

Developing Parallel Applications Using MPI

Outline

- □ MPI The Basics
- □ Sun HPC ClusterTools

MPI - The Basics

What is MPI?

- MPI stands for the "Message Passing Interface"
- □ MPI is a very extensive de-facto parallel programming API for distributed memory systems (i.e. a cluster)
 - An MPI program can however also be executed on a shared memory system
- □ First specification: 1994
 - Major enhancements in MPI-2 (1997)
 - ✓ Remote memory management, Parallel I/O and Dynamic process management
 - Current MPI 2.1 specification was released in 2008*
- *) MPI 2.2 is expected to be ratified very soon

More about MPI

- □ MPI has its own data types (e.g. MPI_INT)
 - User defined data types are supported as well
- □ MPI supports C, C++ and Fortran
 - Include file <mpi.h> in C/C++ and "mpif.h" in Fortran
- □ An MPI environment typically consists of at least:
 - A library implementing the API
 - A compiler and linker that support the library
 - A run time environment to launch an MPI program
- □ Various implementations available
 - Sun HPC ClusterTools, MPICH, MVAPICH, LAM, Voltaire MPI, Scali MPI, HP-MPI,

The MPI Programming Model

A Cluster Of Systems

The MPI Memory Model

- All threads/processes have access to their own, private, memory only
- Data transfer and most synchronization has to be programmed explicitly
- All data is private
- Data is shared explicitly by exchanging buffers

The MPI Execution Model

= communication

MPI Communicators

The Six Basic MPI Functions/1

1. Initialize MPI environment (mandatory)

```
int MPI_Init(int *argc, char ***argv)
```

2. Clean up all MPI states (mandatory)

```
int MPI_Finalize()
```

Example - "Hello World" *


```
#include <stdio.h>
                                amd$ mpicc hello-world.c
#include <stdlib.h>
                                amd$ mpirun -np 4 ./a.out
                                Hello Parallel World
#include <mpi.h>
                                Hello Parallel World
                                Hello Parallel World
int main (int argc, char
                                Hello Parallel World
                                amd$
  MPI_Init(&argc, &argv);
  printf("Hello Parallel World\n");
  MPI_Finalize();
```

*) Handling of I/O is implementation dependent (outside using MPI I/O)

The Six Basic MPI Functions/2

3. Returns the number of MPI processes in "size"

```
int MPI_Comm_size(MPI_Comm comm, int *size)
```

4. Returns the MPI process ID ("the rank") in "rank"

```
int MPI_Comm_rank(MPI_Comm comm, int *rank)
```

Example - "Hello World"


```
#include <stdio.h≥
#include <stdlib amd$ mpicc hello-world.c</pre>
                  amd$ mpirun -np 4 ./a.out
#include <mpi.h> Hello Parallel World, I am MPI process 2
                  Hello Parallel World, I am MPI process 1
int main (int ar Hello Parallel World, I am MPI process 0
                  Hello Parallel World, I am MPI process 3
                  amd$
  int me;
  MPI_Init(&argc, &argv);
  MPI_Comm_rank(MPI_COMM_WORLD, &me);
  printf("Hello Parallel World, I am MPI process %d\n", me);
  MPI_Finalize();
```

The Six Basic MPI Functions/3

5. Send a message to "dest"

6. Receive a message from "source"

The 7-th function: return the elapsed time in seconds

```
double MPI_Wtime()
```

Example - Send "N" Integers


```
#include "mpi.h"
                   include file
you = 0; him = 1;
MPI_Init(&argc, &argv); initialize MPI environment
MPI Comm rank(MPI COMM WORLD, &me);
                                         get rank ID
     me == 0
                    rank 0 sends
   error code = MPI Send(&data buffer, N, MPI INT,
                          him, 1957, MPI COMM WORLD);
 else if ( me == 1 ) {
                            rank 1 receives
   error code = MPI Recv(&data buffer, N, MPI INT,
                          you, 1957, MPI COMM WORLD,
                          MPI STATUS IGNORE):
MPI_Finalize(); leave the MPI environment
```

Run time Behavior

Process 0

you him = 0me = 0**MPI** Send

N integers destination = you = 1label = 1957

> N integers sender = him = 0label = 1957

Process 1

you him = 0me = 1MPI_Recv

Yes! Connection established

The Pros and Cons of MPI

□ Advantages of MPI:

- Flexibility Can use any cluster of any size
- Straightforward Just plug in the MPI calls
- Widely available Several implementations out there
- Widely used Very popular programming model
- □ Disadvantages of MPI:
 - Redesign of application Could be a lot of work
 - Easy to make mistakes Many details to handle
 - Hard to debug Need to dig into underlying system
 - More resources Typically, more memory is needed
 - Special care Input/Output

A Different Way Of Thinking

- Because of the distributed memory model, a different way of approaching the problem is required
- □ Have to think about:
 - Dividing the problem into pieces
 - How to distribute the data over the nodes
 - Communication pattern between processes

Example - Numerical Integration

Parallel algorithm using MPI:

- 1. Master process sends number of points to each MPI process
- 2. Each MPI process then:
 - Defines what set of points to work on
 - Sums up the function values in those points
 - Sends partial sum to main process
- 3. Master process collects partial sums
- 4. Master process computes global sum

Computational Domain

Discretize the domain
Solve problem on the grid points

Split domain in disjoint parts
Assign a domain to an MPI process

Some of the data is in the memory of other processes Communication is needed

Load balancing is another potential issue

Common MPI Parallelization Strategy Crossstems

- □ Divide the computational domain into pieces
- □ Assign each piece to an MPI process
- Define the communication pattern needed
 - Depends on algorithm
 - Book keeping involved (e.g. define neighbours)
 - May have to introduce "ghost" cells
- □ Often, the master process:
 - Sends initial data
 - Receives (intermediate) results from processes
 - Makes the decisions

Typical Types of Communication

Point to Point

One to Many ("broadcast")

Many to One ("gather")

Some Calls That Might Come Handy

8. Broadcast a message from "root" to all others

9. Gather value(s) from a group of processes

10. Same as MPI_Gather, but all processes get the value(s)

Some Calls That Might Come Handy 2005

11. Reduce the value(s) on"root" using the "op" operator

12. Same as MPI_Reduce, but value(s) on all processes

Some Calls That Might Come Handy 3 systems

13. Non-blocking (asynchronous) send

14. Non-blocking (asynchronous) receive

Performance tip:

- Avoid wildcards
- Can use the MPI_Irecv to avoid an incoming "unexpected message" while a send is still in progress

Some Calls That Might Come Handy 4 systems

15. Wait for a specifc send/receive request to complete

16. Wait for a series of send/receive request to complete

17. Test for the completion of a specific send/receive

18. Test for completion of a series send/receive requests

Performance Tuning Example/1

Rank o Rank 1 Rank 2

MPI_Send -> 1 MPI_Recv <- 0 MPI_Recv <- 1

MPI_Recv <- 2 MPI_Send -> 2 MPI_Send -> 0

The above scheme performs well, even with blocking sends

But how about the following scheme?

Performance Tuning Example/2

Rank o

Rank 1

Rank 2

MPI_Send -> 1

MPI_Recv <- 0

MPI_Send -> 0

MPI_Recv <- 2

The MPI_Send by Rank 2 may arrive while Rank 0 is still sending a message to Rank 1

This "unexpected message" causes a loss in performance

Performance Tuning Example/3

Rank o

Rank 1

Rank 2

MPI Irecv <- 2

MPI_Recv <- 0

MPI Send -> 0

MPI_Send -> 1

MPI_Wait

Now the message from Rank 2 will immediately be stored into a buffer

An Overview of Sun HPC ClusterTools

Open MPI (www.open-mpi.org)

15 Members, 9 Contributors, 2 Partners

Sun has been an early Member and key Contributor

Sun HPC ClusterTools 8.2

- □ Based on Open MPI open source
 - Current: HPC CT 8.2 based on Open MPI 1.3.3
 - HPC CT 8.2.1 will be based on Open MPI 1.3.4
 - ✓ Releases end of September 2009
- □ Complete MPI-2 standard implementation, including MPI I/O and one sided communication
- Provides high-performance MPI libraries and job launcher
 - Operating Systems Solaris 10, OpenSolaris, RHEL 5, SLES 10, CentOS 5.3
 - Compilers Sun Studio, GCC, Intel, PGI, Pathscale *
- *) Refer to the User's Guide for the specific versions of these compilers

Sun HPC ClusterTools 8.2

- □ Interconnect support
 - InfiniBand Including QDR, Multi-rail and the Mellanox ConnectX HCAs
 - Ethernet, Gigabit Ethernet, Myrinet MX
 - Shared Memory
- Automatic Path Migration (APM) support
 - IB feature to allow user transparent detection and recovery from network faults, without the need to restart the application
 - Supported between two ports that share an HCA

Sun HPC ClusterTools 8.2

- Job launcher support
 - Sun Grid Engine, PBS Pro/Torque, rsh/ssh
- MPI profiling with the Sun Studio Performance Analyzer, plus support for VampirTrace
- □ DTrace providers
- □ Application level suspend/resume support
 - Forward SIGSTOP and SIGSCONT to the MPI processes
- □ TotalView and Allinea DDT parallel debugger support
- □ Full Service Support offerings available from Sun

Sun HPC ClusterTools 8.2

- Enhanced performance and scalability, with support for thousands of nodes and tens of thousands of cores
- □ Enhanced shared memory communication performance
- Upcoming HPC CT 8.2.1 includes new process affinity options
 - Bind by socket (default)
 - ✓ Option: -bind-to-socket
 - CPUs per rank
 - Option: -cpus-per-rank
 - N cores per socket
 - ✓ Option: -npersocket

Sun HPC ClusterTools

□ How to get it?

Download: http://www.sun.com/clustertools

- How to provide feedback?
 Email alias: ct-feedback@sun.com
- How to participate in the community?
 Join: open-mpi.org
- MPI forum meetings and information? Check out: http://meetings.mpi-forum.org

A detailed update talk on HPC ClusterTools and MPI is given by Terry Dontje on Thursday "Sun HPC ClusterTools and Open MPI Update"

Using Sun HPC ClusterTools

Open MPI - Three Layers

OMPI - Open MPI

ORTE - Open Run-Time Environment

OPAL - Open Portable Access Layer

Terminology

- □ MCA Modular Component Architecture
 - Backbone for most of Open MPI's functionality
 - Consists of frameworks, components and modules
- □ Framework Manages a specific Open MPI task
 - Example: launching a process using ORTE
- Component Implementation of a framework's interface
 - Example: TCP MPI point-to-point
- Module Instance of a component
 - Example: Two Ethernet NICs -> Two TCP point-topoint modules

Modular Component Architecture

User Application

MPI API

Modular Component Architecture (MCA)

Getting Config Information

- The ompi_info command has many options and provides detailed information on the configuration
 - □ Example output (only a subset is shown):

```
$ ompi_info
Displaying Open MPI information for 32-bit ...
                 Package: ClusterTools 8.2
                Open MPI: 1.3.3r21324-ct8.2-b09j-r40
   Open MPI SVN revision: 0
   Open MPI release date: 16 Jun 2009
                Open RTE: 1.3.3r21324-ct8.2-b09j-r40
   Open RTE SVN revision:
   Open RTE release date: 16 Jun 2009
             MCA grpcomm: bad (MCA v2.0, API v2.0,
                          Component v1.3.3)
             MCA grpcomm: basic (MCA v2.0, API v2.0,
                          Component v1.3.3)
```

Modular Component Architecture (MCA)

- Use the ompi_info command to obtain information on the various MCAs supported and their settings
 - Use \$ ompi_info --param all all to get all settings
- Three ways to specify the settings for an MCA
- □ In order of decreasing precedence:
 - Use \$ mpirun --mca <settings>
 - Set the corresponding environment variable
 - √ \$ export OMPI_MCA_mpi_show_handle_leaks=1
 - Set the parameter(s) in a text file called mca-params.conf
 - Stored in ~/.openmpi/ or at the system level

How To Compile And Run

- □ Compiler driver scripts: mpicc, mpif90, mpiCC,
- Command to run an MPI job: mpirun
- □ Some useful options for mpirun:
 - -h- list of all options
 - -np
 number of processes to run
 - -hostfile hostfile with nodes to run on
 - -npernode launch "n' processes per node
 - -x pass on application environment variables
 - -v verbose mode

Example


```
$ mpicc -c -fast -g main.c
$ mpicc -o main.exe -fast main.o
$ mpirun -V
mpirun (Open MPI) 1.3.3r21324-ct8.2-b09j-r40
```

Report bugs to http://www.open-mpi.org/community/help/

```
$ mpirun -np 4 ./main.exe

Hello My Parallel World, I am MPI process 3

Hello My Parallel World, I am MPI process 2

Hello My Parallel World, I am MPI process 1

Hello My Parallel World, I am MPI process 0

$
```

More mpirun options

--stdin <rank>

MPI rank to receive standard input (can also use "none")

--tag-output

Tag each line of output to stdout, stderr and stddiag with [jobid, rank] <stdxxx>, indicating the job id, rank and channel that created it

--output-filename <filename>

Redirect stdout, stderr and stddiag to a rank-unique version of the specified file name

Specifying the available hosts

- □ There are three ways to do this:
 - Using a host file with the --hostfile option
 - Using the --host option
 - Through the batch scheduler in your Resource Management software

Example host file:

```
node0
node1 slots=2
node2 slots=4 max_slots=4
node3 slots=4 max_slots=20
```

(allows oversubscription on node3)

Using the --host option

Specify the hosts through the --host option

```
$ mpirun --host node1,node2,node3 ....
```

Use the --host option to specify multiple slots

```
$ mpirun --host node1,node1,node2 ....
```

Use the --host and --hostfile options to exclude nodes

```
$ mpirun --hostfile my_nodes --host node1 ....
```


(only run on node1)

ORTE Scheduling Policies

- □ Two types of scheduling policies:
 - By slot (the default) Fill slots on first node first, then use the slots on the next node, etc.
 - By node Round-robin on a node basis: use a slot on the first node, then a slot on the next node, etc
- The scheduling policy can also be specified explicitly on the mpirun command:
 - For the slot policy, use --byslot or --mca rmaps_base_schedule_policy slot
 - For the node policy, use --bynode or --mca rmaps_base_schedule_policy node
- □ Check the documentation for more details

Affinity and Performance

A Typical cc-NUMA Architecture

Main Issue
How To Keep Processes and Data Close?

Processor and Memory Affinity

- On cc-NUMA architectures in particular, it is important for performance to exploit affinity
- □ Two important affinity features:
 - Processor affinity Pin a process to a core/processor
 - Memory affinity Store data close to the process
- □ Through MCA, Open MPI supports these features
- □ Use the ompi_info command to check the status:

Affinity Usage Example

Enable processor affinity (disabled by default):

\$ mpirun --mca mpi_paffinity_alone 1 -np 4 ./a.out

Please note that this also implies memory affinity

May want to set the -mca paffinity_base_verbose <level> option to get more information

Note that as of HPC CT 8.2, a rankfile can be used to spread processes out and bind per socket This is an option on the mpirun command

The Rankfile (--rankfile option)

Syntax: rank <n>=hostname slot=<m>

```
rank 0=host1 slot=1:0,1
rank 1=host2 slot=0:*
rank 2=host4 slot=1-2
rank 3=host3 slot=0:1,1:0-2
```

```
# s 1 : c 0,1
# s 0 : any core
# CPU 1 and 2
# s 0 : c 1
# s 1 : c 0,1,2
```

Notation:

<socket>:list_with_core_IDs

Or

list_with_CPU_IDs

```
/proc/cpuinfo: "processor" -> CPU number

"physical id" -> socket number

"core id" -> core number
```

Pointers To More MPI Information

HPC Clustertools

http://www.sun.com/software/products/clustertools

Open MPI

http://www.open-mpi.org

MPI specifications and books *

http://www-unix.mcs.anl.gov/mpi

"Using MPI" by William Gropp, Ewing Lusk, Anthony Skjellum (MIT Press)

"Using MPI-2" by William Gropp, Ewing Lusk, Rajeev Thakur (MIT Press)

*) Note: many more books, tutorials and papers are available