CSE581 CARDINALITIES OF SETS

BASIC DEFINITIONS AND FACTS

Cardinality definition Sets A and B have the same cardinality iff $\exists f(f: A \xrightarrow{1-1,onto} B)$.

- **Cardinality notations** If sets A and B have the same cardinality we denote it as: |A| = |B| or cardA = cardB, or $A \sim B$. We also say that A and B are *equipotent*.
- **Cardinality** We put the above notations together in one definition: |A| = |B| or cardA = cardB, or $A \sim B$ iff $\exists f(f: A \xrightarrow{1-1,onto} B)$.
- **Finite** A set A is finite iff $\exists n \in N \ \exists f \ (f: \{0, 1, 2, ..., n-1\} \xrightarrow{1-1, onto} A)$, i.e. we say: a set A is finite iff $\exists n \in N(|A| = n)$.

Infinite A set A is infinite iff A is NOT finite.

Aleph zero \aleph_0 (Aleph zero) is a cardinality of N (Natural numbers).

For any set, set A has a cardinality \aleph_0 ($|A| = \aleph_0$) iff $A \sim N$, (or |A| = |N|, or cardA = cardN).

Countable A set A is countable iff A is finite or $|A| = \aleph_0$.

Infinitely countable A set A is infinitely countable iff $|A| = \aleph_0$.

Uncountable A set A is uncountable iff A is NOT countable.

Observe that it means that

A set A is uncountable iff A is infinite and $|A| \neq \aleph_0$.

Continuum \mathcal{C} (Continuum) is a cardinality of Real numbers, i.e. $\mathcal{C} = |\mathcal{R}|$.

We sat that a set A has a cardinality C (|A| = C) iff |A| = |R|.

Cardinality $A \leq$ **cardinality** B We define $|A| \leq |B|$ iff $A \sim C$ and $C \subseteq B$.

Simple Fact If $A \subseteq B$ then $|A| \leq |B|$.

For any cardinal numbers \mathcal{N}, \mathcal{M} , we say that

 $\mathcal{N} \leq \mathcal{M}$ iff for any sets A, B, such that $|A| = \mathcal{N}$ and $|B| = \mathcal{M}$ we have $|A| \leq |B|$. Cardinality A <cardinality $B \quad |A| < |B|$ iff $|A| \leq |B|$ and $|A| \neq |B|$.

For any cardinal numbers \mathcal{N}, \mathcal{M} we say that

 $\mathcal{N} < \mathcal{M}$ iff for any sets A, B, such that $|A| = \mathcal{N}$ and $|B| = \mathcal{M}$ we have |A| < |B|.

Cantor Theorem For any set A, $|A| < |\mathcal{P}(A)|$.

Cantor-Berstein Theorem For any sets A, B,

If $|A| \leq |B|$ and $|B| \leq |A|$, then |A| = |B|.

For any cardinal numbers \mathcal{N}, \mathcal{M} , we have that

If $\mathcal{N} \leq \mathcal{M}$ and $\mathcal{M} \leq \mathcal{N}$, then $\mathcal{N} = \mathcal{M}$.

ARITHMETIC OF CARDINAL NUMBERS

Sum ($\mathcal{N} + \mathcal{M}$) We define:

 $\mathcal{N} + \mathcal{M} = |A \cup B|$, where A, B are such that $|A| = \mathcal{N}, |B| = \mathcal{M}$ and $A \cap B = \emptyset$.

Multiplication ($\mathcal{N} \cdot \mathcal{M}$) We define:

 $\overline{\mathcal{N}} \cdot \mathcal{M} = |A \times B|$, where A, B are such that $|A| = \mathcal{N}, |B| = \mathcal{M}.$

Power $(\mathcal{M}^{\mathcal{N}})$ $\mathcal{M}^{\mathcal{N}} = card\{f: f: A \longrightarrow B\}$, where A, B are such that $|A| = \mathcal{N}, |B| = \mathcal{M}.$

Observe that the definition says that $\mathcal{M}^{\mathcal{N}}$ is the cardinality of all functions that map a set A (of cardinality \mathcal{N}) into a set B (of cardinality \mathcal{M}).

Power $2^{\mathcal{N}}$ We define:

 $2^{\mathcal{N}} = card\{f: f: A \longrightarrow \{0,1\}\}, \text{ where } |A| = \mathcal{N}.$

- $2^{\mathcal{N}}$ **Theorems** We prove the following.
- 1. $2^{\mathcal{N}} = card\mathcal{P}(A)$, where $|A| = \mathcal{N}$.
- **2.** $2^{\aleph_0} = C$.

Power Properties $\mathcal{N}^{\mathcal{P}+\mathcal{T}} = \mathcal{N}^{\mathcal{P}} \cdot \mathcal{N}^{\mathcal{T}}$. $(\mathcal{N}^{\mathcal{P}})^{\mathcal{T}} = \mathcal{N}^{\mathcal{P}\cdot\mathcal{T}}$.

ARITHMETIC OF n, \aleph_0, C

Union 1 $\aleph_0 + \aleph_0 = \aleph_0$.

Union of two infinitely countable sets is an infinitely countable set.

Union 2 $\aleph_0 + n = \aleph_0$.

Union of a finite (cardinality n) and infinitely countable set is an infinitely countable set.

Union 3 $\aleph_0 + \mathcal{C} = \mathcal{C}$.

Union of an infinitely countable set and a set of the same cardinality as Real numbers has the same cardinality as the set of Real numbers.

Union 4 C + C = C.

Union of two sets of cardinality the same as Real numbers has the same cardinality as the set of Real numbers.

Cartesian Product 1 $\aleph_0 \cdot \aleph_0 = \aleph_0$.

Cartesian Product of two infinitely countable sets is an infinitely countable set.

Cartesian Product 2 $n \cdot \aleph_0 = \aleph_0$.

Cartesian Product of a finite set and an infinitely countable set is an infinitely countable set.

Cartesian Product 3 $\aleph_0 \cdot C = C$.

Cartesian Product of an infinitely countable set and a set of the same cardinality as Real numbers has the same cardinality as the set of Real numbers.

Cartesian Product 4 $C \cdot C = C$.

Cartesian Product of two sets of cardinality the same as Real numbers has the same cardinality as the set of Real numbers.

Power 1 $2^{\aleph_0} = \mathcal{C}$.

The set of all subsets of Natural numbers (or any set equipotent with natural numbers) has the same cardinality as the set of Real numbers.

 $\begin{array}{ll} \textbf{Power 2} \quad \aleph_0^{\aleph_0} = \mathcal{C}.\\ & \text{There are \mathcal{C}of all functions that map N into N.} \end{array}$ There are \mathcal{C} sequences (all sequences) that can be form out of an infinitely countable set. $\aleph_0^{\aleph_0} = \{ f: f: N \longrightarrow N \} = \hat{\mathcal{C}}.$

Power 3 $C^{\mathcal{C}} = 2^{\mathcal{C}}$.

There are $2^{\overline{\mathcal{C}}}$ of all functions that map R into R.

The set of all real functions of one variable has the same cardinality as the set of all subsets of Real numbers.

Inequalities $n < \aleph_0 < \mathcal{C}$.

Theorem If A is a finite set, A^* is the set of all finite sequences formed out of A, then A^* has \aleph_0 elements.

Shortly: If |A| = n, then $|A^*| = \aleph_0$.