CSE581 DM DEFINITIONS 2

ORDER RELATIONS, LATTICES, BOOLEAN ALGEBRAS

- **Order Relation** $R \subset A \times A$ is an order on A iff R is 1.Reflexive, 2. Antisymmetric, 3. Transitive, i.e.
 - 1. $\forall a \in A \ (a, a) \in R$
 - 2. $\forall a, b \in A \ ((a, b) \in R \cap (b, a) \in R \Rightarrow a = b)$

3. $\forall a, b, c \in A \ ((a, b) \in R \cap (b, c) \in R \implies (a, c) \in R)$

- **Total Order** $R \subset (A \times A)$ is a total order on A iff R is an order and any two elements of A are comparable, i.e. $\forall a, b \in A \ ((a, b) \in R \cup (b, a) \in R).$
- Historical names Order is also called **partial order** and total order is also called a **linear order**.
- **Notations** Order relations are usually denoted by \leq . We use, in our lecture notes the notation \leq . \leq as a symbol for order relation. Remember, that even if we use \leq as the order relation symbol, it is a SYMBOL for ANY order
- relation and not only a symbol for a natural order \leq in number sets. **Poset** A set $A \neq \emptyset$ ordered by a relation R is called a poset. We write it as a tuple: $(A, R), (A, \leq),$

 (A, \preceq) or (A, \leq) . Name poset stands for "partially ordered set".

- **Diagram** Diagram or Hasse Diagram of order relation is a graphical representation of a poset. It is a simplified graph constructed as follows.
- **1.** As the relation is REFLEXIVE, i.e. $(a, a) \in R$ for all $a \in A$, we draw a point a instead of a point a with the loop.
- **2.** As the relation is antisymmetric we draw a point b **above** point a (connected, but without the arrow) to indicate that $(a, b) \in R$.
- **3.** As the relation in transitive, we connect points a, b, c without arrows.
- **Special elements** in a poset (A, \preceq) are: maximal, minimal, greatest (largest) and smallest (least) and are defined below.
- **Smallest (least)** $a_0 \in A$ is a smallest (least) element in the poset (A, \preceq) iff $\forall a \in A \ (a_0 \preceq a)$.
- **Greatest (largest)** $a_0 \in A$ is a greatest (largest) element in the poset (A, \preceq) iff $\forall a \in A \ (a \preceq a_0)$.
- **Maximal (formal)** $a_0 \in A$ is a maximal element in the poset (A, \preceq) iff $\neg \exists a \in A \ (a_0 \preceq a \cap a_0 \neq a)$.
- **Maximal (informal)** $a_0 \in A$ is a maximal element in the poset (A, \preceq) iff on the diagram of (A, \preceq) there is no element placed above a_0 .

Minimal $a_0 \in A$ is a minimal element in the poset (A, \preceq) iff $\neg \exists a \in A \ (a \preceq a_0 \cap a_0 \neq a)$.

- **Minimal (informal)** $a_0 \in A$ is a minimal element in the poset (A, \preceq) iff on the diagram of (A, \preceq) there is no element placed below a_0 .
- **Lower Bound** Let $B \subseteq A$ and (A, \preceq) is a poset. $a_0 \in A$ is a lower bound of a set B iff $\forall b \in B \ (a_0 \preceq b)$.

- **Upper Bound** Let $B \subseteq A$ and (A, \preceq) is a poset. $a_0 \in A$ is an upper bound of a set B iff $\forall b \in B \ (b \preceq a_0)$.
- **Least upper bound of B (lub B)** Given: a set $B \subseteq A$ and (A, \preceq) a poset. $x_0 = lubB$ iff x_0 is (if exists) the least (smallest) element in the set of all upper bounds of B, ordered by the poset order \preceq .
- **Greatest lower bound of B (glb B)** Given: a set $B \subseteq A$ and (A, \preceq) a poset. $x_0 = glbB$ iff x_0 is (if exists) the greatest element in the set of all lower bounds of B, ordered by the poset order \preceq .
- **Lattice** A poset (A, \preceq) is a lattice iff For all $a, b \in A$ both $lub\{a, b\}$ and $glb\{a, b\}$ exist.
- **Lattice notation** Observe that by definition elements lubB and glbB are always unique (if they exist). For $B = \{a, b\}$ we denote: $lub\{a, b\} = a \cup b$ and $glb\{a, b\} = a \cap b$.
- **Lattice union (meet)** The element $lub\{a, b\} = a \cup b$ is called a lattice union (meet) of a and b. By lattice definition for any $a, b \in A$ $a \cup b$ always exists.
- **Lattice intersection (joint)** The element $glb\{a, b\} = a \cap b$ is called a lattice intersection (joint) of a and b. By lattice definition for any $a, b \in A \ a \cap b$ always exists.
- **Lattice as an Algebra** An algebra (A, \cup, \cap) , where \cup, \cap are two argument operations on A is called a lattice iff the following conditions hold for any $a, b, c \in A$ (they are called lattice AXIOMS):
 - **l1** $a \cup b = b \cup a$ and $a \cap b = b \cap a$
 - 12 $(a \cup b) \cup c = a \cup (b \cup c)$ and $(a \cap b) \cap c = a \cap (b \cap c)$
 - 13 $a \cap (a \cup b) = a$ and $a \cup (a \cap b) = a$.

Lattice axioms The conditions l1- l3 from above definition are called lattice axioms.

Lattice orderings Let the (A, \cup, \cap) be a lattice. The relations:

 $a \leq b$ iff $a \cup b = b$, $a \leq b$ iff $a \cap b = a$ are order relations in A and are called a lattice orderings.

- **Distributive lattice** A lattice (A, \cup, \cap) is called a distributive lattice iff for all $a, b, c \in A$ the following conditions hold
 - $14 \quad a \cup (b \cap c) = (a \cup b) \cap (a \cup c)$
 - 15 $a \cap (b \cup c) = (a \cap b) \cup (a \cap c).$

Distributive lattice axioms Conditions <u>1</u>1-15 from above are called a distributive lattice axioms.

- **Lattice special elements** The greatest element in a lattice (if exists) is denoted by 1 and is called a lattice UNIT. The least (smallest) element in A (if exists) denoted by 0 and called a lattice zero.
- **Lattice with unit and zero** If 0 (lattice zero) and 1 (lattice unit) exist in a lattice, we will write the lattice as: $(A, \cup, \cap, 0, 1)$ and call is a lattice with zero and unit.
- **Lattice Unit Axioms** Let (A, \cup, \cap) be a lattice. An element $x \in A$ is called a lattice unit iff for any $a \in A$ $x \cap a = a$ and $x \cup a = x$.

If such element x exists we denote it by 1 and we write the unit axioms as follows.

 $1 \cap a = a$

17 $1 \cup a = 1.$

Lattice Zero Axioms Let (A, \cup, \cap) be a lattice. An element $x \in A$ is called a lattice zero iff for any $a \in A$ $x \cap a = x$ and $x \cup a = a$.

We denote the lattice zero by 0 and write the zero axioms as follows.

- $18 \quad 0 \cap a = 0$
- **l9** $0 \cup a = a$.
- **Complement** Let $(A, \cup, \cap, 1.0)$ be a lattice with unit and zero. An element $x \in A$ is called a complement of an element $a \in A$ iff $a \cup x = 1$ and $a \cap x = 0$.
- **Complement axioms** Let $(A, \cup, \cap, 1.0)$ be a lattice with unit and zero. The complement of $a \in A$ is usually denoted by -a and the above conditions that define the complement above are called complement axioms. The complement axioms are usually written as follows.
 - c1 $a \cup -a = 1$
 - **c2** $a \cap -a = 0.$
- **Boolean Algebra** A distributive lattice with zero and unit such that each element has a complement is called a Boolean Algebra.
- **Boolean Algebra Axioms** A lattice $(A, \cup, \cap, 1.0)$ is called a Boolean Algebra iff the operations \cap, \cup satisfy axioms **l1 -l5**, $0 \in A$ and $1 \in A$ satisfy axioms **l6 l9** and each element $a \in A$ has a complement $-a \in A$, i.e.

l1o $\forall a \in A \exists -a \in A ((a \cup -a = 1) \cap (a \cap -a = 0)).$

SOME BASIC FACTS

- **Uniqueness** In any poset (A, \preceq) , if a greatest and a least elements exist, then they are unique.
- **Finite Posets** If (A, \preceq) is a finite poset (i.e. A is a finite set), then a unique maximal (if exists) is the largest element and a unique minimal (if exists) is the least element.
- **Infinite Posets** It is possible to to order an infinite set A in such a way that the poset (A, \preceq) has a unique maximal element (minimal element) and no largest element (least element).
- **Any poset** In any poset, the largest element is a unique maximal element and the least element is the unique minimal element.
- **Lower, upper bounds** A set $B \subseteq A$ of a poset (A, \preceq) can have none, finite or infinite number of lower or upper bounds, depending of ordering.
- **Finite lattice** If (A, \cup, \cap) is a finite lattice (i.e. A is a finite set), then 1 and 0 always exist.
- **Infinite lattice** If (A, \cup, \cap) is an infinite lattice (i.e. the set A is infinite), then 1 or 0 might or might not exist.

For example:

 $(N \leq)$ is a lattice with 0 (the number 0) and no 1.

 $(Z \leq)$ is a lattice without 0 and without 1.

Finite Boolean Algebra Non-generate Finite Boolean Algebras always have 2^n elements $(n \ge 1)$.