td>
<td>no</td>
<td>fair</td>
<td>yes</td>
</tr>
<tr>
<td>>40</td>
<td>low</td>
<td>yes</td>
<td>fair</td>
<td>yes</td>
</tr>
<tr>
<td>>40</td>
<td>low</td>
<td>yes</td>
<td>excellent</td>
<td>no</td>
</tr>
<tr>
<td>31...40</td>
<td>low</td>
<td>yes</td>
<td>excellent</td>
<td>yes</td>
</tr>
<tr>
<td><=30</td>
<td>medium</td>
<td>no</td>
<td>fair</td>
<td>no</td>
</tr>
<tr>
<td><=30</td>
<td>low</td>
<td>yes</td>
<td>fair</td>
<td>yes</td>
</tr>
<tr>
<td>>40</td>
<td>medium</td>
<td>yes</td>
<td>fair</td>
<td>yes</td>
</tr>
<tr>
<td><=30</td>
<td>medium</td>
<td>yes</td>
<td>excellent</td>
<td>yes</td>
</tr>
<tr>
<td>31...40</td>
<td>medium</td>
<td>no</td>
<td>excellent</td>
<td>yes</td>
</tr>
<tr>
<td>31...40</td>
<td>high</td>
<td>yes</td>
<td>fair</td>
<td>yes</td>
</tr>
<tr>
<td>>40</td>
<td>medium</td>
<td>no</td>
<td>excellent</td>
<td>no</td>
</tr>
</tbody>
</table>
A small, full set DISCRIMINANT RULES for classes: buys_comp=yes, buys_comp=no

• The rules are:

– IF $\text{age} = <=30$ AND $\text{student} = \text{no}$ THEN
 $\text{buys_computer} = \text{no}$

– IF $\text{age} = <=30$ AND $\text{student} = \text{yes}$ THEN
 $\text{buys_computer} = \text{yes}$

– IF $\text{age} = 31...40$ THEN
 $\text{buys_computer} = \text{yes}$

– IF $\text{age} = >40$ AND $\text{credit_rating} = \text{excellent}$ THEN
 $\text{buys_computer} = \text{no}$

– IF $\text{age} = <=30$ AND $\text{credit_rating} = \text{fair}$ THEN
 $\text{buys_computer} = \text{yes}$

– Exercise: verify that they all are true in the Data1,2
Testing and Classifying

• In order to use discovered rules for testing, and later, when testing is finished and predictive accuracy is acceptable to use them for future classification we write rules in a following predicate form:

 – IF age(x, <=30) AND student(x, no) THEN

 – buys_computer (x, no)

 – IF age(x, <=30) AND student (x, yes) THEN

 – buys_computer (x, yes)

• Attributes and their values of a new record x are matched with the IF part of the rule and the record is classified accordingly to the THEN part of the rule.
Testing and Training

• The Test Dataset has the same format as the Training Dataset, i.e.

• In both datasets the values of class attribute are known

• Test Dataset and Training Dataset are disjoint sets

• We use the Test Dataset to evaluate the predictive accuracy of our discovered set of rules
Predictive accuracy

- **Predictive Accuracy** of the set of rules, or any other result of a classification algorithm is a percentage of well classified data in the Test Dataset.

- If the predictive accuracy is not high enough we chose a different training and testing datasets and **start learning process** again.

- There are many methods of training and testing and they will be discussed later.
Classification Data

Classification Data Format: a data table with key attribute removed.

- Special attribute, called a **class attribute** must be distinguished.
- The values: \(c_1, c_2, \ldots, c_n\) of the class attribute \(C\) are called **class labels**
- **Exercise:** for the database below write 2 discriminant rules and 3 characteristic rules – and **PROVE** them to be what you claim

<table>
<thead>
<tr>
<th>Obj</th>
<th>a1</th>
<th>a2</th>
<th>a3</th>
<th>a4</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>o1</td>
<td>1</td>
<td>1</td>
<td>m</td>
<td>g</td>
<td>c1</td>
</tr>
<tr>
<td>o2</td>
<td>0</td>
<td>1</td>
<td>v</td>
<td>g</td>
<td>c2</td>
</tr>
<tr>
<td>o3</td>
<td>1</td>
<td>0</td>
<td>m</td>
<td>b</td>
<td>c1</td>
</tr>
</tbody>
</table>
Classification and Classifiers

• An algorithm (model, method) is called a classification algorithm

• if it uses the classification data to build a set of patterns:
 • discriminant and/or characteristic rules
 • or other pattern descriptions

• These patterns are structured in such a way that we can use them to classify unknown sets of objects: unknown tuples, records
Classification and Classifiers

- For the reason that
- **we can use** discovered **patterns** to **classify** unknown **sets of objects** a **classification algorithm** is often called shortly **a classifier**

- **Remember** that the name **classifier** implies **more** than just a **classification algorithm**

- **A classifier** is a **final product** of a **process** that uses **data set** and a **classification algorithm**
Building a Classifier

• **Building a classifier** consists of two phases: **training** and **testing**

In both phases we use
• **training data set** and **disjoint** with it
• **test data set** for both of which the **class labels** are **known for all** of the records
Building a Classifier

• We use the **training data** set to **create patterns:** rules, trees, or to **train a Neural or Bayesian network**

• We **evaluate** created **patterns** with the use of **test data**

• The **measure** for a trained **classifier** is called **predictive accuracy**

• The **classifier** is build i.e. we **terminate** the process if it has been **trained** and **tested** and the **predictive accuracy** is on an **acceptable level**
Classifiers Predictive Accuracy

- **PREDICTIVE ACCURACY** of a classifier is a percentage of well classified data in the test data set.

- **PREDICTIVE ACCURACY** depends heavily on a choice of the test and training data sets.

- There are many methods of choosing test and training sets and hence evaluating the predictive accuracy.

- Basic methods are presented in Testing Classifiers lecture.
Correctly and Not Correctly Classified Records

• A record is **correctly classified** if and only if the following conditions hold:
 (1) we **can classify** the record, i.e. **there is a rule** such that its **LEFT side matches** the record,
 (2) **classification determined by the rule is correct**, i.e. the **RIGHT side of the rule matches** the value of the record’s **class attribute**

OTHERWISE

• the record is **not correctly classified**

• Words used:
 • not correctly = incorrectly = misclassified
Exercise 1

• Assume that we have a following set of rules:
 • R1: $a_1=1 \land a_2=0 \Rightarrow \text{class}=\text{yes}$
 • R2: $a_1=0 \land a_2=3 \Rightarrow \text{class}=\text{no}$
 • R3: $a_2=1 \Rightarrow \text{class}=\text{yes}$

• The **TEST data** has the following 6 records, where the attributes are a_1, a_2, class
 • $r_1 = (1, 0)$ - record, (yes) associated class label,
 • $r_2 = (0, 3)$ (yes), $r_3 = (1, 1)$ (no),
 • $r_4 = (2, 1)$ (yes), $r_5 = (3, 1)$ (yes), $r_6 = (1, 2)$ (no)

WRITE the rules in **predicate form** and **CALCULATE** the **Predictive Accuracy** of this set of rules with respect to the above **TEST data** of 6 records above
Exercise 2

• Evaluate the **Predictive Accuracy** of the set of rules:
 – **R1:** $\text{IF age} = \text{"<=30" AND student} = \text{"no"} \text{ THEN buys_computer} = \text{"no"}$
 – **R2:** $\text{IF age} = \text{"<=30" AND student} = \text{"yes"} \text{ THEN buys_computer} = \text{"yes"}$
 – **R3:** $\text{IF age} = \text{"31...40" THEN buys_computer} = \text{"yes"}$
 – **R4:** $\text{IF age} = \text{">40" AND credit_rating} = \text{"excellent"} \text{ THEN buys_computer} = \text{"no"}$
 – **R5:** $\text{IF age} = \text{"<=30" AND credit_rating} = \text{"fair"} \text{ THEN buys_computer} = \text{"yes"}$
 – with respect to the **TEST data** on the next slide.
 – **REMARK:** you must FIRST re-write the **rules in predicate form**
TEST DATA for Example 2

<table>
<thead>
<tr>
<th>rec</th>
<th>Age</th>
<th>Income</th>
<th>Student</th>
<th>Credit_rating</th>
<th>Buys_computer</th>
</tr>
</thead>
<tbody>
<tr>
<td>r1</td>
<td><=30</td>
<td>Low</td>
<td>No</td>
<td>Fair</td>
<td>yes</td>
</tr>
<tr>
<td>r2</td>
<td><=30</td>
<td>High</td>
<td>yes</td>
<td>Excellent</td>
<td>No</td>
</tr>
<tr>
<td>r3</td>
<td><=30</td>
<td>High</td>
<td>No</td>
<td>Fair</td>
<td>Yes</td>
</tr>
<tr>
<td>r4</td>
<td>31…40</td>
<td>Medium</td>
<td>yes</td>
<td>Fair</td>
<td>Yes</td>
</tr>
<tr>
<td>r5</td>
<td>>40</td>
<td>Low</td>
<td>Yes</td>
<td>Fair</td>
<td>Yes</td>
</tr>
<tr>
<td>r6</td>
<td>>40</td>
<td>Low</td>
<td>Yes</td>
<td>Excellent</td>
<td>yes</td>
</tr>
<tr>
<td>r7</td>
<td>31…40</td>
<td>High</td>
<td>Yes</td>
<td>Excellent</td>
<td>Yes</td>
</tr>
<tr>
<td>r8</td>
<td><=30</td>
<td>Medium</td>
<td>No</td>
<td>Fair</td>
<td>No</td>
</tr>
<tr>
<td>r9</td>
<td>31…40</td>
<td>Low</td>
<td>no</td>
<td>Excellent</td>
<td>Yes</td>
</tr>
<tr>
<td>r10</td>
<td>>40</td>
<td>Medium</td>
<td>Yes</td>
<td>Fair</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Predictive Accuracy

- For our 10 **TEST records** and 5 rules R1, R2 ... R5
- Record r1 is well classified by rule R5
- Record r2 is **misclassified**
- Record r3 is well classified by rule R5
- Record r4 is well classified by rule R5
- Record r5 is **misclassified**
- Record r6 is **misclassified**
- Record r7 is well classified by rule R3
- Record r8 is well classified by rule R1
- Record r9 is well classified by rule R3
- Record r10 is **misclassified**
- We have **6 correctly classified** records out of **10**
- **Predictive accuracy is 60%**

Exercise: prove that rules R1, R2 ... R5 are **TRUE** in the Classification Data 1, 2
Classification Process: a Classifier

Training Data

<table>
<thead>
<tr>
<th>NAME</th>
<th>RANK</th>
<th>YEARS</th>
<th>TENURED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mike</td>
<td>Assistant Prof</td>
<td>3</td>
<td>no</td>
</tr>
<tr>
<td>Mary</td>
<td>Assistant Prof</td>
<td>7</td>
<td>yes</td>
</tr>
<tr>
<td>Bill</td>
<td>Professor</td>
<td>2</td>
<td>yes</td>
</tr>
<tr>
<td>Jim</td>
<td>Associate Prof</td>
<td>7</td>
<td>yes</td>
</tr>
<tr>
<td>Dave</td>
<td>Assistant Prof</td>
<td>6</td>
<td>no</td>
</tr>
<tr>
<td>Anne</td>
<td>Associate Prof</td>
<td>3</td>
<td>no</td>
</tr>
</tbody>
</table>

Classification Algorithms

- IF rank = ‘professor’
 THEN tenured = ‘yes’

- IF years > 6,
 THEN tenured = ‘yes’
Testing and Prediction

Unseen Data

(Jeff, Professor, 4)

Tenured?

Yes

<table>
<thead>
<tr>
<th>NAME</th>
<th>RANK</th>
<th>YEARS</th>
<th>TENURED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tom</td>
<td>Assistant Prof</td>
<td>2</td>
<td>no</td>
</tr>
<tr>
<td>Merlisa</td>
<td>Associate Prof</td>
<td>7</td>
<td>no</td>
</tr>
<tr>
<td>George</td>
<td>Professor</td>
<td>5</td>
<td>yes</td>
</tr>
<tr>
<td>Joseph</td>
<td>Assistant Prof</td>
<td>7</td>
<td>yes</td>
</tr>
</tbody>
</table>
Supervised vs. Unsupervised Learning

• **Supervised learning (classification)**

 – **Supervision:** The training data (observations, measurements, etc.) are accompanied by labels indicating **the class of** the observations.

 – **New data is classified** based on a **tested classifier**
Supervised vs. Unsupervised Learning

• Unsupervised learning (clustering)
 – The class labels of training data are unknown
 – We are given a set of records (measurements, observations, etc.)
 – with the aim of establishing the existence of classes or clusters in the data